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Abstract— This work describes a new Symmetric Key
Homomorphic Encryption scheme. We define a noisy
variant of the Subspace Membership problem called the
Hidden Subspace Membership problem and show that the
proposed scheme is IND-CPA secure based on the hard-
ness of this problem. We then discuss the homomorphic
properties of the proposed scheme.

Index Terms— Homomorphic Encryption; Hidden Sub-
space Membership

I. INTRODUCTION
Homomorphic encryption allows mathematical com-

putations to be performed on encrypted data without
knowing the actual data or the decryption key. In other
words, given a bilinear operation ∗ : P×P→ P, where
P denotes the plaintext space, an encryption scheme
is said to be homomorphic with respect to ∗ if for
any two plaintexts m1,m2 ∈ P, Enc(m1 ∗m2) can
be efficiently computed from Enc(m1) and Enc(m2)
without using the decryption key. An encryption scheme
is called fully homomorphic if it is homomorphic with
respect to both addition and multiplication over the un-
derlying algebraic structure. Homomorphic encryption
has wide applications in multiparty computation [9],
secure electronic voting [4], private information retrieval
[13] etc.

Several lattice-based schemes [6], [7], [11] have been
proposed following the breakthrough work in [10],
which gives the first feasible construction of a fully
homomorphic encryption scheme based on ideal lattices.
Other algebraic structures such as multivariate polyno-
mials and linear codes yields additively homomorphic
schemes [1], [2] but for multiplicative homomorphism,
the size of the ciphertexts grows exponentially. The
construction of a secure fully homomorphic encryption
scheme based on these structures remains an open prob-
lem.

In this paper, we propose a symmetric key encryption
scheme using simple linear algebra operations which
is shown to be homomorphic with respect to addition
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and modular convolution. We define a noisy variant of
the subspace membership problem called the Hidden
Subspace Membership (HSM) problem and show that
the proposed scheme is IND-CPA secure based on the
hardness of this problem.

The remainder of this paper is ordered as follows:
In section II, we discuss the Hidden Subspace Mem-
bership problem. Section III contains the construction
of the proposed scheme. In section IV, we discuss
the homomorphic properties of the scheme. Section
V deals with the security and possible attacks on the
proposed scheme. Finally, in section VI, we suggest
some experimental parameter choices for the proposed
scheme.

The following notations are used in the paper. λ
denotes the security parameter of the scheme. R and N
denote the set of real and natural numbers respectively.
Z denotes the set of integers. x← y is used to assign the
value y to x. x $←− S means that x is sampled from a set
S uniformly at random. F denotes a field and Fq denotes
a finite field of order q, where q is a prime power.
Fq[x]≤d denotes the set of polynomials of degree ≤ d in
the variable x over Fq for some d ∈ N. Given a set S,
|S| denotes the cardinality of S. For any positive integer
n, [n] denotes the set of integers {1, 2, . . . , n}. We use
uppercase script letters A,B, . . . to denote tensors and
uppercase letters A,B, . . . to denote matrices. The ith

column of a matrix A is denoted by A(:, i). Scalars
are denoted using lower case letters a, b, . . . and vectors
are denoted using lowercase bold letters a, b, . . . etc. A
function f(x) : N→ R is called negligible if, for every
ω ∈ N, there exists an integer nω such that |f(x)| < 1

xω

for all x > nω .

II. HIDDEN SUBSPACE MEMBERSHIP PROBLEM

Given a set of noisy samples from a subspace S
of a vector space V , where the noise comes from a
distribution N over V , the aim of the Hidden Subspace
Membership (HSM) problem is to compute a basis for S.
A decisional variant of the problem, the Decisional Hid-
den Subspace Membership (DHSM) problem involves
distinguishing elements of the subspace from uniformly
sampled elements of the vector space.
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Definition 1: (Hidden Subspace Membership
(HSM) Problem). Let S be a subspace of a vector
space V and N be a noise ditribution on V . The
HSM problem is defined as: given polynomially many
samples of the form (v + n) such that v $←−S and
n $←−N , output a basis for S with high probability.

Observe that, the noise-free variant of the HSM prob-
lem is extremely easy to solve. If S is a k-dimensional
subspace of a vector space V , then k linearly indepen-
dent samples of S can be used to construct a basis for
S.

We define the decisional variant using the game
playing framework adapted from [3]. A game is run with
an adversary A, where A is considered as a Probabilistic
Polynomial Time (PPT) algorithm and consists of pro-
cedures called oracles. We consider an algorithm G that
takes as input the security parameter λ and a description
of the vector space V and generates a basis BS for a
subspace S ⊂ V .

Definition 2: (Decisional Hidden Subspace Mem-
bership (DHSM) Problem). The DHSM problem can
be defined in terms of the game shown in Figure 1.
A PPT adversary A wins the game if it can guess the
value of c with a non-negligible advantage ε, where ε is
defined as ε :=

∣∣∣Pr[c = c′]− 1
2

∣∣∣.
Initialize

1. BS ← G(λ,V)
2. c $←−{0, 1}

Challenge()
1. v $←−V
2. if c = 1,

v
$←−S

3. return v

Sample()
1. v $←−S, n $←−N
2. set v ← v + n
3 return v

Finalize (c′)
1. return (c = c′)

Fig 1: DHSM Game

It can be easily proved that the two problems are
equivalent. If there is an adversary that can solve the
DHSM problem, then it can be used to detect k linearly
independent elements of the subspace S and thus con-
tsruct a basis for S. Conversely, if the HSM problem
can be solved and we have a basis for S then it can be
used to construct a basis for S⊥. Then, one can check
whether a given vector lies in S by checking if it lies
in the kernel of S⊥.

We now demonstrate that the hardness of the HSM
problem is related to the well-known Learning With
Errors (LWE) problem [16].

Definition 3: ( Learning With Errors (LWE) Prob-
lem). Given a noise distribution N over Zq , the LWE
problem can be defined in terms of the game shown
in Figure 2 as mentioned in [1]. A PPT adversary A
wins the game if it can guess the value of s with non-
negligible advantage ε, where ε := Pr[s = s′].

Initialize
1. m← m(λ)

2. s $←−Zmq

Sample()
1.a $←−Zmq , e $←−N
2. set b ←(
aT s+ e

)
mod q

3 return (a, b)

Finalize (s′)
1. return (s=s′)

Fig 2: LWE Game

Given samples from the HSM game, recovering the
subspace S is equivalent to recovering its perpendicular
space S⊥. Therefore, the HSM problem over the vector
space Zmq can be modified as: given noisy samples vi,
determine a vector s in S⊥ such that vTi s = 0 (mod q).
Observe that, an LWE sample (ai, bi) is such that
aTi s ≈ bi (mod q) which is a noisy equation with
the noise being sampled according to some probability
distribution N on Zq . It can be alternatively viewed as,[

aTi −bi
] [s

1

]
≈ 0 (mod q) (1)

Hence, we can construct a PPT adversary against the
LWE problem from a PPT adversary against the HSM
problem with the same advantage. Thus, the HSM
problem is as difficult as the LWE problem.

III. THE PROPOSED SCHEME

In this section, we describe the construction of the
proposed scheme. The scheme encrypts messages over
the space Fmq and maps it to a matrix C ∈ Fm×n

q`
for

some m,n ∈ N such that m < n, Fq` is an extension
field of Fq of order q` for some ` ∈ N and m and n are
functions of the security parameter λ. The scheme can
be summarized in terms of the following algorithms:
• KeyGen(λ,m, n): The key generation algorithm

takes the parameters λ,m, n as inputs and gener-
ates the secret key sk. Sample L $←−GLm(Fq`) and
R $←−GLn(Fq`). Set sk := (L,R).

• Encrypt(sk,m): It takes a message m ∈ Fmq and
the secret key sk as inputs and outputs a block of
encryptions C := {Ci ∈ Fm×n

q`
|1 ≤ i ≤ η}, for

some η ∈ N. Consider the set

D :=

{
X ∈ Fm×n

q`

∣∣∣∣∣
n∑
i=1

X(:, i) = 0 mod q`
}

(2)
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Algorithm 1: KeyGen(λ,m, n)
Input : λ, m, n
Output: sk

1 sample L $←−GLm(Fq` ) , R $←−GLn(Fq` )
2 set secret key sk := (L,R)
3 return sk

and sample Qi $←−D. Set Qi(:, β)← Qi(:, β)+m,
where β ∈$ [n]. Compute, Ci = L ·Qi ·R+ci ·N i,
where N i ∈ Fm×n

q`
is a random noise matrix and

ci ∈ {0, 1} is sampled according to a distribution
E such that for every block of η samples cγ = 0
for a randomly chosen γ ∈ [η] and ci = 1 for 1 ≤
i ≤ η, i 6= γ. Thus, every η encryptions contain one
noise-free encryption of m. Encrypt then outputs
the ciphertext block C = {Ci}1≤i≤η .

Algorithm 2: Encrypt(m, sk)
Input : m, sk, D, E , η
Output: ciphertext C = {Ci ∈ Fm×n

q`
|1 ≤ i ≤ η}

1 sample Qi $←−D, ci
E←−{0, 1}, N i $←−Fm×n

q`

2 set Qi(:, β)← Qi(:, β) +m for β $←−[n]
3 set Ci = L ·Qi ·R+ ci ·N i

4 return C = {Ci}1≤i≤η

• Decrypt(sk,C): It takes a ciphertext block C and
the secret key sk and outputs the corresponding
message m. A decrypter with the knowledge of L
and R can determine mi =

∑n
j=1(L

−1 ·Ci ·R−1)(:
, j) and outputs m = mi with the smallest i such
that mi ∈ Fmq .

Algorithm 3: Decrypt(C, sk)
Input : ciphertext C = {Ci}1≤i≤η , secret key sk
Output: message m

1 for i = 1 to η do

2 set mi =
n∑
j=1

(L−1CiR−1)(:, j)

3 end
4 if mi ∈ Fmq then
5 set m = mi

6 return m

The following lemma shows that, if the decryption of
a ciphertext gives an element of Fmq , then the decrypted
vector is a valid message with very high probability. For
the simplicity of the calculations, we assume a uniform
distribution of noise in this paper for the noisy elements
of the subspace.

Lemma 1: If the decryption of a ciphertext C of the
respective message m is an element of Fmq , then the

probability that it comes from the noiseless element of
C is given by 1/((η − 1)qm(1−`) + 1).

Proof: Let A be the event that C decrypts to a
vector in Fmq and B be the event that it comes from
a noisy element of C. An outcome of B is of the
form Ci = L · Qi · R + N i = (L · Qi + N̂ i)R
for some N̂ i ∈ Fm×n

q`
and there exists a one-to-one

correspondence between N i and N̂ i. Then, the required
probability can be determined as follows,

Pr(B|A) = Pr(A|B) · Pr(B)

Pr(A)
(3)

where B denotes the complement of the event B and
Pr(A|B) is the probability that the decryption of a
noiseless element of C lies in Fmq . Hence, Pr(A|B) = 1

and Pr(B) = 1
η , given that there exits one noise-free

encryption of m in C. Pr(A) can be determined as,

Pr(A) = Pr(A|B) · Pr(B) + Pr(A|B) · Pr(B) (4)

where, Pr(A|B) is the probability that the decryption of
a noisy element of C lies in Fmq . Therefore, Pr(A|B) =
qm

q`m
= qm(1−`). Hence,

Pr(A) = qm(1−`)
(
η − 1

η

)
+

1

η
(5)

Therefore,

Pr(B|A) = 1

(η − 1)qm(1−`) + 1
(6)

IV. HOMOMORPHIC PROPERTIES

The proposed scheme can be used to remotely per-
form computations on encrypted data without explicit
decryption. The remote server which is used to perform
these computations is provided with an evaluation key
ek by the client. If a bilinear operation M has to be
performed on two messages m1 and m2, the server is
provided with encrypted blocks C1 := {Enc(m1, sk)}
and C2 = {Enc(m2, sk)} which contains encryptions
of m1 and m2 under the secret key sk. Taking the
evaluation key ek and the individual elements Ci1 and
Cj2 of C1 and C2 as inputs, the server is capable of
evaluating a function M ′(ek, Ci1, C

j
2) such that if Ci1 and

Cj2 denote the respective noiseless elements of C1 and
C2, then M ′(ek, Ci1, C

j
2) = M (m1,m2). The remote

evaluation of the function M can be done as per the
following algorithm:

1) The server performs a random permutation π on
the set {1, 2, . . . , η}.
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2) It then creates a block C ′ which contains the
elements M ′

(
ek, Ci1, C

π(i)
2

)
for 1 ≤ i ≤ η and

sends it to the client.
3) The client decrypts the block C ′ and checks if it

contains a vector in the base field Fmq . If not, the
client requests the server for another evaluation
using a different permutation.

In the remainder of the section, we will demonstrate
the utility of the above scheme in remotely performing
addition and modular convolution.

A. Addition
Using the above mentioned schematic, we now see

how two messages can be homomorphically added as
elements of Fmq . Let m1 and m2 be two messages that
need to be added. The server is provided with their
encryptions C1 and C2. The elements of C1 are added
with the permuted elements of C2 and the resulting
block Cadd is given to the client for decryption. If
the decryption of the block Cadd yields an element of
Fmq , i.e., if

∑n
j=1

(
L−1(Ci1 + C

π(i)
2 )R−1

)
(:, j) ∈ Fmq

for some i ∈ [η], then the block Cadd is accepted as
an encryption of m1 + m2. If not, the client requests
the server to repeat the operation. The algorithm imple-
mented by the server at each stage is shown in Algorithm
4. Here P denotes the set of permutations on the set
{1, 2, . . . , η} and ‘+’ denotes addition over Fq` unless
stated otherwise.

Algorithm 4: Add
Input : ciphertexts C1 = {Ci1}1≤i≤η ,C2 = {Ci2}1≤i≤η
Output: ciphertext Cadd

1 set π $←−P ([η])

2 set Cadd :=
{
Ci1 + C

π(i)
2 : 1 ≤ i ≤ η

}
3 return Cadd

1) Correctness of Addition: The underlying assump-
tion of the above mentioned scheme is that if the
decryption of the resulting block Cadd yields an element
of Fmq , this element should have necessarily come from
the addition of two noiseless elements of C1 and C2. If
Ci1 and Cπ(i)2 denotes the noiseless elements of C1 and
C2, then

n∑
i=1

(
L−1(Ci1 + C

π(i)
2 )R−1

)
= m1 +m2 (mod q)

(7)

Lemma 2: Let Cπ0(i)
1 + C

π1(i)
2 + · · · + C

πk−1(i)
k ←

Add(C1, . . . ,Ck) denotes the addition of k respec-
tive elements of C1, . . . ,Ck. Given that, the decryp-
tion of Cπ0(i)

1 + · · · + C
πk−1(i)
k yields an element of

Fmq , the probability that it comes from the addition
of the noiseless elements of C1, . . . ,Ck is given by
1
/((

ηk − 1
)
qm(1−`) + 1

)
.

Proof: Let A be the event that Cπ0(i)
1 + · · · +

C
πk−1(i)
k decrypts to a vector in Fmq and B be the event

that at least one of the C
πj−1(i)
j s is noisy for some

j ∈ [k]. Then B is event of adding the noiseless elements
of the respective ciphertexts. Observe that, B ⊆ A.
Therefore, the required probability can be determined
as,

Pr(B|A) = Pr(B)

Pr(A)
(8)

where, Pr(B) = 1
ηk

, given that each Cj contains
one noiseless element for 1 ≤ j ≤ k. Observe that,
Pr(A|B) = 1 and Pr(A|B) = qm

q`m
, considering that

the first (k−1) elements are chosen uniformly at random
and the last element in such a way that their sum lies in
Fmq . Therefore,

Pr(A) = Pr(A|B) · Pr(B) + Pr(A|B) · Pr(B)

=

(
1− 1

ηk

)
qm(1−`) +

1

ηk
(9)

Hence,

Pr(B|A) = 1

(ηk − 1)qm(1−`) + 1
(10)

Lemma 3: The expected number of trials till the
decryption of Cadd ← Add(C1,C2) outputs a vector
in Fmq is η2

(η2−1)qm(1−`)+1
.

Proof: Let A be the event that Cadd outputs a
vector in Fmq . Then, from Lemma 2, it can be easily
seen that

Pr(A) =

(
1− 1

η2

)
qm(1−`) +

1

η2
(11)

Hence, the expected number of trials till Cadd de-
crypts to a vector in Fmq is 1

Pr(A) = η2

(η2−1)qm(1−`)+1
.

B. Modular Convolution
A message m ∈ Fmq can be viewed as a polynomial

of degree < m over Fq[x]. There exists a natural map
φ : Fmq → Fq[x]≤(m−1) from the elements of Fmq to the
polynomials of Fq[x]≤(m−1) defined as

φ(a0, . . . , am−1)=a0 + a1x+ . . .+ am−1x
m−1 (12)

Given a polynomial f(x) ∈ Fq[x]≤m, the modular con-
volution of m1 and m2 with respect to f(x), denoted
as ∗f , can be defined as:

m1 ∗f m2 = φ−1 [φ (m1) ∗ φ (m2) mod f(x)] (13)
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1) The Public Evaluation Key: The modular convo-
lution of two messages m1 and m2 can be homomor-
phically evaluated using an order-4 tensor T that acts
on two respective elements Ci1 and Cπ(i)2 of C1 and C2

as Ci1 ∗ C
π(i)
2 = Ci1

TT Cπ(i)2 , where T is given as the
public evaluation key. The rest of the section deals with
generating the tensor T .

The modular convolution with respect to f(x) is a
bilinear operation that can be represented by an m ×
m×m order-3 tensor B with respect to a basis of Fmq .
Using B, m1 ∗f m2 of two messages m1,m2 ∈ Fmq
can be obtained as

m1 ∗f m2 = mT
1 Bm2

=
[
mT

1 B1m2 . . . mT
1 Bmm2

]T
(14)

where Bj = B(:, :, j) denotes the frontal slices of B
for 1 ≤ j ≤ m. Then, the modular convolution of m1

and m2 can be homomorphically computed using the
following tensor

Xj=
(
B ×1 L

−T ×2 L
−T
)
⊗

R−1(:, j)·

(
n∑
k=1

R−1(:, k)

)T
(15)

for 1 ≤ j ≤ n. Here, ×i denotes the mode-i product
of tensors and ⊗ denotes the usual tensor product. If
(c

(1)
1 , . . . , c

(1)
n ) and (c

(2)
1 , . . . , c

(2)
n ) represents the column

vectors of Ci1 and C
π(i)
2 and R−1 is the n × n matrix

with entries R−1(j, k) = rjk for 1 ≤ j, k ≤ n, then

Ci1 ∗ C
π(i)
2 =

[
c
(1)
1

T
. . . c

(1)
n

T
]
Xi


c
(2)
1
...

c
(2)
n

 (16)

where Xj is given by the following mn × mn × m
tensor.

Xj =



r1j
∑
k

r1kB̃ r1j
∑
k

r2kB̃ . . . r1j
∑
k

rnkB̃

r2j
∑
k

r1kB̃ r2j
∑
k

r2kB̃ . . . r2j
∑
k

rnkB̃
...

...
. . .

...
rnj
∑
k

r1kB̃ rnj
∑
k

r2kB̃ . . . rnj
∑
k

rnkB̃


(17)

For 1 ≤ j ≤ n, X := (X1, . . . ,Xn) represents an
order-4 tensor of dimension mn × mn × m × n over
Fmq` . The tensor X is then pre and post-multiplied by
two matrices L1 and R1 chosen uniformly at random
from GLm(Fq`) and GLn(Fq`) respectively, to obtain
T = X ×3 L1 ×4 R1.

The server homomorphically computes the modular
convolution of two messages as per Algorithm 5. Similar
to addition, if the decryption of Ccon yields a vector in
Fmq , it is accepted as an encryption of m1 ∗f m2.

Algorithm 5: Mult
Input : ciphertexts C1 = {Ci1}1≤i≤η ,C2 = {Ci2}1≤i≤η ,

evaluation key T
Output: ciphertext Ccon

1 set π $←−P ([η])

2 set Ccon :=
{
Ci1 ∗ C

π(i)
2 = Ci1

T T Cπ(i)2 : 1 ≤ i ≤ η
}

3 return Ccon

2) Correctness of Convolution: The decryption key
for the convoluted ciphertexts is (L1, R1). If Ci1 and
C
π(i)
2 denote the noiseless elements of C1 and C2, then

L−11

(
Ci1 ∗ C

π(i)
2

)
R−11 = Ci1

TXCπ(i)2 (18)

Using equation (16) and (17), C ′con = Ci1
TXCπ(i)2 is

an m × n matrix, which can be written in terms of its
column vectors as:

[(
Qi1(:, 1)

TB
n∑
i=1

Q
π(i)
2 (:, i)

)
. . .

(
Qi1(:, n)

TB
n∑
i=1

Q
π(i)
2 (:, i)

)]

The decryption function retrieves,
n∑
j=1

C ′con(:, j) = m1 ∗f m2 (19)

Lemma 4: Let Cπ0(i)
1 ∗ Cπ1(i)

2 ∗ · · · ∗ Cπk−1

k (i) ←
Mult(C1, . . . ,Ck, ek) denotes the convolution of k re-
spective elements of C1, . . . ,Ck. Given that the decryp-
tion of Cπ0(i)

1 ∗· · ·∗Cπk−1(i)
k yields an element of Fmq , the

probability that it comes from the modular convolution
of the noiseless elements of C1, . . . ,Ck is given by

1

(ηk−1)

[(
1−
(
1− 1

q`m

)k
)
+

(
1− 1

q`m

)k(
qm−1

q`m−1

)]
+1

.

Proof: Let A be the event that Cπ0(i)
1 ∗· · ·∗Cπk−1(i)

k

yields an element of Fmq and B be the event that atleast
one of the Cπj−1(i)

j s is noisy for some j ∈ [k]. Observe
that, B ⊆ A. Therefore, the required probability can be
determined as,

Pr(B|A) = Pr(B)

Pr(A)
(20)

The probability that Cπ0(i)
1 ∗ · · · ∗Cπk−1(i)

k , containing
a noisy element, decrypts to a vector in Fmq can be
determined as follows. Two cases may arise: first, when
at least one of the individual elements decrypts to zero
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and second, when all the elements decrypt to non-zero
elements of Fmq` . Considering that the first (k − 1)
elements are chosen uniformly at random and the last
element in such a way that their modular convolution
lies in Fmq , the required probability for the first case can
be determined as (

1−
(
1− 1

q`m

)k)
and for the second case, it can be obtained as(

1− 1
q`m

)k
·
(
qm−1
q`m−1

)
Therefore,

Pr(A|B) =

(
1−

(
1−

1

q`m

)k)
+

(
1−

1

q`m

)k ( qm − 1

q`m − 1

)
(21)

Observe that, Pr(A|B) = 1 and Pr(B) = 1 − 1
ηk

.
Therefore, Pr(A) can be determined as

Pr(A) = Pr(A|B) · Pr(B) + Pr(A|B) · Pr(B)

=

(
1−

1

ηk

)[(
1−
(
1−

1

q`m

)k)
+

(
1−

1

q`m

)k( qm − 1

q`m − 1

)]

+
1

ηk
(22)

Hence,

Pr(B|A) =
1

(ηk− 1)

[(
1−
(
1− 1

q`m

)k)
+
(
1− 1

q`m

)k(
qm−1
q`m−1

)]
+ 1

(23)

Lemma 5: The expected number of trials till the de-
cryption of Ccon ←Mult(C1,C2, ek) outputs a vector
in Fmq is η2

(η2−1)
[(

1−
(

q`m−1

q`m

)2
)
+
(
1− 1

q`m

)2( qm−1

q`m−1

)]
+1

.

Proof: Let A be the event that Ccon outputs a
vector in Fmq . Then, from Lemma 4, it can be easily
verified that,

Pr(A) =

(
1−

1

η2

)[(
1−
(
1−

1

q`m

)2)
+

(
1−

1

q`m

)2( qm − 1

q`m − 1

)]

+
1

η2
(24)

Hence, the expected number of trials till Ccon de-
crypts to a vector in Fmq is

1

Pr(A)
=

η2

(η2 − 1)

[(
1−
(
q`m−1
q`m

)2)
+
(
1− 1

q`m

)2(
qm−1
q`m−1

)]
+1

C. Compactness

An encryption of a message is a block of (m × n)
matrices {Ci ∈ Fm×n

q`
for 1 ≤ i ≤ η}. The number of

bits required to represent an element Ci is (mn` log2q).
Since m and n are polynomial functions of the security
parameter λ, the proposed scheme is compact.

V. SECURITY

We show that the proposed scheme is IND-CPA
secure based on the hardness of the Decisional Hidden
Subspace Membership (DHSM) problem.

A. Chosen Plaintext Security

In a Chosen Plaintext Attack (CPA) model, the ad-
versary has a number of plaintext-ciphertext pairs at
its disposal. A symmetric key encryption scheme is
said to be indistinguishable under a chosen plaintext
attack (IND-CPA) if, given sufficient samples (plaintext-
ciphertext pairs), an adversary is unable to distinguish
between the encryptions of two distinct messages of its
choice with probability more than 1

2 .
Definition 4: (IND-CPA Security). The IND-CPA

security of a symmetric encryption scheme can be
defined in terms of the game shown in Figure 3. A
PPT adversary A selects two messages (m0,m1) of its
choice and the Left-Right oracle outputs the encryption
of one of the messages by choosing c $←−{0, 1}. A wins
the game if it can guess the value of c with a non-
negligible advantage ε, where ε :=

∣∣∣Pr[c = c′]− 1
2

∣∣∣.
Initialize

1. sk ← KeyGen(m,n)
2. c $←−{0, 1}

Left-Right(m0,m1)

1. C ← Enc(mc, sk)
2. return C

Encrypt(m, sk)

1. C←Enc(m, sk)
2. return C

Finalize (c′)
1. return (c = c′)

Fig 3: IND-CPA Game

Before proving the security of the proposed scheme,
observe that a noise-free variant of the scheme is in-
secure. It can be easily verified that for ci = 0 in
Ci = L · Qi · R + ci · N i, the encryptions of zero in
the proposed scheme forms an m(n − 1) dimensional
subspace V0 of the vector space Fm×n

q`
. Given sufficient

samples, a simple linear algebra attack that recovers a
basis of the subspace then distinguishes an encryption
of zero from that of a non-zero message.

We now show that the proposed scheme is IND-CPA
secure based on the hardness of the DHSM problem.
The DHSM problem can be defined with respect to the
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proposed scheme in terms of the game shown in Figure
4. The algorithm G in the following game takes as input
(m,n) and generates a basis BS for a subspace S ⊂
Fm×n
q`

of dimension m(n − 1) such that any X ∈ S
satisfies the condition,

∑n
i=1X(:, i) = 0.

Initialize
1. BS ← G(m,n)
2. c $←−{0, 1}

Challenge()
1. V $←−Fm×n

q`

2. if c = 1,
V

$←−S
3. return V

Sample()
1. V $←−S, N $←−N
2. set V ← V +N
3 return V

Finalize (c′)
1. return (c = c′)

Fig 4: DHSM Game

Theorem 1: A PPT adversary A that breaks the
IND-CPA security of the proposed scheme with non-
negligible advantage ε can be converted into a PPT
adversary B that can solve an instance of the DHSM
problem for the case, where S = V0, with advantage at
least ε

2 .
Proof: B initializes A with the parameters (m,n).

Let N ′ be a noise distribution on Fm×n
q`

. Given N ′,
we can create a new distribution N such that N :=
c0 · N ′, where c0 is a random variable that takes values
from {0, 1} according to a distribution E as described
in section III. When A asks for an encryption of m,
B queries the procedure Sample of the DHSM game
to get Vi ← Vi + Ni for 1 ≤ i ≤ η, where Ni

$←−N
and returns the block V = {Vi}1≤i≤η after setting Vi(:
, β) = Vi(:, β)+m for 1 ≤ i ≤ η. Hence, every block of
η samples from the Sample oracle of the DHSM game
contains one element from the subspace S. Therefore,
the sample returned to A is a valid encryption of m.

When A queries the Left-Right oracle of the IND-
CPA game, B queries the procedure Challenge of the
DHSM game to get V and returns a block V =
{Vi}1≤i≤η after choosing c $←−{0, 1} and setting Vi(:
, β)← Vi(:, β)+mc, for some β $←−[n] such that Vγ = V
for some γ $←−[η] and Vi

$←−Fm×n
q`

for 1 ≤ i ≤ η, i 6= γ.
If the sample returned from the Challenge oracle to B

is an element of the subspace S, then A runs in a similar
environment to that of the IND-CPA game and hence,
B outputs c with probability 1

2 + ε which is same as the
probability thatA wins the IND-CPA game. On the other
hand, if the sample returned is uniform in Fm×n

q`
, then

B outputs c with probability 1
2 . If DHSMB(λ) denotes

the experiment of the DHSM game, then B solves the

DHSM problem with probability,

Pr[DHSMB(λ)=1] =
∑

j∈{0,1}

Pr[(c = c′) ∩ (c = j)]

=
∑

j∈{0,1}

Pr[c = c′|c = j] · Pr[c = j]

≥ (
1

2
+ ε) · 1

2
+

1

2
· 1
2

=
1

2
+

1

2
ε

Hence, B solves the DHSM problem with advantage at
least ε

2 .

B. Exploiting the Public Key

Given the tensor T , an attacker may try to exploit
the public key in order to recover the secret key. Ob-
serve that, the entries of the public key tensor forms
an overdefined system of (mn)3 equations in m3 +
2(m2 + n2) variables of degree d ≤ 5. Therefore, the
security of the scheme with respect to the homomorphic
properties depends on the problem of solving a system
of multivariate polynomial equations over a finite field
Fq` . This problem is known to be NP-hard in general.

Not many results are known for the exact solvability
of this problem in the general case. Further, the algo-
rithms proposed for certain special cases have exponen-
tial complexity in the worst case [5], [12]. A recently
proposed algorithm in [14] solves this problem that beats
brute force search in deciding the satisfiability of the
problem. For the proposed parameter choices in section
VI, the complexity of this algorithm is exponential in
the number of variables.

VI. PARAMETERS

We suggest parameter choices for the proposed
scheme based on the attacks discussed in section V. In
order to rule out exhaustive search over the key space,
we need

m ≥ d 3
√
λ logq`2 e

We choose n ≥ m + 1 because for n = m, the cipher-
texts associated with the encryptions of zero are rank
deficient matrices and an attacker can easily distinguish
an encryption of zero from the encryption of a non-zero
message.

We need to ensure that the probability of decrypting
a valid ciphertext should be ≈ 1. Hence, from Lemma
1, we need

(η − 1) qm(1−`) ≈ 0
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We consider q to be polynomial in the security param-
eter λ. For some d ∈ N and ξ ∈ R such that 0 ≤ ξ ≤ 1,
we consider

q ≈ λd+ξ

In the LWE problem [16], the noise distribution is a
discrete Gaussian distribution Xα,q , where 0 < α ∈ R
and q is polynomial in λ. The hardness of LWE over the
extension field Fq` is ensured from the condition that
αq` ≥ 2

√
L, where L is the dimension of the lattice

(which translates to L = mn in the proposed case) and

α ≥ 1.5 max
(

1
q`
, 2−2
√
Llogqlogδ

)
where, δ is the quality of approximation for the shortest
vector problem [15]. Assuming a similar noise distri-
bution in the DHSM problem, we consider δ = 1.005,
similar to the parameter choices in [1]. Taking these
factors into consideration, we provide some example
parameter choices for the proposed scheme in Table I.

λ q ` m n
Ciphertext

size (≈)

Public
Key size

(≈)

1109 2 7 15 0.26 kB 3 MB
80 15373 3 5 20 0.50 kB 5 MB

57241 4 3 25 0.81 kB 8 MB
1447 2 10 12 0.30 kB 4 MB

128 16381 3 6 18 0.55 kB 6 MB
70237 4 4 26 0.82 kB 8 MB
2351 2 11 14 0.42 kB 9 MB

256 21617 2 8 13 0.36 kB 4 MB
114113 3 5 20 0.61 kB 6 MB

TABLE I: Experimental Parameter Choices

The size of the public key is quite large for the
parameter choices in Table I. However, it is equivalent
to that of other public key homomorphic schemes ( [8]
achieves a public key size of 10.3 MB for λ = 72
using public key compression technique for the scheme
proposed in [17]).

VII. CONCLUSION

A new symmetric key encryption scheme has been
proposed which is homomorphic with respect to addi-
tion and modular convolution. A noisy variant of the
subspace membership problem called the Hidden Sub-
space Membership problem has been introduced and the
proposed scheme has been shown to be IND-CPA secure
based on its hardness. A possible extension towards
future work is to convert the scheme into its public key
variant.
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