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Abstract— To achieve control objectives for extremely com-
plex and very large scale networks using standard methods is
essentially intractable. In this paper, we exploit our previously
proposed graphon control methodology to approximately reg-
ulate complex network systems by the use of graphon theory
and the theory of infinite dimensional systems. Conditions on
the exact controllability and the approximate controllability
on graphon dynamical systems are investigated. Approximation
schemes to approximately regulate large network systems with
linear quadratic cost are developed. The convergence properties
of the approximation schemes are proved. Finally, two simu-
lations of the application of graphon-LQR control to complex
networks are presented.

Index Terms— Graphon control, large networks, complex
networks, graphons, infinite dimensional systems

I. INTRODUCTION

Complex network systems such as biological, gene, brain,
citation, electric and social networks, are ubiquitous, and
the study of large scale networks has been the focus of
much research over the past 15 years. In particular, re-
searchers have been studying networks of interacting dy-
namical systems to learn which collective behaviours may
emerge from system interactions over a complex network
([1]). Furthermore, in addition to the structural properties of
networks, system theoretic notions such as controllability,
observability, consensus dynamics and synchronization have
been widely applied ([2]–[10]). In fact, to achieve general
control objectives for extremely complex and very large
scale networks (henceforth, complex networks) using such
standard methods is usually an intractable task. In response to
this, we proposed what we term as graphon control theoretic
methods in [11]. In that work, the minimum energy state to
state control problem is analysed. In this work, we further
develop the graphon control theoretic methods to solve the
regulation problem on complex network systems with linear
quadratic costs. In addition, we investigate conditions on the
exact controllability and the approximate controllability on
graphon dynamical systems.

Consider the problem of applying linear quadratic regula-
tion (LQR) to each member of a sequence S̃ of networks.
The proposed control strategy consists of the following
steps: (1) Identify the graphon limit of the sequence of
networks as the number of nodes goes to infinity. (2) Solve
the corresponding LQR problem for the limit system by
solving the limit system Riccati equation. (3) Approximate
the Riccati equation solution for the limit system so as
to generate approximated control laws for finite network
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systems. Alternatively, directly approximate the control input
generated for the limit system and apply the result to the
networks of systems along the sequence S̃.

II. PRELIMINARIES

A. Graphs, Adjacency Matrices and Pixel Pictures

The underlying structure of a network can be described by
a graph G = (V,E) specified by a vertex set V and an edge
set E which represents the connections between vertices.
An equivalent representation of a graph G = (V,E) by a
matrix called an adjacency matrix is defined to be the square
|V | × |V | matrix A such that an element Aij is one when
there is an edge from vertex i to vertex j, and zero otherwise.
If the graph is a weighted graph where edges are associated
with weights, then the adjacency matrix has corresponding
weighted elements.

Another representation of the adjacency matrix is given by
a pixel diagram where the 0s are replaced by white squares
and the 1s by black squares. The whole pixel diagram is
presented in a unit square, so the square elements have sides
of length 1

n , where n is the number of vertices.
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Fig. 1. Dürer Graph, Adjacency Matrix, Pixel Diagram

B. Graphon

Graphon theory was introduced and developed in recent
years by L. Lovász, B. Szegedy, C. Borgs, J. T. Chayes, V. T.
Sós, and K. Vesztergombi among others in [12]–[16]. This
work draws on graph theory, measure theory, probability,
and functional analysis. In the literature(see e.g. [16]), a
meaningful convergence with respect to the cut metric is
defined for sequences of dense and finite graphs. Graphons
are then the limit objects of converging graph sequences.
This concept is illustrated by a sequence of half graphs ([16])
represented by a sequence of pixel diagrams on the unit
square converging to its limit in Fig. 2.
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Fig. 2. Graph Sequence Converging to Its Limit

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

120



The set of finite graphs endowed with the cut metric
gives rise to a metric space, and the completion of this
space is the space of graphons. Graphons are represented
by bounded symmetric Lebesgue measurable functions W :
[0, 1]2 → [0, 1], which can be interpreted as weighted
graphs on the vertex set [0, 1]. We note that in some papers,
for instance [17], the word ”graphon” refers to symmetric,
integrable functions from [0, 1] to R. In this paper, unless
stated otherwise, the term ”graphon” is used to refer to
functions W1 : [0, 1]2 → [−1, 1] and G̃sp

1 denotes the space
of graphons. Let G̃sp

0 represent the space of all graphons
satisfying W0 : [0, 1]2 → [0, 1]; let G̃sp denote the space of
all symmetric measurable functions W : [0, 1]2 → R.

The cut norm of a graphon is then defined as

‖W‖� = sup
M,T⊂[0,1]

|
∫
M×T

W(x, y)dxdy| (1)

with the supremum taking over all measurable subsets M
and T of [0, 1]. The inequalities between the different norms
on a graphon W are

‖W‖� ≤ ‖W‖1 ≤ ‖W‖2 ≤ ‖W‖∞ ≤ 1. (2)

Denote the set of measure preserving bijections from [0, 1]
to [0, 1] by S[0,1]. The cut metric between two graphons V
and W is then given by

d�(W,V) = inf
φ∈S[0,1]

‖Wφ −V‖�, (3)

where Wφ(x, y) = W(φ(x), φ(y)). We see that the cut
metric d�(·, ·) is given by measuring the maximum discrep-
ancy between the integrals of two graphons over measurable
subsets of [0, 1], then minimizing the maximum discrepancy
over all possible measure preserving bijections.

Since the cut metric of two different graphons can be 0,
strictly speaking it is not a metric. See [14], [18] for various
characterizations of when the cut distance is 0. By identifying
functions V and W for which d�(V,W) = 0, we can
construct the metric space Gsp

1 which denotes the image of
G̃sp

1 under this identification. Similarly we construct Gsp
0

from G̃sp
0 and Gsp from G̃sp.

We define the L2 metric for any graphons W and V as

dL2(W,V) = inf
φ∈S[0,1]

‖Wφ −V‖2

= inf
φ∈S[0,1]

(∫
[0,1]2

|Wφ(x, y)−V(x, y)|2dxdy

) 1
2

.

Then we can prove that for any two graphons W and V

d�(W,V) ≤ dL2(W,V). (4)

C. Compactness of the Graphon Space

Theorem 1 ([16]). The space (Gsp
0 , d�) is compact.

This remains valid if Gsp
0 is replaced by any uniformly

bounded subset of Gsp closed in the cut metric [16].

Theorem 2 ([16]). The space (Gsp
1 , d�) is compact.

Sets in Gsp
1 compact with respect to the L2 metric are

compact with respect to the cut metric. It follows immedi-
ately from (4) and Theorem 2 (or Theorem 1), if a graphon
sequence is Cauchy in the L2 metric then it is also a Cauchy
sequence in the cut metric and under both metrics, the limits
are identical in Gsp

1 (or Gsp
0 ).

D. Step Functions in the Graphon Space

Graphons generalize weighted graphs in the following
sense (see [16]). A function W ∈ Gsp

1 is called a step
function if there is a partition Q = {Q1, ..., Qk} of [0, 1] into
measurable sets such that W is constant on every product set
Qi×Qj . The sets Qi are the steps of W. For every weighted
graph G (on node set V (G)), a step function SG ∈ Gsp

1

is given as follows: partition [0, 1] into n measurable sets
Q1, · · · , Qn of measure µ(Qi) = αi

αG
, then for x ∈ Qi and

y ∈ Qj , we let SG(x, y) = βij(G), where αi denotes the
node weight of ith node, α(G) =

∑
i αi and βij(G) denotes

the weight of the edge from node i to node j (i.e., βij
is the ijth entry in the adjacency matrix of G). Evidently
the function SG depends on the labelling of the nodes of
G. We define the uniform partition PN = {P1, P2, ..., PN}
of [0, 1] by setting Pk = [k−1N , kN ), k ∈ {1, N − 1} and
PN = [N−1N , 1]. Then µ(Pi) = 1

N , i ∈ {1, 2, ..., N}. Under
the uniform partition, the step functions can be represented
by the pixel diagram on the unit square.

E. Graphons as Operators

Following [16], a graphon W ∈ Gsp
1 can be interpreted

as an operator W : L2[0, 1] → L2[0, 1]. The operation on
v ∈ L2[0, 1] is defined as follows:

[Wv](x) =

∫ 1

0

W(x, α)v(α)dα. (5)

The operator product is then defined by

[UW](x, y) =

∫ 1

0

U(x, z)W(z, y)dz, (6)

where U,W ∈ Gsp
1 . Note that if U ∈ Gsp

1 and W ∈ Gsp
1 ,

then UW ∈ Gsp
1 , since for all x, y ∈ [0, 1]

|[UW](x, y)| = |
∫ 1

0

U(x, z)W(z, y)dz|

≤
∫ 1

0

|U(x, z)W(z, y)|dz ≤ 1.

(7)

Consequently, the power Wn of an operator W ∈ Gsp
1 is

defined as

Wn(x, y) =

∫
[0,1]n

W(x, α1) · · ·W(αn−1, y)dα1 · · · dαn−1

with Wn ∈ Gsp
1 (n ≥ 1). W0 is formally defined as the

identity operator on functions in L2[0, 1], but we note that
W0 is not a graphon.
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F. The Graphon Unitary Operator Algebra

We have an operator algebra GA over the field R (see [11])
acting on elements of L2[0, 1] as given by equation (5). By
adjoining the identity element I to the algebra GA we obtain
a unitary algebra GAI . The identity element I is defined as
follows: for any W ∈ L2[0, 1]2

[IW](x, y) =

∫ 1

0

W(z, y)δ(x, z)dz = W(x, y), (8)

where δ(·, z)dz is the measure satisfying
∫ 1

0
u(z)δ(x, z)dz =

u(x) for all u ∈ L2[0, 1], and in particular
∫ 1

0
δ(x, z)dz = 1.

The graphon unitary operator algebra GAI will be used in the
definition of the controllability Gramian and the input oper-
ator. More specifically, we use the subset G1AI = {G1A, I}
where G1A is the set in GA that corresponds to G̃sp

1 .

G. Graphon Differential Equations

Let X be a Banach space. A linear operator A : D(A) ⊂
X → X is closed if {(x,Ax) : x ∈ D(A)} is closed in the
product space X ×X(see [19]). L(X) denotes the Banach
algebra of all linear continuous mappings T : X → X.
Lp(a, b;X) denotes the Banach space of equivalent classes
of strongly measurable (in the Böchner sense) mappings
[a, b] → X that are p-integrable, 1 ≤ p < ∞, with norm

‖f‖Lp(a,b;X) =
[∫ b
a
|f(s)|pds

] 1
p

. Let A : [0, 1]2 → [−1, 1]

be a graphon and hence a bounded and closed linear operator
from L2[0, 1] to L2[0, 1]. Following [20], A is the infinites-
imal generator of the uniformly (hence strongly) continuous
semigroup SA(t) := eAt =

∑∞
k=0

tkAk

k! . Therefore, the
initial value problem of the graphon differential equation

ẏt = Ayt, y0 ∈ L2[0, 1] (9)

has a solution given by yt = eAty0.

Theorem 3 ([11]). Let {AN}∞N=1 be a sequence of graphons
such that AN → A∗ as N → ∞ in the L2 metric. Then
for all x ∈ L2[0, 1], eANtx → eA∗tx as N → ∞ in the
L2 metric where the convergence is pointwise in time and
uniform on any time interval [0, T ].

III. NETWORK SYSTEMS AND THEIR LIMIT SYSTEMS

A. Scaled Network Systems with Node Averaging Dynamics

Consider an interlinked network SN of linear (symmetric)
dynamical subsystems {SNi ; 1 ≤ i ≤ N}, each with an n
dimensional state space. The subsystem SNi at the node Vi in
the network GN (V,E) has interactions with SNj , 1 ≤ j ≤ N,
specified as below:

SNi :
ẋi
t =

1

nN

N∑
j=1

Aijx
j
t +

1

nN

N∑
j=1

Biju
j
t ,

xi
t, u

i
t ∈ Rn, i ∈ {1, ..., N},

with AN = [Aij ], BN = [Bij ] ∈ RnN×nN , the (symmetric)
block-wise adjacency matrices of GN (V,E) and of the input
graph, where Aij = [0] if SNi has no connection to SNj and
similarity for Bij . Then the (symmetric) linear dynamics for

the network system SN (AN , BN , GN ) can be represented
by

SN :
ẋt = AN ◦ xt +BN ◦ ut,
xt, ut ∈ RnN , AN , BN ∈ RnN×nN ,

(10)

where ◦ denotes the so called averaging operator given by
AN ◦ x = 1

(nN)ANx. Let S = ×∞N=1SN where SN =

∪AN ,BN ,GN
SN (AN , BN , GN ). For simplicity, we require

the elements of AN and BN to be in [−1, 1] for each N
(note that in general AN and BN have elements that are
bounded real numbers for which case we would achieve
similar results). In addition, we note that if we take the
supremum norm on vectors in RnN , i.e. ‖x‖∞ = supi |xi|,
and the corresponding ◦ operator norm of A, i.e. ‖A‖op =

sup‖x‖∞ 6=0
‖A◦x‖∞
‖x‖∞ , then ‖A‖op ≤ 1.

B. Network Systems with Node Averaging Dynamics De-
scribed by Step Functions in the Graphon Space

Let {(AN ;BN )}∞N=1 ∈ S be a sequence of systems with
the node averaging dynamics each of which is described
according to (10). Let |ANij | ≤ 1 and |BNij | ≤ 1 for
all i, j ∈ {1, ..., nN}. Let A

[N]
s ,B

[N]
s ∈ Gsp

1 be the step
functions corresponding one-to-one to AN and BN ; these
are specified using the uniform partition PnN of [0, 1] by
the following matrix to step function mapping MG: for all
i, j ∈ {1, 2, ..., nN},

A[N]
s (x, y) := ANij , ∀(x, y) ∈ Pi × Pj , (11)

and similar for B[N]
s .

Define a piece-wise constant function on R to be any func-
tion of the form

∑l
k=1 αkψIk where α1, ..., αl are complex

numbers and each Ik is a bounded interval (open, closed,
or half-open). Let L2

pwc[0, 1] denote the space of piece-wise
constant L2[0, 1] functions under the uniform partition PnN .

Let us
t ∈ L2

pwc[0, 1] correspond one-to-one to ut ∈ RnN
via the following vector to step function mapping also
denoted by MG: for all i ∈ {1, ..., nN},

us
t(α) := ut(i), ∀α ∈ Pi, (12)

and xs
t ∈ L2

pwc[0, 1] similarly correspond one-to-one to xt ∈
RnN .

Lemma 1 ([11]). The trajectories of the system in (10) corre-
spond one-to-one under the mapping MG to the trajectories
of the system

ẋs
t = A[N]

s xs
t + B[N]

s us
t,

xs
t,u

s
t ∈ L2

pwc[0, 1],A[N]
s ,B[N]

s ∈ Gsp
1 ⊂ G1AI

(13)

with graphon operations defined according to (5).

C. Limits of Sequences of Network Systems

Now the sequence of network systems with the node
averaging dynamics can be described by the sequence of step
function operators as {(A[N]

s ;B
[N]
s )}∞N=1. Let the graphon

sequences {A[N]
s } and {B[N]

s } be Cauchy sequences of step
functions in L2[0, 1]2 (under the same measure preserving
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transformation). Due to the completeness of L2[0, 1]2, the
respective graphon limits A and B exist and these will then
necessarily be the limits in the cut metric (see [16]).
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Fig. 3. A Weighted Graph from a Sequence Converging to the Limit
Graphon W (x, y) = 1 − max(x, y), 0 ≤ x, y ≤ 1 with x, y measured
from the top left

IV. THE LIMIT GRAPHON SYSTEM AND ITS PROPERTIES

A. Infinite Dimensional Graphon Systems

We follow [19] and specialize the Hilbert space of states
H and the Hilbert space of controls U appearing there to the
space L2(R;L2[0, 1]). We formulate an infinite dimensional
linear system as follows:

LS∞ : ẋt = Axt + But, x0 ∈ L2[0, 1], (14)

where A ∈ Gsp
1 , B ∈ G1AI , and hence bounded operators

on L2[0, 1], xt ∈ L2[0, 1] is the system state at time t and
ut ∈ L2[0, 1] is the control input at time t.

B. Uniqueness of the Solution

A solution x(·) ∈ L2(R;L2[0, 1]) is a (mild) solution of
(14) if xt = e(t−a)Axa+

∫ t
0
e(t−s)ABusds for all a and t in

R such that a ≤ t (see [19]). Following [19] the assumptions
on the operators A and B are

(H1)

 (i) A generates a strongly continuous
semigroup etA on L2[0, 1],

(ii) B ∈ L(L2[0, 1];L2[0, 1]),

where the Hilbert space U (control space) in the present case
is L2[0, 1]. Under assumption (H1), the system (14) has a
unique solution x ∈ C([0, T ];L2[0, 1]) for any x0 ∈ L2[0, 1]
and any u ∈ L2([0, T ];L2[0, 1]).

Theorem 4 ([11]). The graphon system LS∞ in Eq. (14)
has a unique solution x ∈ C([0, T ];L2[0, 1]) for any x0 ∈
L2[0, 1] and any u ∈ L2([0, T ];L2[0, 1]).

C. Controllability

A system (A;B) is exactly controllable on [0, T ] if for
any initial state x0 ∈ L2[0, 1] and any target state xf ∈
L2[0, 1], there exists a control u ∈ L2(0, T ;U) driving the
system from x0 to xf , i.e. xT = xf with xT = eATx0 +∫ T
0
eA(T−t)Butdt.

A system (A;B) is approximately controllable on [0, T ]
if for any initial state x0 ∈ L2[0, 1], any target state
xf ∈ L2[0, 1] and any ε > 0, there exists a control u ∈
L2(0, T ;U) driving the system from x0 to points in the state
space within a ε-distance from xf , i.e. ‖xT − xf‖2 ≤ ε.

The controllability Gramian operator Wt : L2[0, 1] →
L2[0, 1] is defined as

Wt :=

∫ t

0

eA(t−s)BBT eA
T (t−s)ds, t > 0.

A necessary and sufficient condition for exact controllability
on [0, T ] is the uniform positive definiteness of WT :

(WTh, h) ≥ cT ‖h‖2

for all h ∈ L2[0, 1], where cT > 0 and ‖ · ‖ is the L2[0, 1]
norm (see [19], [21]). The positive definiteness of the con-
trollability Gramian operator WT as a kernel is equivalent to
the approximate controllability of the corresponding system
(see [19], [21]).

Theorem 5 ([22]). Let A be a graphon in Gsp
1 and let B

be a bounded linear L2[0, 1] operator. Then (A;B) exactly
controllable implies B is a non-compact operator.

Proposition 1 ([22]). Let A be a graphon in Gsp
1 and let B

be a bounded linear L2[0, 1] operator such that all eigenval-
ues of BBT are lower bounded by a positive constant c > 0.
Then WT is uniformly positive definite and hence the linear
system (A;B) is exactly controllable.

V. LINEAR QUADRATIC REGULATION (LQR) OF
INFINITE DIMENSIONAL NETWORK SYSTEMS

A. The LQR Problem

Let ‖ · ‖ and 〈·, ·〉 denote the norm and the inner product
in L2[0, 1]. For finite T > 0, consider the problem of
minimizing the cost given by

J(u) =

∫ T

0

[
‖Cxτ‖2 + ‖uτ‖2

]
dτ + 〈P0xT ,xT 〉 (15)

over all controls u ∈ L2(0, T ;L2(0, 1)) subject to the system
model constrains in (14). The assumptions for C and P0 are:

(H2)

 (iii) P0 ∈ L(L2[0, 1]) is hermitian and
non-negative,

(iv) C ∈ L(L2[0, 1];Y )

where Y is the Hilbert space of observations, which in the
current case is L2[0, 1].

Finding the feedback control via dynamic programming
consists of the two following steps:

Step 1. Solve the Riccati equation

Ṗ = ATP + PA−PBBTP + CTC, P(0) = P0 (16)

Step 2. Given the solution P to the Riccati equation, it
can be proved that the optimal control u∗ is given by

u∗t = −BTP(T − t)x∗t , t ∈ [0, T ] (17)

and moreover that x∗ is the solution of the closed loop
equation

ẋt = Axt −BBTP(T − t)xt,
t ∈ [0, T ],x0 ∈ L2[0, 1].

(18)
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B. Existence and Uniqueness of Solutions to LQR Problems

Applying the results in [19] and specializing the Hilbert
space there to be L2[0, 1] space, we can show that, under the
assumption (H1) and (H2), the existence and uniqueness of
the solution to the Riccati equation (16) and the existence
and uniqueness of optimal solution pair (u∗,x∗) in (17) and
(18).

VI. GRAPHON-NETWORK REGULATION OF
LARGE-SCALE NETWORKS

A. Graphon-Network Regulation Strategy

In this work, the basic assumption in the formulation of
LQR problems for linear systems distributed on complex
networks is that the regulation problem for the infinite dimen-
sional graphon limit systems can be solved (e.g. by estab-
lished approximation methods) while the finite dimensional
LQR problems for the original complex network systems are
intractable due to their cardinality.

The proposed control strategy consists of following steps:
1) Consider the control problem of regulating the states of

each member of {(AN ;BN )}∞N=1 ∈ S. Let {(A[N]
s ;B

[N]
s ) ∈

Gsp
1 ×Gsp

1 }∞N=1 be the sequence of step function systems
equivalent to {(AN ;BN )}∞N=1 ∈ S under the mapping MG

and assume that it converges to the graphon system (A;B) ∈
Gsp

1 ×Gsp
1 in the L2 metric.

2) Define the linear quadratic cost for (A;B) as

J(u) =

∫ T

0

[‖Cxτ‖2 + ‖uτ‖2]dτ+ < P0xT ,xT >

and define the linear quadratic cost for (A
[N]
s ;B

[N]
s ) as

J(u[N]) =

∫ T

0

[‖C[N]
s x

[N]
t ‖2 + ‖u[N]

t ‖2]dt+ < P
[N]
s0 x

[N]
T ,x

[N]
T >

where it is assumed that C[N]
s → C and P

[N]
s0 → P in the

strong operator sense. Solve the infinite dimensional Riccati
equation for (A;B) to generate the solution P.

3) Approximate ut = −BTP(T −t)xt for (A;B) to gen-
erate u[N] for the finite system (A

[N]
s ;B

[N]
s ); Alternatively

approximate P to generate P̃N and hence the control law
u
[N]
t = −B[N]

s

T
P̃N(T − t)x[N]

t for (A
[N]
s ;B

[N]
s ).

B. Control Law Approximations

There are two ways to generate the control law for finite
dimensional systems:

(1) Approximate u for (A;B) to generate u[N] for the
finite system (A

[N]
s ;B

[N]
s ).

(2) By approximating the Riccati equation solution P for
(A;B) we can generate P̃N that provides the control law
for finite dimensional network system.

u
[N]
t = −B[N]

s

T
P̃N(T − t)x[N]

t .

C. Small-to-large Approximate Control via Control Input
Approximation

Part (1) of control law approximations is proposed and
discussed in details in [11]. In the following subsection we
add the important results on applying a smaller dimensional
control to a larger dimensional system along the convergent
sequence of systems S̃.

Theorem 6 ([22]). Consider two system (A
[N]
s ; I) and

(A
[M]
s ; I) (M > N) in a sequence of systems converging to

the graphon limit system (A; I) where I denotes the identity
input operator. Denote control law generated via approximate
graphon control for (A

[N]
s ; I) by u[N] and that for (A

[M]
s ; I)

by u[M]. If the initial state for the two systems are of zero
L2 distance, then

‖x[M]
T (u[M])− x

[M]
T (u[N])‖2

≤ ‖A[M]
s ‖2

∫ T

0

e(T−t)‖u[M]
t − u

[N]
t ‖2dt

(19)
Furthermore, as N →∞ and M →∞,

‖x[M]
T (u[M])− x

[M]
T (u[N])‖2 → 0.

Theorem 7 ([22]). Consider two system (A
[N]
s ;B

[N]
s ) and

(A
[M]
s ;B

[M]
s ) (M > N) in a sequence of systems con-

verging to the graphon limit system (A;B). Denote the
control law generated via approximate graphon control for
(A

[N]
s ;B

[N]
s ) by u[N] and that for (A

[M]
s ;B

[M]
s ) by u[M]. If

the initial state for the two systems are of zero L2 distance,
then

‖x[M]
T (u[M])− x

[M]
T (u[N])‖2

≤ ‖A[M]
s ‖2

∫ T

0

e(T−t)‖B[M]
s (u

[M]
t − u

[N]
t )‖2dt

(20)

Furthermore, as N →∞ and M →∞,

‖x[M]
T (u[M])− x

[M]
T (u[N])‖2 → 0.

Theorems 6 and 7 imply that the graphon control law
generated for a smaller dimensional system can be applied to
systems with larger dimensions along a converging sequence
of networks. This makes it possible to approximately control
extremely large-scale networks via a smaller dimensional
control.

D. Approximation of the Solution of the Riccati Equation
and Its Convergence Properties

In this subsection, we will discuss part (2) of control law
approximations.

1) Basic Notations: Let

Σ(L2[0, 1])) = {T ∈ L(L2[0, 1])) : T is hermition}

and
Σ+(L2[0, 1])

= {T ∈ Σ(L2[0, 1]) : (Tx, x) ≥ 0,∀x ∈ L2[0, 1]}.
Denote the topological space of all strongly continuous map-
pings F : I → Σ(L2[0, 1]) endowed with strong convergence
(see [19]) by Cs(I; Σ(L2[0, 1])).
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2) Approximation of the Solution of the Riccati Equation:
We need to extend the step function approximation to step
function approximation with integration against measures.

First, we construct the equivalent representation of the
linear operator P in Cs([0, T ]; Σ+(L2[0, 1])) by integration
against measures. Second, we construct a method to approxi-
mate operator P by integration with respect to measures over
partitions. Then we prove that the step function approxima-
tion against measures converges in the strong convergence
sense. The step function approximation against measures of
P is done by integration against measures as follows:

P̃N(x, y) =

∫
Si×Sj

P(x, y)dσ(x, y)

µ(Si)× µ(Sj)
,∀(x, y) ∈ Si × Sj ,

(21)
where Si, Sj ⊂ [0, 1], µ(Si) represents the size of the interval
Si and σ(x, y) represents the measure (which can be a
singular measure, a Lebesgue measure or a mixed measure).

Since P̃Nx is the step function approximation of Px
in L2[0, 1] under the interpretation of integration against
measures, for any x ∈ L2[0, 1],

lim
N→∞

‖P̃Nx−Px‖2 = 0.

3) The Approximation of the Riccati Solution and Its
Convergence to the Optimal Riccati Solution:
Lemma 2 ([22]). Let P̃N be generated by stepping from P
via N ×N uniform partition of [0, 1]2. Then

lim
N→∞

P̃N = P, in Cs([0, T ]; Σ(L2[0, 1])).

Theorem 8 ([22]). Let P̃N be generated by step function
approximation against measures from P via N ×N uniform
partition of [0, 1]2. For any x ∈ L2[0, 1], for any t ∈ [0, T ],

lim
N→∞

‖P̃N(t)x−P[N]
s (t)x‖2 = 0,

where P
[N]
s is the solution of Riccati equation of

(A
[N]
s ;B

[N]
s ) that converges strongly to the solution P.

4) Convergence of the States and Convergence of the
Cost: Let P[N]

s denote the solution of the Riccati equation
for (A

[N]
s ;B

[N]
s ) that converges strongly to the solution P

of the Riccati equation for (A;B). Let P̃N be the step
function approximation against measures for P generated via
the N ×N uniform partition of [0, 1]2.
Theorem 9 ([22]). Consider the time horizon [0, T ]. Let the
optimal linear quadratic control law for (A

[N]
s ;B

[N]
s ) be

generated by

uN∗t = −B[N]
s

T
P[N]

s (T − t)xN∗t ,

where the optimal state trajectory is given by xN∗, and let
the graphon approximate control law for (A

[N]
s ;B

[N]
s ) be

u
[N]
t = −B[N]

s

T
P̃N(T − t)x[N]

t ,

where the corresponding state trajectory is given by x[N].
Then

∀t ∈ [0, T ], lim
N→∞

‖xN∗t − x
[N]
t ‖2 = 0,

and
lim
N→∞

|J(uN∗)− J(u[N])| = 0.

5) The Small-to-large Approximate Control via Riccati
Equation Solution Approximation: We consider the appli-
cation of a small dimensional regulation law to larger di-
mensional systems along the convergent sequence. Consider
two system (A

[N]
s ;B

[N]
s ) and (A

[M]
s ;B

[M]
s ) (M > N) in a

sequence of systems converging to the graphon limit system
(A;B). Let the respective operators C

[N]
s and C

[M]
s in the

LQ cost as (15) lie in a sequence of operators converging
strongly to C. Similarly, let the respective P

[N]
s0 and P

[M]
s0 in

the LQ cost as (15) lie in a sequence of operators converging
strongly to P0. Let P

[M]
s denote the solution of Riccati

equation for (A
[M]
s ;B

[M]
s ) with LQ cost defined by C

[M]
s

and P
[M]
s0 as in (15). Let P̃N be generated by step function

approximation against measures from P via N ×N uniform
partition of [0, 1]2.
Theorem 10 ([22]). For any x ∈ L2[0, 1], for any t ∈ [0, T ],

lim
N,M→∞

‖P̃N(t)x−P[M]
s (t)x‖2 = 0.

Theorem 11 ([22]). Consider the time horizon [0, T ]. Let
the optimal linear quadratic control law for (A

[M]
s ;B

[M]
s )

be generated by

uM∗t = −B[M]
s

T
P[M]

s (T − t)xM∗t ,

where the optimal state trajectory is given by xM∗, and let
the small-to-large control law for (A

[M]
s ;B

[M]
s ) be generated

by
u
[M,N]
t = −B[M]

s

T
P̃N(T − t)x[M,N]

t ,

where the corresponding state trajectory is given by x[M,N].
Then

∀t ∈ [0, T ], lim
N,M→∞

‖xM∗t − x
[M,N]
t ‖2 = 0,

and
lim

N,M→∞
|J(uM∗)− J(u[M,N])| = 0.

VII. SIMULATION EXAMPLES

Consider a network system evolving according to the node
averaging dynamics with weighted graph GN describing the
dynamic interactions. Suppose each node has an independent
input channel. Denote the system by (AN ; IN ), where AN
is the adjacency matrix of GN and IN is the identity input
mapping. The network system (AN ; IN ) with (normalized)
node dynamics is therefore described by

ẋit =
1

N

N∑
j=1

ANijx
j
t+u

i
t, xit, u

i
t ∈ R, i ∈ {1, ..., N}. (22)

The regulation objective is to regulate the network states
around origin from random initial states with minimum linear
quadratic cost.

As an example, we consider a sequence of networks
converging to the graphon limit U(x, y) = cos(π(x−y)) for
all x, y ∈ [0, 1] as in figure (h) and solve the LQR problem
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over the time horizon [0, T ] for the network sequence. (See
[11] for detailed description of the generation of a convergent
network sequence).

Naturally, in the application of the grapoh-LQR method-
ology, a finite complex network GN is not generated via a
hidden graphon. A plausible empirical approach to model the
required infinite limit graphon G∞ is to fit two dimensional
Fourier series to the step function representation of the
adjacency matrix. Such parametric modelling of empirical
data could resemble parametric estimation in statistics and
system identification. These topics are the subjects of current
research [22].

A. Graphon-LQR Example

In this simulation, as shown in Figure 4, a network of

(a) State Evolution under
Graphon Control

(b) State Evolution under Opti-
mal LQR

(c) Control Input of Graphon
Control

(d) Control Input of Optimal
LQR

(e) State Difference (f) Control Signal Difference

(g) Network of 160 Nodes (h) Graphon Limit

Fig. 4. Simulation on a Network of 160 Nodes

size 160 along the sequence is considered. The system
is represented by (A160, I160) with A160 as the adjacency
matrix of the weighted network and I160 as the identity
input matrix of size 160. The simulation time horizon is

[0, 1] and the parameters used in the LQ cost are Q =
CTC = I160 and P0 = 100I160. The control law is generated
by approximating the Riccati equation solution as in (21).
Both the graphon-LQR control and the LQR optimal control
regulate the system from the same random initial states to
the origin as shown in figures (a) and (b). From figures
(e) and (f), we see that the graphon-LQR control achieves
remarkably similar performance to the LQR optimal control.
The maximum trajectory difference from the optimal control
is less than 2% of the maximum initial states.

B. Small-to-large Approximate Regulation Example

In this simulation, we apply the regulation law generated
for a smaller dimensional system to a larger dimensional sys-
tem along the converging sequence. The smaller dimensional

(a) State Evolution under
Small-to-large Approximate
Control

(b) State Evolution under Opti-
mal LQR

(c) Control Input of Small-to-
large Approximate Control

(d) Control Input of Optimal
LQR

(e) State Difference (f) Control Signal Difference

(g) Network of 320 Nodes (h) Graphon Limit

Fig. 5. Simulation on a Network of 320 Nodes

network is of size 80 and the larger dimensional network is
of size 320. The large dimensional system is represented
by (A320, I320) with A320 as the adjacency matrix of the
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weighted network and I320 as the identity input matrix
of size 320. The simulation time horizon is [0, 1] and the
parameters used in the LQ cost are Q = CTC = 10I320 and
P0 = 100I320. As the result in Figure 5 shows, the small-
to-large approximate control approximate well on the large
dimensional system. The trajectory difference depends on the
initial states of the large dimensional system. In this simu-
lation example, each 4 adjacent nodes (in labelling) receive
the same control input signal due to the approximation in the
Riccati equation solution. Therefore, differences in the initial
conditions of the adjacent 4 nodes give rise to a difference
in the terminal states. However the mean effect is subject to
the LQR control law.

VIII. CONCLUSION

We propose a methodology to approximately regulate
network systems using graphons. Important aspects which
require further investigation include: (1) the application of
the regulation strategy to asymmetric (i.e., directed) network
systems; (2) an equivalent theory to that in this paper
for sparse networks; (3) fitting 2D analytic models (e.g.
Fourier series, etc) to empirical data in order to provide
parameterized models for approximating limiting graphons.
Finally, this paper only deals with centralized control, while
the decentralized control of complex systems is formulated
within a graphon theoretic mean field games framework in
[23].
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