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Abstract— In multi-agent systems where agents are coupled
through the underlying networks and follow the consensus
dynamics, the ability for agents on networks to reach consen-
sus depends on the network structure, and more specifically
depends on the spectra of the Laplacian of the networks. Each
agent on the network plays a role in aggregating the information
for the agent population to reach a consensus. To evaluate
the influence that one agent would have on the network to
reach consensus, we propose the consensus-induced centrality
measure. Examples of consensus-induced centrality analysis for
different types of networks are given. The consensus-induced
centrality has possible applications in many network systems,
such as social networks, power grid stability and wireless sensor
networks, etc.

Index Terms— Systems on networks, centrality for network
systems, multi-agent systems, induced centrality

I. INTRODUCTION

Networks are everywhere ranging from social networks,
biological networks to engineering networks. Underlying
most networks, there are dynamical processes. To fully un-
derstand and control these networks, it is important to study
both the network structure and the underlying dynamics.
For instance, in the study of consensus and synchronization
on networks, the dynamics is specified locally following
consensus protocol [1], [2], [3] and the key structure property
is represented by the spectrum of the graph Laplacian.

Most graph theoretic measures for node importance (cen-
trality) on networks tend to focus on the structural impor-
tance of nodes in the underlying graph [4]. However, to study
network dynamical systems, it is more meaningful to repre-
sent the node importance considering also the underlying
dynamical process on the networks.

This paper provides a measure for nodes representing their
importance in a network under a dynamical setting. The
underlying methodology is to evaluate the impact of the
removal of an agent on the ability of the network to reach
consensus or synchronization. The importance (centrality)
values of the agents are ranked according to their impact
factors. Further, since the ability to reach consensus is an
invariant of the network system represented by the spectrum
of the underlying graph, the change in the graph spectrum is
used to evaluate the change of the ability to reach consensus.
We define the consensus-induced centrality for a network
agent as the change of the underlying graph spectrum with
the removal of that agent. See [4] for general induced
centrality measures on graphs.
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For unweighted graphs, the centrality based on the change
of algebraic connectivity with removal of nodes is called the
vertex-deleted centrality measure and is studied in [5] where
tight lower bound and upper bound are established. The
results in our paper apply to general weighted graphs, and
lower bounds and upper bounds based on local connection
weights are proven. These results are straightforward to
generalize to centrality measures for groups of nodes. Most
importantly, we give a clear interpretation of the induced
centrality measure in the context of multi-agent network
systems.

In this work, the centrality measure for connected net-
works is considered, however, it is straightforward to gener-
alize the results to disconnected networks.

A. Basic notations

Let Gn = (Vn, E,W ) denote an undirected weighted
graph with the node set Vn where n is the size of the graph,
i.e. |Vn| = n, the edge set E and the positive edge weight
set W . Simple graphs (i.e. unweighted graphs with no self-
loops and no multiple edges) are a special case where W
only takes 0 and 1 as its elements. Let A(Gn) represent
the symmetric adjacency matrix of the graph Gn where
the ijth element of A(Gn) is aij if there is an undirected
connection between the ith node and the jth node with
edge weight aij in the graph Gn and zero otherwise. Let
1 = [1, 1, ..., 1]T ∈ Rn. Let L(Gn) be the Laplacian of
graph Gn, i.e. L(Gn) = diag(A(Gn)1) − A(Gn). Let the
(real) eigenvalues of L(Gn) be ordered as

λ1(Gn) ≤ λ2(Gn) ≤, ... ≤ λn(Gn).

We use the word ”network” to refer to a network system with
the underlying graph and the underlying dynamics which in
the present case is the consensus type dynamics.

II. CONSENSUS AND SYNCHRONIZATION ON NETWORKS

A. Consensus on Networks

Consider a networks with n agents each of which follows
the local dynamics and protocol

ẋi(t) = ui(t), (1)

ui(t) = −
∑
j∈Ni

aij(xi(t)− xj(t)), (2)

xi(t), ui(t) ∈ R, i ∈ {1, ..., n}, t ∈ [0,∞),

where xi, ui and Ni represent respectively the state, the
control input and the neighbourhood set of agent i on the
network, and aij denotes the edge weight connecting agent
i and agent j. Denote the weighted adjacency matrix by A =
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[aij ] and denote the Laplacian matrix by L. The system is
said to reach a consensus at time t if x1(t) = x2(t)... =
xn(t).

The system dynamics can be written in the following
compact form

Ẋ(t) = −LX(t), (3)

where X(t) = [x1(t), ..., xn(t)]T . The solution of the system
is given by

X(t) = e−LtX0 = V e−ΛtV TX0

= e−λ1t(vT1 X0)v1 + e−λ2t(vT2 X0)v2

· · ·+ e−λnt(vTnX0)vn

(4)

where X(0) = X0 and

L = V ΛV T = [v1, · · · , vn]diag(λ1, ..., λn)[v1, · · · , vn]T ,

where v1, ..., vn are the normalized eigenvectors of L that
correspond to the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn
respectively. Under the proposed local control protocol (2),
the system will reach a consensus iff

0 = λ1 < λ2. (5)

From (4) we can see that if λ1 = 0, in the direction of v1

the system trajectory will always have a length vT1 X0, and
the convergence rate of the consensus problem is determined
by the second smallest eigenvalue λ2 of the Laplacian. See
[6] for more details.

B. Synchronization on networks

A typical dynamical network model [7], [8] for syn-
chronization analysis is as follows. The dynamical network
contains N identical nodes which are diffusively and lin-
early coupled. On each node there exist a n−dimensional
dynamical system.

ẋi = f(xi)− c
N∑
j=1

LijΓxj , i = 1, 2, ..., N (6)

with xi = (xi1, xi2, ..., xin)T ∈ Rn as the state vector
of node i, constant c > 0 as the coupling strength, and
Γ ∈ Rn×n a constant matrix with only 0-1 elements as
variables’ coupling structure. Lij = Lji = −1(i 6= j) if
node i and node j are connected, otherwise Lij = Lji =
0(i 6= j). Lii = di where di is the connection degree of
node i. Note that L is the Laplacian of the underlying graph
representing connection between agents. The objective is to
(asymptotically) synchronize the networks, i.e. to achieve

x1(t) = x2(t) = ... = xN (t) = s(t), as t→∞ (7)

where s(t) is the solution to ṡ(t) = f(s(t)). Assume the un-
derlying network is connected, that is, the adjacency matrix
[aij ] is irreducible. This implies 0 = λ1 < λ2 ≤ ... ≤ λN .
The synchronization state is exponentially stable if

c ≥ Tλ−1
2 (8)

where T > 0 is a constant determined by the dynamics of an
isolated node and the state mapping structure Γ and c > 0

is the coupling strength [9], [8]. This shows that the second
smallest eigenvalue of the Laplacian of the underlying graph
determines the synchronizability of the dynamical network
(6).

There are other variations of network consensus and
synchronization problems. The key index to these problems
is the spectrum of the Laplacian of the underlying networks.
The first eigenvalue of the graph Laplacian is always zero.
The second smallest eigenvalue of the graph Laplacian
(also called algebraic connectivity), determines the rate of
convergence of consensus and synchronization capability of
the network.

C. Consensibility and Relative Consensibility of Network
Systems

Consider a network system with an underlying connected
graph Gn. The consensibility (ability to reach consensus) of
the network system is defined as the second smallest eigen-
value of the underlying graph Laplacian, i.e. the algebraic
connectivity of the underlying graph, denoted by λ2(Gn).
The relative consensibility of the network system is defined
as λ2(Gn)

n representing the ability of the network reaching
consensus compared to the fully connected network on the
same node set.

D. Properties of Algebraic Connectivity

As is known, the edge connectivity e(G) of an undirected
simple graph G = (V,E) is the smallest cardinality of a
subset E1 ⊂ E satisfying the property that G1 = (V,E\E1)
is not connected. Similarly, the vertex connectivity v(G) of
G = (V,E) is the smallest cardinality of a subset V1 ⊂
V having the property that the subgraph G1 generated by
removing V1 from G is not connected. The minimum degree
δ(Gn) of graph Gn is the minimum degree of its nodes.

Theorem 1 ([10]). Let Gn(n ≥ 2) be a non-complete simple
graph with vertex connectivity ν(Gn), edge connectivity
e(Gn) and the minimum degree δ(Gn). Then

λ2(Gn) ≤ ν(Gn) ≤ e(Gn) ≤ δ(Gn).

Theorem 2 ([11]). Let Gn(n ≥ 2) be a connected simple
graph with n vertices. Then

2(1− cos
π

n
) ≤ λ2(Gn) ≤ n

with the left equality if and only if Gn is a path.

Theorem 3 ([10]). Let Gn(n ≥ 2) be a simple graph. Then
λ2(Gn) > 0 if and only if Gn is connected.

This result generalizes to undirected positively weighted
graphs.

Theorem 4. For an undirected and positively weighted graph
Gn = (V,E,W ), n ≥ 2, λ2(Gn) > 0, if and only if Gn is
connected.

For the purpose of convenience, we attach the proof in the
appendix.
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III. CONSENSUS-INDUCED CENTRALITY MEASURE

The importance of each node of the network in the process
to reach consensus and synchronization can be reflected by
the change of the graph algebraic connectivity if that partic-
ular node is removed. Based on this intuition, we define the
consensus-induced centrality measure for networks. There
can be two definitions: absolute consensus-induced centrality
(ACIC) measure and relative consensus-induced centrality
(RCIC) measure.

A. Absolute Consensus-induced Centrality Measure

We define the absolute consensus-induced centrality mea-
sure in the following. The subgraph of Gn = (Vn, E,W )
generated by removing node v ∈ Vn of Gn is denoted by
G

(v)
n−1. For a node v in a graph Gn, the absolute consensus-

induced centrality (ACIC) value is given by

ACICv = λ2(Gn)− λ2(G
(v)
n−1). (9)

This value is the value drop of the second smallest eigenvalue
of the graph Laplacian after removing node v in the Gn. It
reflects the drop of the rate of reaching consensus on Gn.

B. Relative Consensus-induced Centrality Measure

As we know that for a complete graph of size n > 1,
the eigenvalues of its Laplacian are {0, n, · · ·n}. Since the
two graphs Gn and G

(v)
n−1 are of different sizes and the

size of the network determines on the maximum value of
eigenvalue that graph achieve, it is meaningful to compare
the relative change of the eigenvalues. Therefore we define
the relative consensus-induced centrality (RCIC) value for
node v of graph Gn as follows:

RCICv =
λ2(Gn)

n
−
λ2(G

(v)
n−1)

n− 1
. (10)

This value measures the change of the ratio between the alge-
braic connectivity and the maximum algebraic connectivity
of graphs on the same node set by removing node v in the
graph Gn.

According to the definition of RCIC, if the network is
sparse and network size is large, RCIC can be very small.

RCIC and ACIC would represent the same property if the
network is very large. But for small networks, RCIC and
ACIC represent relatively different properties.

IV. BASIC RESULTS ON CONSENSUS-INDUCED
CENTRALITY MEASURE

A. Upper Bound of ACIC

Based on the Cauchy Interlace Theorem and the Courant-
Fischer Theorem, in the appendix we prove the following
result on the change of eigenvalues of the graph Laplacian
when removing a node from the graph.

Lemma 1. Consider a graph Gn = (Vn, E,W ) and its
subgraph G

(v)
n−1 generated by removing node v from Gn.

Then

λk(G
(v)
n−1) ≥ λk(Gn)− αvmax, 1 ≤ k ≤ n− 1,

where αvmax is maximum of the connection weights between
v and all other nodes in Gn.

We can see that the maximum drop in the relative eigenval-
ues of the Laplacians when removing a node v from graph
Gn is upper bounded by αvmax, i.e. the maximum of the
connection weights between v and all other nodes in Gn.

Based on this result and the definition of ACIC, we obtain
an upper bound for the ACIC of the nodes.

Theorem 5. Consider a network Gn = (Vn, E,W ). For any
v ∈ Vn

ACICv ≤ αvmax,

where αvmax is maximum of the connection weights between
v and all other nodes in Gn.

Corollary 1. Consider a network Gn = (Vn, E,W ). Then

∀v ∈ Vn, ACICv ≤ αmax,

where αmax is the maximum edge weight in Gn.

αmax provides the upper bound for ACIC and hence a
robustness estimate for synchronization when the removal of
one node is possible. Specifically, if λ1 − αmax > 0, then
the coupling strength

c ≥ T (λ1 − αmax)
−1
,

based on (8), ensures synchronization under the removal of
any agent in the network.

B. Lower Bound of ACIC
Lemma 2. Consider a graph Gn = (Vn, E,W ) and its
subgraph G

(v)
n−1 generated by removing node v from Gn.

Then

λk(G
(v)
n−1) ≤ λk+1(Gn)− αvmin 1 ≤ k ≤ n− 1,

where αvmin is minimum of the connection weights (including
zero weights) between v and all other nodes in Gn.

Theorem 6. Consider a network Gn = (Vn, E,W ). Then,
for any v ∈ Vn

ACICv ≥ αvmin + λ2(Gn)− λ3(Gn),

where αvmin is minimum of the connection weights between
v and all other nodes in Gn.

Corollary 2. Consider a network Gn = (Vn, E,W ). Then

∀v ∈ Vn, ACICv ≥ αmin + λ2(Gn)− λ3(Gn),

where αmin is the minimum connection weight (including
zero weights) over all nodes.

Corollary 3. Consider a network Gn = (Vn, E,W ). Then

∀v ∈ Vn, ACICv ≥ λ2(Gn)− λ3(Gn).

V. EXAMPLES OF CONSENSUS-INDUCED CENTRALITY
MEASURE FOR NETWORKS

We calculate the ACIC and RCIC for some simple net-
works in Table I and real world networks. For simple
networks, since the edge weight is either 1 or 0, αmax = 1
(if the graph is non-empty) and therefore ACIC ≤ 1.
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TABLE I
ALGEBRAIC CONNECTIVITY FOR SOME SIMPLE NETWORKS [12]

Graph G Algebraic Connectivity
Complete Graph Kn λ2(Kn) = n
Path Pn, (n > 1) λ2(Pn) = 2(1− cos π

n
)

Cycle Cn, (n > 2) λ2(Cn) = 2(1− cos 2π
n
)

Bipartite complete graph λ2(Kp,q) = min{q, p}
Kp,q , (p ≥ 1, q > 1)
Star K1,q , (q > 1) λ2(K1,q) = 1

A. Complete Networks

The nodes on a complete graph (i.e. fully connected graph)
are indifferent from one another, and they all have the same
importance. For any node v in an complete graph Cn:

ACICv = n− (n− 1) = 1

RCICv =
n

n
− n− 1

n− 1
= 0

ACIC is 1 means that the algebraic connectivity decreases by
1 if any node is removed. RCIC is 0 implies that compared
to the full capacity of the network, the relative consensibility
of the network does not change when any node is removed.

B. Complete Bipartite Networks

For a complete bipartite network K|P |,|Q| with n nodes
where P and Q are the two complete cliques. Suppose |P | <
|Q|. For a node vp in P ,

ACICvp = |P | − (|P | − 1) = 1,

RCICvp =
|P |
n
− |P | − 1

n− 1
.

For a node vq in Q

ACICvq = |P | − |P | = 0,

RCICvq =
|P |
n
− |P |
n− 1

=
−|P |

n(n− 1)
.

This implies that nodes in the smaller clique P are more
important than nodes in the larger clique Q in terms of
consensibility. The removal of (|Q|−|P |) nodes in the larger
clique Q does not affect the consensibility of the network.

Star graphs are special cases of complete bipartite graphs
where the smaller complete clique P has only one node. For
the center node vc in the star network K1,n−1, (n > 3),

ACICvc = 1, RCICvc =
1

n
.

For any leaf node vl in a star network K1,n−1

ACICvl = 0, RCICvl = − 1

n(n− 1)
.

This implies that the center node is more important than
the leaf nodes in terms of consensability on a star network.
RCIC is negative for leaf nodes implies that the remove a
leaf node can increase the network relative consensibility.

C. Path Networks

For a node vb on the boundary of a path network

ACICvb = 2(cos
π

(n− 1)
− cos

π

n
),

RCICvb =
2(1− cos πn )

n
−

2(1− cos π
(n−1) )

n− 1

For an internal node vi on a path network Pn

ACICvi = 2(1− cos
π

n
)− 0 = 2(1− cos

π

n
),

RCICvi =
2(1− cos πn )

n
− 0 =

2(1− cos πn )

n

This suggests that on path networks, nodes in the middle is
more important than nodes on the boundary in terms of the
influence to consensibility.

D. Cycle Networks

For any node v on a cycle network Cn (n > 2)

ACICv = 2(cos
π

n
− cos

2π

n− 1
)

RCICv =
2(1− cos 2π

n )

n
−

2(1− cos π
n−1 )

n− 1

E. A Simple Network with Negative ACIC

Here is a network example on which some nodes have
negative ACIC and RCIC.

1 1.5 2 2.5 3 3.5 4
-2

-1

0

1
ACIC

1 1.5 2 2.5 3 3.5 4

-0.6
-0.4
-0.2
0

0.2
RCIC

Fig. 1. A Simple Network with Negative ACIC

Negative ACIC and negative RCIC of node 1 respectively
imply that its removal would increase the consensibility and
relative consensibility of the network. Note that node 1 is
weakly connected to the close community formed by nodes
2, 3 and 4. Node 2 which is located at the center of the
network has the largest ACIC and the largest RCIC. Zero
ACICs of nodes 3 and 4 suggest the removal of them does
not change the absolute consensibility. Negative RCIC of
nodes 3 and 4 implies that each removal would result in a
network that has better relative consensibility.

F. The Karate Club Network

Here is the analysis on the Karate club network [13]. Node
1 has the largest ACIC and RCIC and the removal of which
will disconnect the network. Node 34 has the second largest
ACIC and RCIC. Nodes 2, 3, 32 and 33 has relatively large
ACIC and RCIC compared to other nodes. Node 17 has the
smallest negative ACIC and RCIC, which means its removal
would increase network consensisibility the most. Nodes that
have larger ACIC and RCIC tend to be the hubs of a densely
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5 10 15 20 25 30

0

0.2

0.4
ACIC

5 10 15 20 25 30

0

5

10

10-3 RCIC

Fig. 2. The Karate Club Network

connected community and nodes that have small ACIC and
RCIC tend to be nodes that are weakly connected to or
distant from communities.

G. Small World Networks
We use the small world network model [14] to generate

the following network, by starting with 20 nodes, connecting
each node to 4 nearest neighbours in ring topology and for
each edge the rewiring probability is 0.5. The node has the

5 10 15 20

0
0.1
0.2
0.3

ACIC

5 10 15 20
-5
0
5
10
15

10-3 RCIC

Fig. 3. Small World Network Example

highest ACIC and RCIC is node 8, and it has a degree of 4
which is not the highest node degree. Node 1 has the highest
node degree which is 6. Node 9 has the lowest ACIC and
RCIC and it has a node degree of 3.

H. Power Networks
An undirected, unweighted network with 4941 nodes

representing the topology of the Western States Power Grid
of the United States [14].

1000 2000 3000 4000
0

10

20
10-4 ACIC

1000 2000 3000 4000
0

5

10

15
10-8 RCIC

Fig. 4. The Power Network

The algebraic connectivity: 7.5921×10−4. The max ACIC
of all nodes is 7.5921×10−4. There are 1229 nodes achieved
the maximum ACIC under error bound 10−8. The minimum
ACIC of all nodes is −5.9562 × 10−7. Under error bound
10−8, there are 27 nodes that achieve the minimum ACIC.

Since the network size is large and the network is sparse,
the RCIC would have very small values. The maximum
RCIC is 1.5366× 10−7. The minimum RCIC is −1.5167×
10−10.

I. The Southern Women Club Network

The Southern Women Club network [15] is an undirected
weighted network that contains the observed attendance at 14
social events by 18 southern women. The edge weight is the
number of co-attended events. The maximum edge weight
in the network is 7.

1

2

3

4

5

6

7

8

9

10

11
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13

14

15

16

17

18

5 10 15

0
0.5
1

1.5

ACIC

5 10 15
-0.05

0

0.05

RCIC

Fig. 5. The Southern Women Club Network

The network consensibility (algebraic connectivity) is
12.7572. Node 5 achieves the minimun ACIC (-0.2870) and
minimum RCIC (-0.0586). Node 14 achieves the maximum
ACIC (1.9528) and the maximum RCIC (0.0732).

VI. DISCUSSIONS AND APPLICATIONS

An application is on power grid stability since the grid
stability is interpreted as the synchronization of coupled os-
cillators [2]. If one node on the grid need to be removed, this
work answers the question that which node can be remove
first to ensure that the resulting network structure have at
least the same performance in reaching synchronization.

In the case of wireless sensor networks where information
need to be processed through aggregation, this can be used
to reduce the use the redundant sensors to improve the
consensus rate, by careful choice of nodes according to
ACIC.

VII. CONCLUSION

In this work we propose and analyse the induced centrality
measures for agents in network systems with consensus
type dynamics. Future directions include: (1) consensus-
induced measures for edges, (2) centrality measures for
groups of nodes, (3) centrality measures for directed network
systems, (4) other induced centrality measures for controlled
dynamical network systems.
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APPENDIX

A. Proof of Theorem 4

Proof. Since the eigenvalues of L(Gn) are non-negative, we
only need to prove that λ2(Gn) = 0 if and only if the graph
Gn is not connected.

First, we prove that Gn is not connected implies λ2(Gn) =
0. If Gn is not connected, it consists at least two separated
subgraph, denoted by G1 and G2. Then the Laplacian L(Gn)
consists of two blocks L(G1) and L(G2), each of which has
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one zero eigenvalue. Therefore L(Gn) has at least two zero
eigenvalues and λ2(Gn) = 0.

Second, we prove that λ2(Gn) = 0 implies Gn is not
connected. The algebraic connectivity of a weighted graph
can be written as follows [16] :

λ2(Gn) = min
x 6=0,x⊥1

∑
(i,j)∈E aij(xi − xj)2∑n

i=1 xi
2

, (11)

where aij is the positive edge weight between node i and
node j. λ2(Gn) = 0 implies that there exist x 6= 0 such
that

∑n
i=1 xi = 0 and

∑
(i,j)∈E aij(xi − xj)2 = 0. If Gn is

connected,
∑

(i,j)∈E aij(xi − xj)2 = 0 implies x1 = x2 =

... = xn. Together with
∑n
i=1 xi = 0, this implies x1 =

x2 = ... = xn = 0, which contradicts the fact that x 6= 0.
Therefore the underlying graph Gn is not connected.

B. The Cauchy Interlace Theorem

Theorem 7 (Cauchy Interlace Theorem [17]). Let A be a
Hermitian matrix of order n, and let B be a principal sub-
matrix of A of order n− 1. If λ1 ≤ λ2 ≤ · · · ≤ λn−1 ≤ λn
lists the eigenvalues of A and µ1 ≤ µ2 ≤ · · · ≤ µn−2 ≤
µn−1 the eigenvalues of B, then λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤
· · · ≤ λn−1 ≤ µn−1 ≤ λn.

C. The Courant-Fischer Theorem

The minimax and maximin characterization of eigenvalues
of Hermitian matrices, known as Courant-Fischer theorem,
is represented in the following.

Theorem 8 (Courant-Fischer Theorem). Let M be a n× n
Hermitian matrix with eigenvalues λ1 ≤ ... ≤ λk ≤ · · · ≤
λn then

λk = min
U

max
x
{x

TMx

xTx
: U ⊂ Rn,dim(U) = k,

x ∈ U = span(U), x 6= 0}
and

λk = max
U

min
x
{x

TMx

xTx
: U ⊂ Rn,dim(U) = n− k + 1,

x ∈ U = span(U), x 6= 0}.
D. Proof of Lemma 1

The proof follows the proof idea of [18] and extends the
result to weighted graphs.

Proof. Denote the Laplacian of Gn by Ln and denote the
Laplacian of the graph G

(v)
n−1 by L

(v)
n−1. Removing the row

and column of Ln that correspond to node v, we have the
principle sub-matrix denoted by P

(v)
n−1. Label the nodes of

Gn by {1, 2, ..., n}. Suppose the label of node v is i. We
note that P (v)

n−1 and L(v)
n−1 are different only in the diagonal

terms as follows:

L
(v)
n−1 = P

(v)
n−1 − diag(α1, ..., αi−1, αi+1, ..., αn), (12)

where αk is the connection weight between the ith (i.e. node
v) and kth node. Then

αvmax = max{α1, ..., αi−1, αi+1, ..., αn}.

For simplicity, let Λv = diag(α1, ..., αi−1, αi+1, ..., αn).
Then

L
(v)
n−1 = P

(v)
n−1 − Λv. (13)

Fix k ∈ {1, 2, ..., n − 1}. We denote Uk as the set of
subspaces {U ⊂ Rn with dim(U) = n− k + 1}. It follows
from Courant-Fisher Theorem that,

λk(P
(v)
n−1) = max

U∈Uk

min
x∈U
{
xTP

(v)
n−1x

xTx
;x 6= 0},

Substituting P (v)
n−1 by L(v)

n−1 + Λv we have

λk(P
(v)
n−1) = max

U∈Uk

min
x∈U
{
xT (L

(v)
n−1 + Λv)x

xTx
;x 6= 0}.

Further simplifying the right hand side, we obtain

λk(P
(v)
n−1) ≤ max

U∈Uk

min
x∈U
{
xT (L

(v)
n−1 + αvmaxI)x

xTx
;x 6= 0}

= max
U∈Uk

min
x∈U
{
xTL

(v)
n−1x

xTx
+ αvmax;x 6= 0}

= max
U∈Uk

min
x∈U
{
xTL

(v)
n−1x

xTx
;x 6= 0}+ αvmax

= λk(L
(v)
n−1) + αvmax.

By Cauchy Interlace Theorem, we have

λk(Ln) ≤ λk(P
(v)
n−1).

Therefore we obtain the following inequality

λk(L
(v)
n−1) ≥ λk(Ln)− αvmax.

Hence

λk(G
(v)
n−1) ≥ λk(Gn)− αvmax, 1 ≤ k ≤ n− 1.

E. Proof of Lemma 2

Proof. Following the same set up in the proof of Lemma 1,
we have

λk(P
(v)
n−1) = max

U∈Uk

min
x∈U
{
xT (L

(v)
n−1 + Λv)x

xTx
;x 6= 0}.

Further simplifying the right hand side, we obtain

λk(P
(v)
n−1) ≥ max

U∈Uk

min
x∈U
{
xT (L

(v)
n−1 + αvminI)x

xTx
;x 6= 0}

= max
U∈Uk

min
x∈U
{
xTL

(v)
n−1x

xTx
+ αvmin;x 6= 0}

= max
U∈Uk

min
x∈U
{
xTL

(v)
n−1x

xTx
;x 6= 0}+ αvmin

= λk(L
(v)
n−1) + αvmin.

By Cauchy Interlace Theorem, we have

λk+1(Ln) ≥ λk(P
(v)
n−1).

Therefore we obtain the following inequality

λk+1(Ln) ≥ λk(L
(v)
n−1) + αvmin.
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Hence

λk(G
(v)
n−1) ≤ λk+1(Gn)− αvmin, 1 ≤ k ≤ n− 1.
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