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Abstract— This paper studies the problem of constructing
a zero-dynamics attack on “nonlinear and uncertain” cyber-
physical systems being of non-minimum phase, particularly
for the case of the quadruple-tank process. In most of the
previous works, the zero-dynamics attack is usually designed
by linearizing the nonlinear system at an operating point. As
a consequence, the stealthiness of the attack may be easily
violated whenever the plant has even small model uncertainty
or the state trajectory under the attack moves too far from
the operating point (so that the linearization is not accurate
enough). Without relying on the linearization of the plant at
all, in this paper we propose a nonlinear zero-dynamics attack
based on the Byrnes-Isidori normal form representation. In
particular, it is shown via the Lyapunov analysis that the
proposed attack for the quadruple-tank process always remains
stealthy until some of the tanks become empty or overflow
even in the presence of small parametric uncertainty, which
cannot be ensured by the existing methods. Simulation results
are presented to verify the performance of the proposed attack.

I. INTRODUCTION

A large number of control systems in these days, named
cyber-physical systems (CPS), are often exposed to a variety
of threats by malicious cyber-attacks [1]–[3]. It is in this
context that the researches on possible attack scenarios to the
CPS have received a lot of interests in academia. Particularly,
since the physical component of the CPS can usually be
modeled by differential equations, considerable model-based
cyber-attack scenarios have been reported from control- and
system-theoretic perspectives [4]–[10].

Among these model-based polices, zero-dynamics attack
is one of the efficient and promising attack strategies to
disrupt the plant with limited resources [7], [11]. Motivated
by the geometric control theory, the basic idea of the attack
is to inject the output-zeroing input into the actuator channel
so that the attack signal can be concealed from the output
measurement. By the inherent nature of the output-zeroing
input, the zero-dynamics attack is effective to non-minimum
phase systems. Since the pioneering work in [11], several
researchers have proposed detection algorithms for the attack
[11]–[14] and have sought to expand the understanding of
the attack [15]. Especially, in [15], the underlying principle
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behind the zero-dynamics attack is reinterpreted by refor-
mulating the attack scenario with the Byrnes-Isidori normal
form. This approach in turn leads to developing another type
of zero-dynamics attack that can be applied to even uncertain
CPS.

It is important to note that most previous works on the
zero-dynamics attack focused mainly on linear systems. This
restricts applications of the zero-dynamics attack to practical
problems, as cyber-physical systems often have complicated
structures and are modeled by nonlinear dynamics. One
simple and intuitive solution to handle the nonlinearity would
be to design the zero-dynamics attack for the linearized
model of the nonlinear plant around the operating point. Yet
this philosophy yields the stealthiness of the attack only in
a local region in most cases.

In this paper, we tackle the problem of constructing a zero-
dynamics attack on “nonlinear and uncertain” cyber-physical
systems being of non-minimum phase, particularly for the
quadruple-tank process [16] with parametric uncertainty. By
extending the discussions on the zero-dynamics attack for
linear systems in [15] to the nonlinear and uncertain systems,
we first transform the mathematical model of the quadruple-
tank process into a Byrnes-Isidori normal form, and then
employ the duplicated zero dynamics in that coordinate as
an attack generator. As a result, our approach does not rely
on any approximation or linearization at all. Based on the
structural benefits, it is shown via the Lyapunov stability
analysis that the proposed attack is stealthy in the presence
of both the nonlinearity in the quadruple-tank model and
small uncertainty on the plant parameter until some of the
water tanks become empty or overflow.

II. SYSTEM DESCRIPTION: QUADRUPLE-TANK PROCESS

As a prototypical example for cyber-physical systems
under cyber-attack, in this paper we consider the quadruple-
tank process, introduced in [16]. Overall configuration of the
plant is depicted in Fig. 1. In the figure, the control objective
is to regulate the water level of the lower tanks (i.e., Tanks
1 and 2) using two pumps. It is assumed that the control
input is transmitted to the pumps through data network, into
which a cyber-attack is possibly injected so as to disrupt the
normal operation of the system.

For a mathematical description, for i = 1, . . . ,4 the water
level of Tank i is denoted by hi ∈R+ [cm], whose maximum
value is given by hi [cm] due to the volume of the tank. It
has been studied in the literature that in the region of interest

H := (0,h1)× (0,h2)× (0,h3)× (0,h4)⊂ R4, (1)
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Fig. 1. Schematic diagram of quadruple-tank process under cyber-attack

with respect to h, the behavior of the quadruple-tank process
in Fig. 1 can be modeled by the differential equations

ḣ1 =−
a1

A1

√
2gh1 +

a3

A1

√
2gh3 +

σ1k1

A1
(u1 +a1), (2a)

ḣ2 =−
a2

A2

√
2gh2 +

a4

A2

√
2gh4 +

σ2k2

A2
(u2 +a2), (2b)

ḣ3 =−
a3

A3

√
2gh3 +

(1−σ2)k2

A3
(u2 +a2), (2c)

ḣ4 =−
a4

A4

√
2gh4 +

(1−σ1)k1

A4
(u1 +a1), (2d)

and

y1 = h1, y2 = h2. (2e)

Here u = (u1,u2)∈R2 [V] is the control input voltage of the
pumps, y= (y1,y2)∈R2 [cm] is the measurement output, and
a = (a1,a2) ∈ R2 [V] is the attack signal. For i = 1, . . . ,4,
Ai > 0 [cm2] is the cross-section of Tank i, while ai > 0
[cm2] is the cross-section of the outlet hole corresponding to
Tank i. In addition, k j [cm3/Vs], j = 1,2, are constant gains
with which k j(u j+a j) implies the total flow passing through
Pump j, and g [cm/s2] is the acceleration of the gravity.
Hence, the attack signal a(t) yields unexpected variation of
the water flow. We assume that the cross-sections of Tanks 1
and 3 (Tanks 2 and 4, respectively) are equal to each other,
i.e., a1 = a3 =: aL, a2 = a4 =: aR, A1 = A3 =: AL, and A2 =
A4 =:AR. The values of the parameters listed above are given
in Table I.

On the other hand, the remaining parameters σ j ∈ (0,1),
j = 1,2, determine the proportion of the water flow that is
directly injected into the lower tanks (i.e., Tanks 1 and 2).
Throughout this paper, we particularly suppose that σ :=
(σ1,σ2) is selected by the digital controller as a fixed value,
at the beginning of the system operation a priori.

In addition, it is assumed that the reference signal r :=
(r1,r2) for the output y(t) = (y1(t),y2(t)) is constant. Then
one can observe that if σ1+σ2 6= 1 and a(t)≡ 0 hold, then the
steady-state solution (h(t),u(t)) = (h?σ ,u

?
σ ) of (2) satisfying

TABLE I
DETAILED VALUES OF PLANT PARAMETERS

Notations Units Values
(AL,AR) [cm2] (28,32)
(aL,aR) [cm2] (0.071,0.057)
(k1,k2) [cm3/Vs] (3.14,3.29)

g [cm/s2] 981

that (h?
σ ,1,h

?
σ ,2) = (r1,r2) is uniquely determined. (In what

follows, we often use the subscript “σ” to indicate that a
constant or a variable is a function of σ .) Indeed, since σ1+
σ2 6= 1,

u?σ =

[
u?

σ ,1
u?

σ ,2

]
:=
[

σ1k1 (1−σ2)k2
(1−σ1)k1 σ2k2

]−1 [
aL
√

2gr1
aR
√

2gr2

]
(3)

is well-defined. It is then easy to show that with a(t) ≡ 0
and h?σ = (h?

σ ,1, . . . ,h
?
σ ,4) where

h?σ ,3 :=
(1−σ2)

2k2
2

2ga2
L

(u?σ ,2)
2, h?σ ,4 :=

(1−σ1)
2k2

1

2ga2
R

(u?σ ,1)
2,

(4)

(h(t),u(t)) = (h?σ ,u
?
σ ) satisfies the differential equation (2).

As a simple regulator for the reference command r =
(r1,r2), let us take into account a proportional integral (PI)
controller

ċ = y− r, (5a)
u = uσ := u?σ +Kp(y− r)+Kic =: u?σ +K(c,y) (5b)

where c∈R2 is the state of the controller, and the gains Kp ∈
R2 and Ki ∈R2 are selected such that the resulting controller
(5) allows the output y(t) = (y1(t),y2(t)) of the closed-loop
system under no attack (i.e., (2) and (5) with a(t) ≡ 0) to
track the reference command r = (r1,r2) exponentially. (We
will come back to this point later in the next section.) For a
technical reason, it is also supposed that Ki is nonsingular.

Remark 1: The main reason for specifying the controller
structure as (5) is just the simplicity of the explanation, and
the results to follow can be obtained similarly for generic
controllers with an integral action. �

It is important to note that σ1 +σ2 plays a crucial role in
defining the characteristics of the plant (2). In particular, if
0 < σ1 +σ2 < 1 so that most of the inlet water enters the
upper tanks, then the quadruple-water tank (2) becomes of
non-minimum phase. To see this, we present a coordinate
change (zσ ,x) for the state h of (2) as

zσ =

[
zσ ,1
zσ ,2

]
:=
[

h3−Tσ ,2h2
h4−Tσ ,1h1

]
, x =

[
x1
x2

]
:=
[

h1
h2

]
(6)

where Tσ ,1 and Tσ ,2 are given by

Tσ ,1 :=
(1−σ1)AL

σ1AR
, Tσ ,2 :=

(1−σ2)AL

σ2AL
.
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In this coordinate, the h-dynamics (2) can be represented as
a Byrnes-Isidori normal form [17]:

żσ = Hσ (zσ ,x), (7a)
ẋ = Fσ (zσ ,x)+Gσ (u+a), y = x, (7b)

where the functions Fσ and Hσ , and the matrix Gσ are given
by

Hσ (zσ ,x) =
[

Hσ ,1(zσ ,x)
Hσ ,2(zσ ,x)

]
:=

[
−
√

2gaL
AL

√
zσ ,1 +Tσ ,2x2 +

√
2g(1−σ2)aR

σ2AL

(√
x2−

√
zσ ,2 +Tσ ,1x1

)
−
√

2gaR
AR

√
zσ ,2 +Tσ ,1x1 +

√
2g(1−σ1)aL

σ1AR

(√
x1−

√
zσ ,1 +Tσ ,2x2

)] , (8a)

Fσ (zσ ,x) =
[

Fσ ,1(zσ ,x)
Fσ ,2(zσ ,x)

]
:=

[√
2gaL
AL

(
−√x1 +

√
zσ ,1 +Tσ ,2x2

)
√

2gaR
AR

(
−√x2 +

√
zσ ,2 +Tσ ,1x1

)] , (8b)

Gσ = diag{gσ ,1,gσ ,2} := diag
{

σ1k1

AL
,

σ2k2

AR

}
. (8c)

With the state variable (zσ ,x), the region of interest (1) in
terms of h can be rewritten by

Rσ := {(zσ ,x) : (x1,x2,zσ ,1 +Tσ ,2x2,zσ ,2 +Tσ ,1x1) ∈H } .
(9)

It is pointed out that in the new coordinate (zσ ,x), the region
of interest is also dependent of σ . We also remark that by
definition, the constant vectors

z?σ =

[
z?

σ ,1
z?

σ ,2

]
:=
[

h?
σ ,3−Tσ ,2r2

h?
σ ,4−Tσ ,1r1

]
, x? =

[
x?1
x?2

]
:=
[

r1
r2

]
(10)

satisfy Hσ (z?σ ,x
?) = 0 and Fσ (z?σ ,x

?)+Gσ u?σ = 0; in other
words, (zσ (t),x(t)) = (z?σ ,x

?) is the steady-state solution of
(7) without a(t). Now, by applying the Lyapunov indirect
method [17, Theorem 7.4] to the zσ -dynamics (7a), one
can readily obtain the following result on the non-minimum
phaseness of (7).

Proposition 1: For each σ satisfying that 0<σ1+σ2 < 1,
the origin δ̃ = 0 of the autonomous system

˙̃
δ = Hσ (δ̃ + z?σ ,x

?) (11)

is unstable. Moreover, there is a quadratic function Wσ (δ̃ ) =
δ̃>Pσ δ̃ and a constant rσ > 0 such that Pσ ∈ R2×2 is a
symmetric matrix and

dWσ

dδ̃
Hσ (δ̃ + z?σ ,x

?)> 0, ∀δ̃ ∈Dσ

where Dσ := {δ̃ ∈ R2 : ‖δ̃‖ ≤ rσ and Wσ (δ̃ )> 0}. �

III. PROBLEM FORMULATION

On the side of the adversary, in this paper we address
the problem of constructing an attack signal a(t) against
the (nonlinear) quadruple-tank process (7). The particular
interest here is to satisfy the following two objectives si-
multaneously. The primary goal of the attacker is to drive
the water level (h3(t),h4(t)) of the upper tanks away from
the corresponding steady-state value, and if possible, to
make one or both of the upper tanks be empty or overflow

eventually. At the same time, the adversary also aims to
conceal such impact of the attack a(t) from the measurement
output y(t) until the attack succeeds (so that the stealthiness
of the attack is guaranteed). In other words, the water
level (h1(t),h2(t)) of the lower tanks remains close to the
reference command r = (r1,r2) for a while.

Our additional concern is to deal with the problem in the
presence of model uncertainty, in the sense of the following
assumption.

Assumption 1: The actual value σ = σ◦ of (2) satisfies
0 < σ◦,1 +σ◦,2 < 1 and is uncertain to the adversary. �

Remark 2: From a practical standpoint, such uncertainty
on σ can take place in a variety of situations. A possibility
comes from that the attacker accesses the data network in
the steady-state operation of the system, whereas σ is set as
σ◦ at the beginning of the operation a priori. On the other
hand, it may also happen that the value of σ is intentionally
encrypted by the digital controller before its transmission to
(2), not to reveal the full model information to the adversary.

�
Since the exact value σ◦ is not available anymore, for

the model-based attack design the adversary may have to
compute a set of rough estimates of σ◦, denoted by Γ. At
this point, we suppose that such estimation is reasonable to
some extent, in the sense that the predefined controller (5)
can robustly stabilize a bundle of plants (2) with each σ ∈
Γ. To state the condition rigorously, consider the coordinate
changes

z̃σ := zσ − z?σ , x̃ := x− x?, c̃ := c (12)

where z?σ and x? are defined in (10). Then the closed-loop
system (5) and (7) with a(t)≡ 0 is expressed as

˙̃zσ = Hσ (z̃σ + z?σ , x̃+ x?), (13a)
˙̃x = Fσ (z̃σ + z?σ , x̃+ x?)+Gσ

(
u?σ +K(c̃, x̃+ x?)

)
, (13b)

˙̃c = x̃+ x?. (13c)
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Assumption 2: There exists a set

Γ⊂ {σ = (σ1,σ2) : 0 < σ1 +σ2 < 1} ⊂ R2 (14)

known to the adversary such that
(a) the actual value σ◦ is contained in Γ;
(b) for each σ ∈Γ, there is a Lyapunov function Vσ

(
z̃σ , x̃, c̃

)
satisfying that for all ‖(z̃σ , x̃, c̃)‖ ≤ R,

c1‖(z̃σ , x̃, c̃)‖2 ≤Vσ

(
z̃σ , x̃, c̃

)
≤ c2‖(z̃σ , x̃, c̃)‖2,

dVσ

d(z̃σ , x̃, c̃)

 Hσ (z̃σ + z?σ , x̃+ x?)
Fσ (z̃σ + z?σ , x̃+ x?)+Gσ

(
u?σ +K(c̃, x̃+ x?)

)
x̃+ x?


≤−c3‖(z̃σ , x̃, c̃)‖2,∥∥∥∥ dVσ

d(z̃σ , x̃, c̃)

∥∥∥∥≤ c4‖(z̃σ , x̃, c̃)‖

where R > 0 and ci > 0, i = 1, . . . ,4, are some constants
independent of σ ∈ Γ. �

We now take a nominal value σn among the values in Γ.
From this selection, a nominal model of (7) is carried out
with the functions Fn := Fσ |σ=σn , Hn := Hσ |σ=σn , and the
matrix Gn := Gσ |σ=σn , which will be utilized in the attack
design to follow. (For the sake of simplicity, from now one
we drop the subscript “σ” of the variables and functions

dependent of σ if σ = σ◦, and replace the subscript “σ” with
the Sanserif font “n” if σ = σn. For instance, z := zσ |σ=σ◦
and zn := zσ |σ=σn .)

IV. NONLINEAR ZERO-DYNAMICS ATTACK FOR
UNCERTAIN QUADRUPLE-TANK PROCESS

As a solution to the problem presented in the previous
section, we take a closer look at the zero-dynamics attack
[11]. As studied in [11], [15], in cases when the plant
to be attacked is linear and has no model uncertainty, the
zero-dynamics attack can easily remain undetected from any
anomaly detector, and the corresponding attack generator is
the very simple form of the zero dynamics of the plant.
However, when it comes to the nonlinear systems, the
stealthiness is not straightforward anymore. We remind the
readers that, in the previous work [11], the zero-dynamics
attack has been constructed using not the exact nonlinear
system directly, but its linearized model at the operating
point. For instance, in our case, this indirect method results
in

˙̃
δ
a
lza = Snδ̃

a
lza, (16a)

alza =−G−1
n Rnδ̃

a
lza (16b)

where

Sn :=
∂Hn(zn,x)

∂ zn

∣∣∣∣
(zn,x)=(z?n,x?)

=

 −
√

2gaL
AL

1
2
√

z?n,1+Tn,2x?2
−
√

2g(1−σn,2)aR
σn,2AL

1
2
√

z?n,2+Tn,1x?1

−
√

2g(1−σn,1)aL
σn,1AR

1
2
√

z?n,1+Tn,2x?2
−
√

2gaR
AR

1
2
√

z?n,2+Tn,1x?1

 , (17a)

Rn :=
∂Fn(zn,x)

∂ zn

∣∣∣∣
(zn,x)=(z?n,x?)

=


√

2gaL
AL

1
2
√

z?n,1+Tn,2x?2
0

0
√

2gaR
AR

1
2
√

z?n,2+T?
n,1x?1

 . (17b)

As a negative consequence of the linearization, the stealthi-
ness of (16) mostly ends up being local near the operating
point. Therefore, for the nonlinear system, how long such
zero-dynamics attack can remain undetected is still question-
able. It is also important to note that the (even small) model
uncertainty due to σ could be another weak point of (16), as
the zero-dynamics attack for the linear systems usually does.

In this section, to tackle the attack design problem in the
presence of the nonlinearities in (2) and small uncertainty on
σ , we propose a new type of the zero-dynamics attack. The
idea is simple; we will mimic the nonlinear zero dynamics as
itself, rather than approximate it via the linearization method,
by using the Byrnes-Isidori normal form representation (7) of
the quadruple-tank process. For this, we first define H†

n(zn,x)
and F†

n(zn,x) as Hn(zn,x) and Fn(zn,x) with the square

functions
√
· replaced by

ψ(x) :=

{√
x, if x≥ 0,

0, otherwise.

Unlike the original ones, the new functions H†
n(zn,x) and

H†
n(zn,x) are globally well-defined and Lipschitz. With these

functions, an extension of the conventional zero-dynamics at-
tack for the nonlinear quadruple-tank process (2) is proposed
as

˙̃
δ
a
nza = H†

n(δ̃
a
nza + z?n,x

?), (18a)

anza =−G−1
n

(
F†
n(δ̃

a
nza + z?n,x

?)−F†
n(z

?
n,x

?)
)

(18b)

where (18) is the copied version of the nominal zero dynam-
ics. Notice that since σn ∈ Γ, the origin of the δ̃ a

nza-dynamics
(18a) is unstable. Thus as long as the initial condition
δ̃ a

nza(t
a
0) is selected in the set Dn (given in Proposition 1),

the state trajectory δ̃ a
nza(t) will move away from the origin.

To distinguish (18) from (16), we now call the proposed one
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(18) as the nonlinear zero-dynamics attack, while (16) as the
linearized zero-dynamics attack.

From now on, the stealthiness of the nonlinear zero-
dynamics attack (18) is investigated. We begin by introducing
a shifted steady-state value for c

c?n := K−1
i (u?−u?n), (19)

which will be vanished when σ◦ is exactly the same as σn,
and by defining error variables

z̃nza := z− δ̃
a
nza− z?n, c̃nza := c− c?n. (20)

Note that by definition, the controller dynamics (5) can be
rewritten by

˙̃cnza = x̃+ x?, (21a)
u = u?+Kp(r− y)+Kic

= u?n+Kp(r− y)+Ki(c−K−1
i (u?−u?n))

= u?n+K(c̃nza, x̃+ x?). (21b)

Thus one has

˙̃znza = H(z,x)−H†
n(δ̃

a
nza + z?n,x

?)

= H†
n(z̃nza + z?n, x̃+ x?)+∆z,1 +∆z,2 (22a)

˙̃x = F(z,x)+Gu−GG−1
n

(
F†
n(δ̃

a+ z?n,x
?)−F†

n(z
?
n,x

?)
)

= F†
n(z̃nza + z?n, x̃+ x?)+Gn

(
u?n+K(c̃nza, x̃+ x?)

)
+∆x,1 +∆x,2, (22b)

˙̃cnza = x̃+ x? (22c)

where the perturbation terms are given as

∆z,1 := H(z,x)−H†
n(z,x),

∆z,2 := H†
n

(
z̃nza + δ̃

a
nza + z?n, x̃+ x?

)
−H†

n(δ̃
a
nza + z?n,x

?)

−H†
n

(
z̃nza + z?n, x̃+ x?

)
+H†

n(z
?
n,x

?)

and

∆x,1 := F(z,x)−F†
n(z,x)+(G−Gn)

(
u?n+K(c̃nza, x̃+ x?)

)
,

∆x,2 := F†
n

(
z̃nza + δ̃

a
nza + z?n, x̃+ x?

)
−F†

n(δ̃
a
nza + z?n,x

?)

−F†
n

(
z̃nza + z?n, x̃+ x?

)
+F†

n(z
?
n,x

?).

It should be noted that as long as the plant’s state (z(t),x(t))
remains in the bounded set R (i.e., region of interest), we
have

‖∆1‖ := ‖(∆z,1,∆x,1)‖
≤M∆,1‖σ◦−σn‖+L∆,1‖σ◦−σn‖‖(x̃, c̃nza)‖, (23a)

‖∆2‖ := ‖(∆z,2,∆x,2)‖ ≤ L∆,2‖(z̃nza, x̃)‖ (23b)

for some positive constants M∆,1, L∆,1, and L∆,2.
We also note that by definition, there exists M? > 0 such

that

‖(z?− z?n,0,−c?n)‖ ≤M?‖σ◦−σn‖. (24)

The following theorem describes our main result, which
indicates that if σn is selected close enough to σ◦, then the
nonlinear zero-dynamics attack (18) remains stealthy until

0 500 1000 1500 2000 2500 3000

0

10

20

(a) Water level h(t)

0 500 1000 1500 2000 2500 3000
9.5

10

10.5

(b) Enlargement

Fig. 2. Water level h(t) under linearized zero-dynamics attack (16) without
uncertainty on σ : h1(t) (blue solid), h2(t) (red solid), h3(t) (black dash-
dotted), and h4(t) (green dash-dotted)

the attack disrupts the plant as much as desired, under a few
more assumptions.

Theorem 1: Suppose that Assumptions 1 and 2 hold.
Then for given 0 < ε < R, the closed-loop system (5) and
(7) under the nonlinear zero-dynamics attack a = anza with
(18) satisfies

‖y(t)− r‖< ε, (25a)

‖z(t)− δ̃
a
nza(t)− z?n‖< ε (25b)

as long as (z(t),x(t)) remains in the region of interest R, if
the following conditions hold:
(a) c3−L∆,2c4 =: αnza > 0;
(b) ‖(z(ta0),x(ta0),c(ta0))− (z?,x?,0)‖< (1/

√
c2)(ε/3);

(c) δ̃ a
nza(t

a
0) ∈Dn and ‖δ̃ a

nza(t
a
0)‖< (1/

√
c2)(ε/3);

(d) the nominal value σn satisfies

‖σ◦−σn‖ ≤min
{√

c1

c2

αnza

M∆,1c4
ε,

1
M?
√
c2

ε

3
,

αnza

2L∆,2c4

}
.

�
Proof: The theorem is proved via the Lyapunov stability

analysis for the perturbed system (22). By differentiating the
Lyapunov function candidate Vn in Assumption 2 along with
(22), one has

V̇n =
dVn

d(z̃nza, x̃, c̃nza)
( ˙̃znza, ˙̃x, ˙̃cnza)

≤−c3‖(z̃nza, x̃, c̃nza)‖2 +

∥∥∥∥ dVn

d(z̃nza, x̃, c̃nza)

∥∥∥∥(‖∆1‖+‖∆2‖
)

≤−
(
c3−L∆,2c4−L∆,2c4‖σ◦−σn‖

)
‖(z̃nza, x̃, c̃nza)‖2

+ c4M∆,1‖σ◦−σn‖‖(z̃nza, x̃, c̃nza)‖

≤ −αnza

2
‖(z̃nza, x̃, c̃nza)‖

×
(
‖(z̃nza, x̃, c̃nza)‖−

2c4M∆,1

αnza
‖σ◦−σn‖

)
.
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Fig. 3. Water level h(t) under nonlinear zero-dynamics attack (18) without
uncertainty on σ : h1(t) (blue solid), h2(t) (red solid), h3(t) (black dash-
dotted), and h4(t) (green dash-dotted)

By the assumptions, it is easy to see that the set

V :=
{
(z̃nza, x̃, c̃nza) :

Vn(z̃nza, x̃, c̃nza)≤ c2
4c2

4M2
∆,1

α2
nza
‖σ◦−σn‖2 < c1ε

2
}

is invariant. In addition, we also have

‖(z̃nza(ta0), x̃(t
a
0), c̃nza(ta0))‖

≤ ‖(z(ta0),x(ta0),c(ta0)− (z?,x?,0)‖+‖δ̃ a
nza(t

a
0)‖

+‖(z?− z?n,0,−c?n)‖ ≤
1√
c2

ε,

by which the initial condition (z̃nza(ta0), x̃(t
a
0), c̃nza(ta0)) be-

longs to the invariant set V . This concludes the proof.
Some remarkable points in Theorem 1 are listed below.
• The inequality (25a) implies that the nonlinear zero-

dynamics attack (18) remains stealthy in a practical
sense. Moreover, the stealthiness of the proposed attack
is surely guaranteed until the success of the attack,
whereas the linearized zero-dynamics attack (16) can-
not ensure anything about the stealthiness. From this
perspective, it can be concluded that the nonlinear
zero-dynamics attack (18) is more threatening than the
traditional one in the cases of nonlinear systems.

• On the other hand, the second inequality (25b) illustrates
how the nonlinear zero-dynamics attack (18) disrupts
the internal state z(t) of the plant (7). Indeed, since the
initial condition δ̃ a

nza(t
a
0) of the attack is set as Dn, the

attacker’s state δ̃ a
nza(t) goes away from the neighborhood

of the origin, at least for a while. Then for small ε > 0,
the actual state z(t) behaves as δ̃ a

nza(t)+ z?n, which must
escape the ideal position z = z?n. It is further noted that,
as the deviation of z(t) gets larger, that of the water level
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(b) Enlargement

Fig. 4. Water level h(t) under linearized zero-dynamics attack (16) with
uncertainty on σ : h1(t) (blue solid), h2(t) (red solid), h3(t) (black dash-
dotted), and h4(t) (green dash-dotted)

(h3(t),h4(t)) of the upper tanks must also do. This is
because the output (h1(t),h2(t)) will remain around the
reference r by (25a).

• We point out that if the functions H†
n and F†

n are linear,
then the vanishing perturbation terms ∆x,2 and ∆z,2 are
naturally zero (so that L∆,2 = 0), and thus Item (a) in
the theorem seems meaningless. In other words, Item
(a) of the theorem is required in order to struggle with
the nonlinearity of the plant. To achieve the constraint,
the adversary may have to rely more on the inherent
characteristics of the existing controller (5), which is
not necessary for the linear system cases.

• On the other hand, Item (b) highlights that in order to
remain stealthy, it is suggested to initiate the attack sig-
nal a(t) during the steady-state operation of the system.
This is a reasonable requirement to most adversaries.

• Due to the Lyapunov analysis, an endurable quantity of
model uncertainty for the stealthiness of the nonlinear
zero-dynamics attack (18) can be explicitly obtained, as
stated in Item (d).

V. SIMULATION RESULTS

In this section, some simulation results are presented to
compare the two types of the zero-dynamics attack, (16)
and (18). In the simulation, we set h(0) = (12.6,13,4.8,4.9),
c(0) = 0, and ta0 = 1500 [s]. The gain matrices Kp and Ki

are selected as diagonal matrices Kp = diag(0.75,−0.06) and
Ki = diag(0.0068,−0.00027), by which the controller (5) is
of the decentralized form (as in [16]). The actual value σ◦ is
given by σ◦ = (0.43,0.34). For a fair comparison, the initial
conditions of two attack generators are set as the same value.

Figs. 2 and 3 depicts the simulation results when there
is no uncertainty on σ (i.e., σ◦ = σn). It can be seen in
these figures that as z(t) diverges from the steady-state value,
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Fig. 5. Water level h(t) under nonlinear zero-dynamics attack (18) with
uncertainty on σ : h1(t) (blue solid), h2(t) (red solid), h3(t) (black dash-
dotted), and h4(t) (green dash-dotted)

the impact of the linearized zero-dynamics attack (16) gets
revealed more and more in the output channel. On the other
hand, the proposed zero-dynamics attack (18) seems almost
stealthy until h3(t) and h4(t) touches the boundary of the
region of interest. Similar conclusions can be found in Figs. 4
and 5, in which σ◦ = (0.47,0.30) 6= σn.

We further remark that unlike the linearized zero-dynamics
attack, the proposed attack may possibly be undetected even
after the upper tanks become empty or overflow, under
particular conditions on the system characteristics. For in-
stance, Fig. 6 shows the scenario when (h3,h4) is equal to
(r1,r2) = (10,10), in which the impact of the nonlinear zero-
dynamics attack is rarely observed.

VI. CONCLUSION

In this paper, we have investigated the stealthiness of
the zero-dynamics attack for the quadruple-tank process,
as a prototypical example for nonlinear, multi-input multi-
output, and non-minimum phase systems. A typical way
of implementing the zero-dynamics attack scheme for a
nonlinear cyber-physical system is to linearize the dynamics
of the plant and then to construct a linear attack generator;
yet this is not a complete solution to the attackers because
the approximation error of the linearization becomes signif-
icantly large as the internal state diverges from its initial
location, by which the stealthiness of the attack is readily
violated. Moving away from the conventional approach, we
present a nonlinear version of the zero-dynamics attack based
on the Byrnes-Isidori normal form. It has been seen from the
Lyapunov analysis that the proposed zero-dynamics attack
can remain stealthy in the presence of nonlinearity and
even small parametric uncertainty in a practical sense, until
some of the water tanks become empty or overflow. This
work highlights that more threatening attack strategies would

0 500 1000 1500 2000 2500 3000
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20

(a) Linearized zero-dynamics attack (16)

0 500 1000 1500 2000 2500 3000
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20

(b) Nonlinear zero-dynamics attack (18)

Fig. 6. Water level h(t) under zero-dynamics attacks with uncertainty on
σ , in cases when (r1,r2) is equal to (h3,h4): h1(t) (blue solid), h2(t) (red
solid), h3(t) (black dash-dotted), and h4(t) (green dash-dotted)

be possible as long as adversaries utilize nonlinear system
theory in their attack designs.
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