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Abstract— This paper presents a new consensus algorithm for
multi-agent systems with discrete-valued input. The algorithm is
designed with consideration that the convergence speed does not
degrade. The relation between the performance of the algorithm
and the network topology of the system is analyzed.

I. INTRODUCTION

Multi-agent systems are composed of many small systems
called “agents” which cooperate each other and achieve
common tasks [1]–[4]. In many cases, agents cooperate
by communication and share their states each other. If the
systems become large scale, the communication traffic will
also become high. Therefore, it is important to maintain each
traffic low and keep the capability of a system scale.

In particular, we consider a consensus problem, which is
one of the basic problem in multi-agent systems.

There have also been some previous results for consensus
problem under communication constraints [5]–[7]. But, this
paper presents a new algorithm for consensus. The proposed
algorithm is that an input of an agent are discrete-valued
which is generated by state difference between the agent
itself and its neighboring agents. The dynamics of the agents
is given by the first ordered discrete-time model. By these
settings, the consensus algorithm is composed by only dis-
crete values. This fact will be advantage to implementation.
This is because a lot of computers or other devices are needed
to construct multi-agents systems and available cost for each
device is limited. Thus, low cost digital devices are easily
used when a discrete-valued consensus algorithm is applied.

In addition, the inputs are discretized not to be cause for
degradation of the convergence speed. Conversely, the system
does not achieve complete consensus with the proposed
algorithm, that is, the states of the agents do not always
become the same values at the steady state and it is depend
on the network topology of the systems. Thus, the second
purpose of this paper is clarifying the relation between the
behavior at the steady state and the network topology of the
multi-agent system.

II. PROPOSED CONSENSUS ALGORITHM

We consider the multi-agent system M with n ∈ N agents.
The network topology is given by an undirected connected
graph G(V,E), where V = {1, 2, . . . , n} is the set of nodes
and E ⊆ V × V is the set of edges. The set of neighboring
agents of i is denoted by Ni, so j ∈ Ni if (i, j) ∈ E.
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Fig. 1. Undirected complete graph.

The agent i updates its state xi(k) ∈ R by

xi(k + 1) = xi(k) +
∑
j∈N

uij(k), (1)

where k ∈ {0}∪N is the discrete time and uij(k) ∈ R is the
input from the neighboring agent j ∈ Ni. The input uij(k)
is discrete-valued and given by

uij(k) =

 b if xj(k)− xi(k) > a,
−b if xj(k)− xi(k) < −a,
0 otherwise,

(2)

where a ∈ R+ and b ∈ R are the constant values.
The condition of the input (2) means that if the state of

the neighbors of agent i is far from the distance a, agent
i updates its state to be the near value to the neighbors.
The input (2) looks that the communication traffic does not
decrease. However, the following situation is a good example
where “communication traffic” is low. When we regard
vehicles and their positions as the agents and their states,
the communication of the systems correspond to “sensors
which react by the distance a.” In this case, the output of
the sensors are binary and it can be implemented by low-cost
digital devices.

Now we show how do multi-agent systems behave with
this algorithm by three numerical examples. First, we con-
sider the system whose network topology is given by a
complete graph with n = 7 shown in Fig. 1. The initial
value is given by x0 = x(0) = [−16 −6 −2 0 2 6 16]> and
the constants in the input 2 are given by a = 1, b = 1. In this
case, the behavior of the agents becomes Fig. 2 and oscilla-
tion in the steady state is found. Second, we change the initial
value to x0 = [−12 −6 −2 4 2 9 12]> and keep the other
conditions the same. The behavior becomes Fig. 3 and the
states of all of agents converge to a constant value. Finally,
we use another network topology shown in Fig. 4 When the
initial value is given by x0 = [−16 −6 −2 0 2 6 16]>

and a = 1, b = 1, the behavior of the agents becomes
like Fig. 5. The response does not oscillate nor converge to
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Fig. 2. Oscillated result with the complete graph.
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Fig. 3. Converged result with the complete graph.

a unique value. Each state of the agents converges to each
value in contrast to the other two example.

From these example, we can find that the behavior of a
system depends on its network topology and initial value.
So, this paper focus on the network topology and give a
solution for the system with which topology does not achieve
consensus well.

III. PROBLEM FORMULATION

To evaluate how the systems achieve consensus, we in-
troduce the performance index. We define the maximum
distance C(k) ∈ R of the agents in the system at the time k
as

C(k) = max
i,j
|xj(k)− xi(k)|. (3)

For a time τ ∈ N, we assume that there exists k∗ > τ which
always satisfies C(k∗) < C(τ). Then, minτ C(τ) means the
maximum distance of the agents in the system at the steady
state We formulate the problem by using this as follows:

Problem 1: For the multi-agent system M , the number
of agents n, the initial value x0, and the constant values
a, b are given. When the network topology is given by an
undirected connected graph, determine the maximum value
of “the maximum distance of the agents in the system M”
at the steady state, that is, determine the value of

max
x0

max
G

min
τ
C(τ) (4)

and find the graph G maximizing minτ C(τ).
The equation (4) evaluates the worst case of consensus by

the maximum distance of the states of the agents. Therefore,
Problem 1 means which network topology does NOT achieve
consensus well.
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Fig. 4. Example of uncomplete graph.
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Fig. 5. Result with the graph of Fig.4 .

IV. MAIN RESULT

The following theorem is derived.
Theorem 1: For the multi-agent system M , the number

of agents n, the initial value x0, and the constant values
a, b are given. When the network topology is given by
an undirected connected graph, the maximum value of the
maximum distance of the agent at the state steady is

max
x0

max
G

min
τ
C(τ)

=

{
2a if n ≤ a

b
+ 2,

2(b(n− 1)− (a+ b)) otherwise.
(5)

One of the graph maximizing minτ C(τ) is that there are
two nodes i∗ which satisfy (i∗, j) ∈ E, ∀j ∈ V \ {i∗} and
the other nodes satisfy (j1, j2) 6∈ E, (j1 6= j2).

(Proof) We consider only the case n > a/b+2. For a time
k, we assume that there exists ε ∈ R+ such that

C(k) = max
ij

(xj(k)− xi(k))

= 2(b(n− 1)− (a+ b)) + ε. (6)

Then, for a time k′ > k there exist a time τ, (k < τ ≤ k′),
which always satisfies

C(k′) ≤ 2(b(n− 1)− (a+ b)), ∀k. (7)

On the other hand, for any time k′ ≥ τ , there also exists
a combination of a graph G and the initial value x0 where
C(k′) = C(k′ + 2) = 2(b(n− 1)− (a+ b)) is satisfied. �

The network topology in Theorem 1 is the graph with
two nodes which have edges towards every agents except
themselves. The graph are composed by two star topology
intersecting each other like Fig.6.

Here we confirm Theorem 1 by the examples in Section
II. In the examples, the conditions are n = 7, a = 1, b = 1.
Therefore, the worst case of the maximum distance derived
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Fig. 6. One of the worst case of network topology.

from Theorem 1 is maxx0
maxGminτ C(τ) = 8. The worst

result in three examples was the case of Fig. 3 and the
maximum distance at the steady state was also 8. We have
tried some other examples and they also satisfy Theorem 1.

V. CONCLUSIONS

In this paper, we have proposed a new consensus algorithm
with discrete-valued input. We have clarified the relation
between the performance and the networked topology and
shown the worst case of topology. In the result, it have
been clarified that the maximum distance of the states in the
system at steady state can be maximized when the network
has two star topology intersected each other. The analysis in
this paper is just about the performance at the steady state.
Quantitative evaluation in the transient state e.g., convergence
speed is still an open problem.
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