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Recent years saw a remarkable emergence of several
general theories that are matrix or free noncommutative
analogues of well established classical theories in the com-
mutative setting. Since matrices are natural variables in many
if not most problems in system theory, it is not surprising
that these theories are often related to systems and control.

In the noncommutative (nc) setting we replace the say
complex euclidean space Cd by the nc space, i.e., the disjoint
union of square matrices of all sizes, over it:

(Cd)nc =
∞∐

n=1

(
Cn×n

)d
.

The basic operations are direct sums: if X =
(X1, . . . , Xd) ∈ (Cn×n)d, Y = (Y1, . . . , Yd) ∈ (Cm×m)d,

X ⊕ Y = (X1 ⊕ Y1, . . . , Xd ⊕ Yd) =([
X1 0
0 Y1

]
, . . . ,

[
Xd 0
0 Yd

])
∈

(
Cn+m×n+m

)d
,

and left and right multiplication by matrices: if X =
(X1, . . . , Xd) ∈ (Cn×n)d, T ∈ Cm×n, S ∈ Cn×m,

TXS = (TX1S, . . . , TXdS).

A set Ω ⊆ (Cd)nc, Ωn := Ω ∩ (Cn×n)d, is called matrix
convex if for all X1, . . . , Xk ∈ Ω, Xi ∈ Ωni

, and all Vi ∈
Cni×n with

∑k
i=1 V ∗i Vi = In, we have that

k∑
i=1

V ∗i XiVi ∈ Ωn.

Matrix convex sets were introduced in the remarkable paper
[4] that established for them the nc analogues of separation
theorems with linear inequalities replaced by linear matrix
inequalities. In particular, one can combine nc convexity with
nc polynomial and rational inequalities, leading to the subject
of nc convex algebraic geometry [8], [6], [7], motivated in
particular by the applications of semidefinite programming
to dimension independent problems in systems and control
[5], [9]. The nc setting is often more rigid than the familiar
commutative setting, allowing one to deduce surprisingly
strong result. E.g., every nc basic closed semialgebraic set
which is matrix convex is a nc spectrahedron, i.e., is given
by a linear matrix inequality.

There is also a nc function theory that goes back to
the pioneering work of Taylor on noncommutative spectral
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theory [11], [12], was further developed in [13], [14], and
given a systematic exposition in [10]. A set Ω ⊆ (Cd)nc is
called a nc set if it is closed under direct sums: X, Y ∈ Ω
implies X⊕Y ∈ Ω. A function f from a nc set Ω ⊆ (Cd)nc

to Cnc with f(Ωn) ⊆ Cn×n is called a nc function if

1) f respect direct sums: for all X, Y ∈ Ω, f(X ⊕ Y ) =
f(X)⊕ f(Y );

2) f respects similarities: for all n ∈ N, X ∈ Ωn and
S ∈ GLn(C) such that SXS−1 ∈ Ωn, f(SXS−1) =
Sf(X)S−1.

In this talk I will discuss the following result, which
provides a solution to the Nevanlinna–Pick interpolation
problem for nc functions on a matrix convex set:

Let Ω ⊆ (Cd)nc be an open matrix convex set, let Λ =
(Λ1, . . . ,Λd) ∈ Ωs and let F ∈ Cs×s. There exists a nc
function f : Ω → Cnc such that f(Λ) = F and ‖f(X)‖ ≤ 1
for all X ∈ Ω if and only if:

1) F belongs to the algebra generated by Λ1, . . . ,Λd;
2) for all m ∈ N and all S ∈ GLsm(C) such that

S(Λ⊗ Im)S−1 ∈ Ω,

we have ‖S(F ⊗ Im)S−1‖ ≤ 1.

This result follows from a much more general interpolation
theorem of [3] (which generalizes previous results of [2] and
[1]) that applies to any set of the form {X ∈ Ξ: ‖Q(X)‖ <
1} where Q is a nc function on a bifull nc set Ξ ⊆ Vnc

(for a possibly infinite dimensional complex vector space
V) with values in L(R,S) for some Hilbert spaces R
and S. In our case Q is the Cayley transform of a (in
general infinite dimensional) linear matrix inequality defining
a matrix convex set.
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