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Abstract— The aim of this paper is to study the conver-
gence of the primal-dual dynamics pertaining to Support
Vector Machines (SVM). The optimization routine, used for
determining an SVM for classification, is first formulated as
a dynamical system. The dynamical system is constructed
such that its equilibrium point is the solution to the SVM
optimization problem. It is then shown, using passivity theory,
that the dynamical system is global asymptotically stable. In
other words, the dynamical system converges onto the optimal
solution asymptotically, irrespective of the initial condition.
Simulations and computations are provided for corroboration.

I. INTRODUCTION

The field of Machine Learning has gained tremendous
traction over the past decade with the advent of data com-
pilation from various sectors of the industrial world [1].
The techniques therein have helped the industry gain crucial
insights into their processes and make judicious decisions
for the future. A ubiquitous component of most Machine
Learning algorithms is optimization, where in a suitably
chosen cost function is maximized (or minimized) under
constraints. In many applications, the cost function and
the constraints arise from practical considerations. As far
as the optimization routines are concerned, the most well
understood class of optimization problems happens to be that
of convex optimization [2]. Convex optimization problems
happen to be quite useful and have also percolated into
many different application areas. A particularly interesting
application is that of classification problems using Support
Vector Machines. Support vector machines form a tool set for
linear as well as non-linear classification [3]. They can also
be used effectively for non-linear regression using different
kernels. As such, classification itself turns out to be quite
useful in the industry; applications range from predicting
defaulters in finance sector, predicting claims in the insurance
sector and detecting defects in retinopathy [4], [5].

Gradient-based methods form a fundamental basis of all
algorithms for solving convex optimization problems. These
gradient algorithms have much to gain from a control and
dynamical systems perspective; especially for a better un-
derstanding of the underlying system theoretic properties
such as stability, convergence rates, and robustness [6]. The
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convergence of gradient-based methods and Lyapunov sta-
bility, relate the solution of the optimization problem to the
equilibrium point of a dynamical system [7], [8], [9], [10].
In this context, the focus of this paper is continuous time
primal-dual gradient descent method. The formulation has
its roots from [11], where the author constructs a dynamical
system whose trajectories converges asymptotically to the
solution of a min-max problem (saddle point problem).
This framework has two very important characteristics. The
first being the equilibrium of the dynamical system is not
explicitly known but it is implicitly characterized by the
Karush-Kuhn-Tucker (KKT) conditions of an optimization
problem (or the optimization problem itself). Secondly, the
fact that one can show stability using Lyapunov analysis
without the knowledge of equilibrium set or a point. In
the literature, such systems are usually called contracting
systems, a term coined in the seminal paper [12], where
the authors show that the distance between the trajectories
contracts exponentially.

Motivation and contribution: In this paper, we consider a
convex optimization formulation of a linear support vector
machine problem (usually noted as primal formulation).
We next propose the Lagrangian of the constrained op-
timization problem using which we present its dual for-
mulation. The primal together with its dual forms gives
rise to a saddle-point problem. We present the continuous
time gradient descent equation for the saddle-point problem,
which essentially captures two properties; minimization of
the Lagrangian with respect to the primal variables and
maximization of Lagrangian with respective to the dual
variables [9], [10]. Hence these dynamics are usually noted
as primal-dual dynamics. We finally present the convergence
analysis of these dynamics using tools from passivity [13]
and hybrid systems theory [14]. Note that, rewriting the
algorithm as dynamical system that converges to the solution
of an optimization problem has enabled the use of such
systems theory tools for convergence analysis. The main
objective of this note is to motivate the dynamical system
formulation which will acts as a fundamental entity for future
research. Simulation studies are provided to understand the
behavior of Lyapunov function and visualizing the results.

The paper is organized as follows. Section II presents a
brief overview of convex optimization. Section III presents
results on the stability of the continuous time primal-dual
dynamics used to solve convex optimization problems. Fi-
nally, in Section IV, the ideas are applied to the case of the
SVM and simulations are provided for corroboration.
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II. CONVEX OPTIMIZATION

In this section, we present a brief overview of mathe-
matical tools in convex optimization, that will be useful
in the subsequent sections. The standard form of a convex
optimization problem contains three parts:

(i) A continuously differentiable convex function f(x) :
Rn → R to be minimized over x,

(ii) affine equality contraints hi(x) = 0, i = 1, . . . ,m,
(iii) continuously differentiable convex inequality con-

straints of the form gi(x) ≤ 0, i = 1, . . . , p.

This can be written in the following form, commonly known
as the primal formulation:

minimize
x∈Rn

f(x)

subject to hi(x) = 0 i = 1, . . . ,m

gi(x) ≤ 0 i = 1, . . . , p

(1)

Karush-Kuhn-Tucker (KKT) conditions: If the solution
x∗ is optimal to the convex optimization problem (1) then
there exist λi ∈ R, i = 1, . . . ,m and µi ≥ 0, i = 1, . . . , p
satisfying the following KKT conditions

∇xf(x∗) +

m∑
i=1

λi∇xhi(x∗) +

m∑
i=1

µi∇xgi(x∗) = 0,

hi(x
∗) = 0 ∀i ∈ {1, . . . ,m}, (2)

gj(x
∗) ≤ 0, µj ≥ 0, µjgj(x

∗) = 0 ∀j ∈ {1, . . . , p}.

Remark 1. Note that the KKT conditions presented above in
equation (2) are only necessary conditions. We next present
the requirements under which KKT conditions become suf-
ficient.
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Fig. 3. Description of a linear support vector machine.

We now define the Lagrangian of the convex optimization
(1) as

L(x, λ, µ) = f(x) +

m∑
i=1

λihi(x) +

m∑
i=1

µigi(x) (3)

and the Lagrange dual function as

Ld(λ, µ) = minimize
x∈Rn

L(x, λ, µ) (4)

giving us the following dual problem (corresponding to the
primal problem (1))

maximize
λ∈Rm, µ∈Rp

Ld(λ, µ)

subject to µi ≥ 0 i = 1, . . . , p.
(5)

Remark 2. Dual problem is always convex, because Ld is
always a concave function even when the primal (1) is not
convex. If f∗ and L∗d denotes the optimal values of primal
and dual problems respectively, then L∗d ≤ f∗. Therefore
dual formulations are used to find the best lower bound of the
optimization problem [2], [15]. Further, the negative number
L∗d − f∗ denotes the duality gap. In the case of zero duality
gap, we say that the problem (1) satisfies strong duality.

Definition 1. Slater’s conditions. The convex optimization
problem (1) is said to satisfy Slater’s conditions if there
exists an x such that hi(x) = 0 i = 1, . . . ,m and gi(x) <
0 i = 1, . . . , p. This implies that inequality constraints are
strictly feasible.

Remark 3. If a convex optimization problem (1) satisfies
Slater’s conditions then the optimal values of primal and
dual problems are equal, that is, (1) satisfies strong duality.
Further, in this case the KKT conditions becomes necessary
and sufficient.

III. STABILITY OF PRIMAL-DUAL DYNAMICS

In this section, we present the continuous time primal-dual
equations of a convex optimization problem. In [10], we have
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Fig. 4. Mathematical formulation of a linear support vector machine,
xa ∈ Xa (class-a) and xb ∈ Xb (class-b).

shown that these dynamics can be described as a feed-back
interconnection of two passive dynamical systems. The first
being the primal-dual dynamics of an equality constrained
optimization problem and the second corresponds to the
hybrid dynamics representing the inequality constraint (see
Figures 1, 2). We now briefly revisit these results.

Assume that Slater’s condition holds. Since strong duality
holds for (1), (x∗, λ∗, µ∗) satisfying the KKT conditions (2)
is a saddle point of the Lagrangian L. This implies, x∗ is
an optimal solution to primal problem (1) and (λ∗, µ∗) is
optimal solution to its dual problem (5), that is

(x∗, λ∗, µ∗) = argmax
λ,µ

(
argmin

x
L(x, λ, µ)

)
. (6)

This gives us the following saddle-point dynamics.

−τxẋ =

(
∇xf(x) +

m∑
i=1

λi∇xhi(x) +

p∑
i=1

µi∇xgi(x)

)
τλλ̇ = h(x)

τµµ̇ = (g(x))
+
µ (7)

τx, τλ
4
= diag{τλi

, . . . , τλm
}, τµ

4
= diag{τµi

, . . . , τµp
} are

positive definite matrices and (g(x))
+
µi

is given by

(g(x))
+
µ =

{
gi(x) if µi > 0 ∀i ∈ {1, . . . , p},
max(0, gi(x)) if µi = 0.

(8)

Remark 4. The discrete time primal-dual gradient descent
equations of convex optimization problem (1) are

x(tk+1) = x(tk)− ηx∇xL(x, λ, µ)

λ(tk+1) = λ(tk) + ηλ∇λL(x, λ, µ), k ∈ Z+

µ(tk+1) = µ(tk) + ηµ (∇λL(x, λ, µ))
+
µ , k ∈ Z+.

where ηx > 0, ηλ > 0 and ηµ > 0 represents the step size.
Further these are equivalent to the continuous time equations

(7), if the step sizes are chosen as ηx = ∆Tτ−1x , ηλ =
∆Tτ−1λ and ηµ = ∆Tτ−1µ , where ∆T = tk+1 − tk.

Equality constrained optimization problem: Consider the
following dynamics

−τxẋ = ∇xf(x) +

m∑
i=1

λi∇xhi(x) + u

τλi
λ̇i = hi(x), y = −x,

(9)

where u, y ∈ Rn. Note that, the unforced system of equa-
tions, obtained by setting u = 0 in (9), represent primal-dual
dynamics corresponding to convex optimization problem (1)
with only equality constraints.

Proposition 1. Let z̄ = (x̄, λ̄) represent the unforced
equilibrium of (9). Assume h(x) is convex and f(x) strictly
convex. Then the system of equations (9) are passive with
port variables (u̇, ẏ) [10], [16]. Further every solution of
the unforced version (u = 0) of (9) asymptotically converges
to z̄.

Inequality constraint: We now define the inequality con-
straint gi(ũ) ≤ 0 as the following hybrid dynamics

τµi
µ̇i = (gi(ũ))+µi

(10)

where ũ ∈ Rn and i ∈ {1 · · · p}. This is introduced in
[11], where the authors construct a dynamical system which
converges to the stationary solution of saddle value problems.
These equations are proposed in such a way that, if the
initial condition of µ(t) is non-negative, then the trajectories
µ(t) always stay inside positive orthant R+. Note that the
discontinuity in the above equations (8) occurs when gi(ũ) <
0 and µi = 0, the value of (gi(ũ))+µi

switches from gi(ũ) to
0. This ensures that the µi’s does not go below zero. To make
this more visible, we redefine these equations equivalently as
follows; Let P represent the power set of {1 · · · p}, then we
define the function σ : [0, ∞)→ P as follows

σ(t) = {i | µi(t) = 0 and gi(ũ) ≤ 0 ∀i ∈ {1, ..., p}}. (11)

With σ(t) representing the switching signal, equation (10)
now takes the form of a switched system

τµi µ̇i = gi(ũ, σ) =

{
gi(ũ); i /∈ σ(t)

0; i ∈ σ(t)
(12)

The overall dynamics of the p inequality constraints gi(ũ) ≤
0 ∀i ∈ {1 · · · p} can be written in a compact form as:

τµµ̇ = g(ũ, σ) (13)

where µi and gi(ũ, σ) are ith components of µ and g(ũ, σ)
respectively. Consider the following storage function(s)

Sσq (µ) =
1

2

∑
i/∈σq

µ̇2
i τµi ∀σq ∈ P (14)

Proposition 2. [10], [17] The switched system (13) is
passive with switched storage functions Sσq (defined one for
each switching state σq ∈ P ), input port us = ˙̃u and output
port ys = ˙̃y where ỹ =

∑
∀i µi∇ũgi(ũ). That is, for each
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σp ∈ P with the property that for every pair of switching
times (ti, tj), i < j such that σ(ti) = σ(tj) = σp ∈ P and
σ(tk) 6= σp for ti < tk < tj , we have

Sσp(µ(tj))− Sσp(µ(ti)) ≤
∫ tj

ti

u>s ysdt. (15)

Proposition 3. The equilibrium set Ωe defined by constant
control input ũ = ũ∗ of (10)

Ωe = {(µ̄, ũ∗) |gi(ũ∗) ≤ 0, µ̄igi(ũ
∗) = 0 ∀i ∈ {1, . . . , p}}

is asymptotically stable.

The overall optimization problem: We now define a power
conserving interconnection between passive systems associ-
ated with optimization problem with an equality constraint
(9) and an inequality constraint (10) (see Fig. 1).

Proposition 4. [10] Consider the interconnection of passive
systems (9) and (10), via the following interconnection
constraints u = ỹ + v and ũ = −y + ṽ, v ∈ Rp, ṽ ∈ Rn.
For ṽ = 0, the interconnected system is then passive with
port variables v̇, −ẋ (see Fig. 2). Moreover for v = 0 and
ṽ = 0 the interconnected system represents the primal-dual
gradient dynamics of the optimization problem (1) and the
trajectories converge asymptotically to the optimal solution
of (1).

In the next section, we demonstrate the continuous-time
primal-dual algorithm, on the convex optimization formu-
lation of Support Vector Machines (SVM) technique [18].

IV. LINEAR SVM AS AN APPLICATION

Support Vector Machines [18] are a class of supervised
machine learning algorithms which are commonly used for
data classification. In this methodology, each data item is a
point in n-dimensional space that is mapped to a category
(or a class). Here the aim is to find an optimal separating
hyperplane (OSH) which separates both the classes and max-
imizes the distance to the closest point from either class (as
shown in Figure 3). These closest points are usually called
support vectors (SV). The lines passing through support
vectors and parallel to the optimal separating hyperplane are
called supporting hyperplanes (SH).

Problem formulation: Consider two linearly separable
classes, where each class (say class-a, class-b) contains a
set of N unique data points in R2. Let Xa and Xb denote
the set of points in class-a and class-b respectively. In this
methodology we find a hyperplane that separates the classes
while maximizing the distance to the closest point from
either class. Let L be an affine set that characterizes such
a hyperplane, defined as follows

L =
{
x ∈ R2|x>β + β0 = 0

}
(16)

where β = (β1, β2) ∈ R2 and β0 ∈ R. Define the map
l : R2 → R by l(x) = x>β + β0. Note the following, for
any x0 ∈ L, l(x0) = 0 =⇒ x>0 β = −β0. This implies l(x)
can be rewritten as l(x) = β>(x−x0), which further implies

the unit vector β̂ =
β

||β||
is orthogonal to the line defined

by the set L, that is, x>β + β0 = 0 ⇐⇒ (x− x0)>β = 0.
The distance between the point xa ∈ Xa and line L is

|AC| = (xa − x0)>β̂ (see Fig. 4). Similarly the distance
between the point xb ∈ Xb and line L is |BC| = (xb −
x0)>(−β̂). We want to find an optimal separating hyperplane
that is at least M units away from all the points. This implies

∀xa ∈ Xa, (xa − x0)>β̂ ≥ M,

∀xb ∈ Xb, −(xb − x0)>β̂ ≥ M.
(17)

Define X
4
= Xa ∪ Xb, and Y

4
= Ya ∪ Yb where Ya =

{1, . . . , 1}︸ ︷︷ ︸
n times

and Yb = {−1, . . . ,−1}︸ ︷︷ ︸
n times

. The inequality con-

straints (17) can be rewritten as

1

||β||
yi(β

>xi + β0) ≥M (18)

where yi = 1 if xi ∈ Xa (class-a), yi = −1 if xi ∈ Xb

(class-b). Finally, finding the optimal separating hyperplane
can be proposed as the following optimization problem,

maximize
β,β0

M

subject to
1

||β||
yi(β

>xi + β0) ≥M, ∀xi ∈ X, yi ∈ Y.
(19)

Since M is arbitrary, choosing M =
2

||β||
converts (19) into

a convex optimization problem

minimize
β,β0

1

2
||β||

subject to yi(β
>xi + β0) ≥ 1, ∀xi ∈ X, yi ∈ Y.

(20)

In order to use the primal-dual gradient method proposed
in Section III, we need the cost function to be twice dif-
ferentiable. But, the cost function 1

2 ||β|| /∈ C
2. The optimal

solution (β∗, β∗0) of (20), is further equivalent to the optimal
solution of

minimize
β,β0

1

2
||β||2

subject to yi(β
>xi + β0) ≥ 1, ∀xi ∈ X, yi ∈ Y.

(21)

We now use this convex optimization formulation for support
vector machines, and derive its primal-dual gradient dynam-
ics.
Continuous time primal-dual gradient dynamics: Comparing
with the convex optimization formulation given in (1), the

cost function is f(β) =
1

2
||β||2 and inequality constraints

are gi(β, β0) = 1 − yi(β>xi + β0), i ∈ {1, · · · , 2N}. The
Lagrangian can be written as

L(β, µ) =
1

2
||β||2 +

2N∑
i=1

gi(β, β0)µi (22)

where µ = (µ1, · · · , µ2N ) denotes the Lagrange vari-
able corresponding to the inequality constraints g =
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Fig. 5. Classification using Support Vector Machine

(g1, · · · , g2N ). The primal dual gradient laws given in (7)
for the convex optimization problem (21) are

−τβ β̇ =
∂L

∂β

−τβ0
β̇0 =

∂L

∂β0

τµi
µ̇i =

(
∂L

∂µi

)+

µi

∀i ∈ {1, . . . , 2N}

equivalently ,

−τβ β̇ = β −
2N∑
i=1

µiyixi

−τβ0
β̇0 = −

2N∑
i=1

µiyi (23)

τµi
µ̇i = (gi(β, β0))+µi

∀i ∈ {1, . . . , 2N}

Note that the equilibrium point of the above dynamical sys-
tem (23) represents the KKT conditions of the optimization
problem (21). The first two equations represents the KKT
conditions with respect to primal variables and third equation
represents the complimentary conditions for the dual vari-
ables. This implies, finding the solution of the equilibrium
point is equivalent to solving the KKT conditions, which is
not a trivial task in many cases. Hence, the equilibria of
the above dynamical system is not explicitly known but is
implicitly characterized by the optimization problem. Instead
of solving for these equilibrium points manually, one can
run the dynamical system and use its steady state behavior
(points). But to quantify it mathematically, we first have to
prove that the dynamical system is globally asymptotically
stable at that equilibrium point. To do that we leverage the

propositions presented in the previous sections. We now have
the following result.

Proposition 5. The primal-dual dynamics (23) converges
asymptotically to the optimal solution of (21).

Proof. Since the optimization problem (21) has a strictly
convex cost function and convex inequality constraints, the
result follows from Propositions 1 - 4.

A. Simulation Results

A simulation study is conducted by generating two sets
of linearly separable classes having 300 points each, using
Normal distribution (see Table I for distribution parameters).
Figure 6 present the evolution of β, β0. At equilibrium, the

TABLE I
DISTRIBUTION PARAMETERS

mean Variance No. of data points

Class-a
[
0 0

] [
1 1.5
1.5 3

]
300

Class-b
[
0 6

] [
1 1.5
1.5 3

]
300

primal-dual dynamics in equation (23) results in

β∗ =

2N∑
i=1

µ∗i yixi.

Remark 5. The results depicted in Figure 8 show that the
value the Lagrange variables, except (µ81, µ208, µ577) are
identically equal to zero at equilibrium. Moreover, the data
points x81, x208 and x577 corresponding to these non-zero
Lagrange variables are called support vectors, can be seen in
Fig. 5. The lines passing through these point and parallel to
the separating hyperplane are called supporting hyperplanes.
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Fig. 7. Time evolution of closed-loop storage function.

Hence
β∗ = µ∗81x81 + µ∗208x208 − µ∗577x577

where the data points (x81, x208, x577) corresponding to
these non zero Lagrange variables are support vectors. This
implies that the support vectors completely determines the
optimal separating hyperplane β>x+ β0 = 0 that separates
class-a and class-b (see Fig. 7). However, note that one
needs to solve the optimization problem, to find these support
vectors.

Remark 6. Figure 7 shows that, whenever, an inequality
constraint becomes feasible (i.e. gi(β, β0) ≤ 0 ) and its
corresponding Lagrange variable µi converges to zero, then
the closed loop storage function (14) switches to a new
storage function that is strictly less than the current one,
causing a discontinuity. This is coherent with the Proposition
2, where passivity property is defined with ‘multiple storage
functions’.

V. FUTURE WORK

In Section III, the primal-dual algorithm is treated as inter-
connected passive systems, (i) convex optimization problem

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Fig. 8. Time evolution of Lagrange variables µi, i ∈ {1 · · · 600}.

with only equality constraint, (ii) a state dependent switching
system for inequality constraint. Recall that in Proposition 4,
we interconnected these systems using[

u
ũ

]
=

[
0 1
−1 0

] [
y
ỹ

]
+

[
v
ṽ

]
(24)

where v and ṽ are considered as new input port-variables
of the interconnected system. We can use these new port-
variables to analyze and improve the primal-dual gradient
laws. The following are some of the important ideas that
can be leveraged for future work.
Robustness: To analyze uncertainties in parameters or distur-
bances such as the numerical error accumulated in the primal
and dual variables, one can rewrite interconnection as

u = ỹ + ∆ỹ and ũ = x+ ∆x (25)

where ∆x and ∆ỹ denotes the numerical error in x (primal
variable) and ỹ (a function of dual variable) respectively.
These can be treated as external disturbances creeping in
through the interconnected port variables. We can provide
robustness analysis quantitatively (on sensitivity of the algo-
rithm due to numerical errors), using input/output dissipative
properties [13] of these systems.
Stochastic gradient descent: In SVM simulation we have
seen that there are 600 inequality constraints (each corre-
sponds to a data-point). Usually, real world examples may
contain many more data-points. Each data-points gives rise
to an inequality constraint, and further leads to a gradient-
law. In situations involving large data, it is computationally
ineffective to run gradient-descent algorithm using all the
data-points. In general this obstacle is circumvented using a
variation in gradient descent method called stochastic gradi-
ent descent. Can we propose a passivity based convergence
analysis for stochastic gradient descent?
Control synthesis: Using these new port variables one can
interconnect the primal-dual dynamics to a plant, such that
the closed-loop system is again a passive dynamical system
[8]. One can also explore the idea of Barrier functions [2]
to derive a bounded controller. Gradient methods are inher-
ently distributed computing methods. Hence the controllers
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derived from these may inherit this property. Moreover,
this framework enables us to solve control problems that
whose operating points are characterized by an optimization
problems.
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