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Abstract— In this report, we propose an asymptotically sta-
bilizing controller using a control Lyapunov function (clf). The
proposed controller generates a sparse input vector, when no
input constraint is active, for energy savings. For the cases
with no input constraint, the control law can be described
explicitly in a variant of Sontag-type controller. When some
input constraints are subjected to the system, the control input
can be obtained by solving an LP problem. The controller
makes the time derivative of the clf negative, if possible.
Otherwise, an input minimizing the time derivative of the clf is
chosen, where all inputs are saturated. We have also proposed
a chattering-suppression mechanism. The effectiveness of the
proposed method is confirmed by computer simulations.

I. INTRODUCTION

A vector whose most elements are zero is called ‘sparse.’
A sparse input vector implies that most actuators are not
working, and these actuators can be deactivated. Deacti-
vated actuators consume no standby power, and therefore
the sparse input is effective for energy savings. Examples
of the actuator deactivation are the cylinder deactivation
system of automobile engines, and the on-off control of
multiple pumps in chemical plants. Sparse property of input
vector is useful in redundant-input systems. A redundant-
input system includes multiple actuators having same effect
to the system. Some of redundant actuators do not have to
work always, and the sparse property of the input is preferred
in redundant-input systems. For example, consider a system
with two actuators, where one has a good energy efficiency,
but its maximum power is limited, and the other is more
powerful but it wastes more energy. Around the origin, the
second actuator can be shutdown, while when large power is
required, both the actuators should work. Sparse input is also
preferred in systems with emergency actuators. For example,
yaw-rate control systems of automobiles use several kinds
of actuators — drive-torque split mechanism, breaking force
vectoring, active aero vectoring, active camber-angle control,
steering angle control, etc. However, nonzero camber-angle
increases the side-slip angle of the vehicle, and an override
of the steering angle harms drivers’ feeling. Hence, some of
these actuators are emergency, and should be deactivated in
usual situations.

Control using sparse input is often called ‘maximum
hands-off control’ [1], [2], [3], [4], where a weighted one-
norm or a CLOT (combined L-one and two) norm is adopted
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for the input-cost term in optimal control or model predictive
control. However, in nonlinear system cases, optimal con-
trol scheme requires a solution of Hamilton-Jacobi partial
differential equation, and nonlinear model predictive control
must solve nonlinear programming online. On the other hand,
control allocation techniques for redundant-input systems
often use one-norm cost function, which may generate sparse
input [5], [6], [7], [8]. In usual control allocations, when a
desired value of the time derivative of the state has already
designed, the redundant inputs are determined by solving an
optimization problem. The computational complexity of the
control allocation for input-affine nonlinear systems is same
as one for linear system cases. However, in many cases the
constraints for the time derivative of the state are restrictive.
Due to the restriction, a dense (non-sparse) input vector often
emerges as the result of the optimization.

In this study, an asymptotic stabilization controller, which
generates sparse input vectors, for nonlinear systems. We
adopt an intermediate approach between the maximum
hands-off control and the control allocation technique. We
assume that a control Lyapunov function (clf) is designed
a priori, instead of the desired time derivative of the state
in control-allocation methods. The time derivative of the
state, which consists of multiple equations, is replaced by
a constraint on the decreasing rate of the clf, which can be
expressed by one inequality. The obtained control is given as
a solution of a linear programming (LP) problem, which can
be calculated efficiently online. If there is no input constraint,
the control law is described explicitly as a variant of Sontag-
type controller. When all the inputs are saturated, the the
upper bound of the decreasing rate of the clf is weaken
by multiplying a coefficient γ (≤ 1). Hence, the decision
variables of the LP are the input variables and γ . We also
obtain a condition on the penalty term for decreasing the
value γ . Moreover, we propose a mechanism to suppress the
chattering phenomenon, which is caused by the discontinuity
of the optimized solution with respect to the state.

This report is organized as follows. The properties of the
one-norm optimization problem are described in Section II.
In Section III, the problem setting is stated, the Sontag-
type control laws for the cases without input constraint,
which generate sparse inputs, are proposed, and it is shown
that the control laws can be expressed by LP problems.
Section IV shows the controller under input constraints. A
chattering-suppression mechanism is proposed in Section V.
Simulation results for an example are given in Section VI to
show the effectiveness of the proposed method. Section VII
summarizes the obtained results.
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II. ONE-NORM OPTIMIZATION

To obtain sparse solutions of an optimization problem, a
weighted one-norm is often used as an evaluated function
to be minimized. For example, consider an optimization
problem finding u = (u1, . . . ,um)

> (∈ Rm) that minimizes

J1(u) = k̃1|u1|+ · · ·+ k̃m|um|= k̃(|u1|, . . . , |um|)>

under a constraint `u+ a ≤ 0, where k̃ = (k̃1, . . . , k̃m), k̃1 >
0, . . . , k̃m > 0, `= (`1, . . . , `m), and a ∈ R. This problem can
be converted into a linear programming (LP) problem by
using slack variables uabs,i with additional constraints

ui ≤ uabs,i, −ui ≤ uabs,i (i = 1, . . . ,m). (1)

One of the optimal solution can be obtained as

u =


− a
‖ ˜̀‖∞

diag(k̃)−1bs( ˜̀)> (a > 0 and ` 6= 0)

0 (a≤ 0)
no solution (a > 0 and `= 0),

(2)

where diag( ·) generates a diagonal matrix,

˜̀= `diag(k̃)−1 = (`1/k̃1, . . . , `m/k̃m)

bs( ˜̀) = lim
p→+∞

(sgn( ˜̀1)| ˜̀1|p, . . . ,sgn( ˜̀m)| ˜̀m|p)
| ˜̀1|p + · · ·+ | ˜̀m|p

sgn(q) =


1 (q > 0)
0 (q = 0)
−1 (p < 0),

and ‖·‖∞ denotes the infinity norm, i.e. ‖(`1, . . . , `m)‖∞ =
maxi|`i|. If i∗ = argmaxi| ˜̀i| is determined uniquely, then
bs( ˜̀) = (0, . . . ,0,sgn( ˜̀i∗),0, . . . ,0). Note that

˜̀bs( ˜̀)> = ‖ ˜̀‖∞, (3)

and therefore (2) satisfies the constraint `u + a ≤ 0 when
a > 0 and ` 6= 0. If a solution exists uniquely and a > 0,
then the optimal solution has one nonzero element, and the
other elements are zero. Therefore, the result of the one-
norm optimization problem has sparse property. When most
elements of a vector or a matrix are zero, the vector (or the
matrix) is called ‘sparse.’

When i∗ = argmaxi| ˜̀i| is fixed, the optimal solution is not
affected by changes of the values of k̃, because 1/k̃i∗ that is
included in diag(k̃)−1 of (2) is canceled by the denominator
‖ ˜̀‖∞ = `i∗/k̃i∗ . Therefore, when `i 6= 0 (i = 1, . . . ,m), the
solution for

k̃i = ki(1− exp(−|`i|/ki)) (ki > 0) (4)

coincides with that for k̃i = ki, because

˜̀= (sgn(`1)s(|`i|/ki), . . . ,sgn(`1)s(|`m|/km))

holds for (4), and

argmax
i
| ˜̀i|= argmax

i
s(|`i|/ki) = argmax

i
|`i|/ki,

where
s(p) =

p
1− exp(−p)

(5)

is an increasing function.

III. SONTAG-TYPE CONTROL LAW GENERATING SPARSE
INPUT

A. Controlled system and clf

We consider a nonlinear system

ẋ = f (x)+g(x)u = f (x)+g1(x)u1 + · · ·+gm(x)um, (6)

where x ∈ Rn denotes the state and u = (u1, . . . ,um)
> ∈ Rm

is the input vector. We assume that f (x) and g1(x), . . . ,gm(x)
are smooth vector fields, and f (0) = 0.

Each element of u represents the effect of a real actuator,
and the sparse property of u causes deactivation of some
actuators. The inactive actuator does not consume standby
power, and therefore the sparse input contributes energy
efficiency. Our aim is the asymptotical stabilization of the
system (6) with some input constraints by a sparse input.
In this section, we consider the stabilizing problem without
input restrictions, and in the next section we extend it for
cases with input constraints.

We suppose that there exists a smooth control Lyapunov
function (clf) V (x) [9], [10] for the system (6), i.e.

V (0) = 0, V (x)> 0 (x 6= 0)
{x ∈ Rn |V (x)≤ a} is compact for all a > 0
L fV (x)< 0 for x such that LgV (x) = 0, x 6= 0,

(7)

where L fV and LgV = (Lg1V, . . . ,LgmV ) are Lie derivatives
of V along f and g, respectively. Moreover, we make the
following assumption, which is a sufficient condition of the
small control property (scp) of V (x) for (6).

Assumption 1: The quadratic approximation of V (x)

Vlin(x) =
1
2

x>Px, P =
∂ 2V
∂x2 (0)

is a clf of the linearly approximated system of (6)

ẋ = Ax+Bu, A =
∂ f
∂x

(0), B = g(0).

B. Variant of Sontag-type controller

For the asymptotic stabilization with a sparse input, we
can establish the following theorem.

Theorem 1: The system (6) is globally asymptotically
stabilized by the following control law:

u = αs(x) =−β (x)Kivbs(LgV ·Kiv)
>, (8)

which is a variant of Sontag-type controller, where

Kiv = diag(1/k1, . . . ,1/km)

ki > 0 (i = 1, . . . ,m), ρ > 0

β (x) =


L fV +

√
L fV 2 +ρ‖LgV ·Kiv‖4

∞

‖LgV ·Kiv‖∞

(LgV 6= 0)

0 (LgV = 0).

Proof: Under the control law (8), we obtain

V̇ = L fV (x)+LgV (x)αs(x) =−Ws(x)< 0 (x 6= 0)

Ws(x) =
√

L fV 2 +ρ‖LgV ·Kiv‖4
∞
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because of (3). Hence, the closed-loop system is globally
asymptotically stable.

The Sontag-type control law (8) has a sparse property
because most elements of bs( ·) are zero. As with the normal
Sontag’s universal formula, when the denominator in the
control law tends to zero, the input does not go to infinity.

Theorem 2: The control law (8) is locally bounded.
Proof: A function

φ(p,q) =


0 (q = 0 and p < 0)
p+
√

p2 +q2

q
(elsewhere)

is real analytic on S = {(p,q) ∈ R2 | q > 0 or p < 0} [9].
Since (7) holds, the point (p,q) = (L fV (x),

√
ρ‖LgV (x) ·

Kiv‖2
∞) (x 6= 0) is in the interior of S. Hence,

β (x) =
√

ρ‖LgV (x) ·Kiv‖∞φ(L fV (x),
√

ρ‖LgV (x) ·Kiv‖2
∞)

is locally bounded around any x 6= 0. To check the case
around the origin, we set x = rx0 (x0 6= 0, r ≥ 0). The value
of β (x) around the origin is evaluated as

lim
x→0

β (x) = lim
r→0

√
ρ‖rx>0 PBKiv +O(r2)‖∞

·φ((r2/2)x>0 (PA+A>P)x0 +O(r3),

r2√
ρ‖x>0 PBKiv‖2

∞ +O(r3))

= lim
r→0

r
√

ρ‖x>0 PBKiv +O(r)‖∞

·φ(x>0 (PA+A>P)x0/2+O(r),
√

ρ‖x>0 PBKiv‖2
∞ +O(r))

Because Assumption 1 holds, φ(x>0 (PA + A>P)x0/2,
√

ρ

‖x>0 PBKiv‖2
∞) is bounded. Therefore, we can conclude that

β (x)→ 0 (x→ 0). Consequently, the local boundedness of
αs(x) is shown.

C. LP formulation of the controller

In this subsection, we reveal that the sparse-input con-
troller (8) can be expressed by the solution of an LP problem.

By comparing (2) and (8), we can see that (2) and (8)
are equivalent to each other by setting k̃ = k = (k1, . . . ,km),
` = LgV (x), and a = L fV (x) +Ws(x). Note that L fV (x) +
Ws(x)≥ 0 holds, and L fV (x)+Ws(x)= 0 implies LgV (x)= 0.
Therefore, the controller (8) solves the one-norm optimiza-
tion problem

J2(u) = k1|u1|+ · · ·+ km|um| →min (9)

with a constraints

V̇ = L fV (x)+LgV (x)u≤−Ws(x). (10)

Remark: The usual Sontag controller

u =−
L fV +

√
L fV 2 +(LgV LgV T )2

LgV LgV T LgV T

coincides with the optimal solution of a quadratic pro-
gramming problem u>u→ min under the constraints V̇ =
L fV (x)+LgV (x)u≤−

√
L fV 2 +(LgV LgV T )2. ♦

Since L fV (x)+Ws(x)≤ 0 means LgV (x) = 0, the control
input of the Sontag-type controller becomes zero only on a

zero-measure set. Around the set {x | LgV (x) = 0} the input
has little influence on V̇ , and therefore it is effective in energy
savings to deactivate all actuators around the set. Recall that
the sparse property of the input is preferred by the same
reason. To make u zero in a neighborhood of each point in
{x | LgV (x) = 0, x 6= 0}, we relax the constraint (10) as

V̇ = L fV (x)+LgV (x)u≤−W (x), (11)

where W (x) = ηWs(x) (0 < η < 1).
The solution of (9) with the constraints (11) provides

an asymptotically stabilizing control, which has a sparse
property, when there is no input restriction. The proposed
controller can be expressed in an explicit form as

u = αn(x) =−βn(x)Kivbs(LgV ·Kiv)

βn(x) =
ζ (L fV +η

√
L fV 2 +ρ‖LgV ·Kiv‖4

∞)

‖LgV ·Kiv‖∞

,
(12)

where

ζ (p) =
p+ |p|

2
=

{
p (p > 0)
0 (p≤ 0).

IV. CONTROLLER GENERATING SPARSE INPUT UNDER
INPUT CONSTRAINTS

A. Controller under Input Constraints

In this section, we consider input constraints

ūi− ≤ ui ≤ ūi+ (i = 1, . . . ,m) (13)

where ūi−(< 0) (i= 1, . . . ,m) denote lower bounds and ūi+(>
0) (i = 1, . . . ,m) are upper bounds of the inputs. We define
a constraint set of u as

U = {(u1, . . . ,um)
> | ūi− ≤ ui ≤ ūi+ (i = 1, . . . ,m)}.

Since the clf V (x) is designed without the consideration on
the input restriction, our purpose in this section is not global
stabilization. The stabilizable region D (∈Rn) is definied as

D = {x ∈ Rn |V (x)< aD}
aD = inf

x∈D0

V (x)

D0 =

{
x ∈ Rn

∣∣∣∣min
u∈U

(
L fV (x)+LgV (x)u

)
≥ 0
}
.

Our purpose is the asymptotic stabilization in D where
the control input is sparse near the origin. Moreover, the
controller should minimize V̇ even when x ∈ D0.

The optimization problem of (9) with (11) and (13) may
have no solution for some x ∈D, because (11) requires V̇ ≤
−W (x). Hence, we consider an optimization problem with
a relaxed constraint V̇ ≤ −γW (x) (γ ≤ 1). The value of γ

is determined by the optimization problem, and the cost for
(1− γ) is added to the cost function. Therefore, the control
input is obtained by solving the following problem, which
can be written in an LP by adding slack variables as (1).

Problem 1: Suppose that x ∈ Rn is fixed, and ki > 0 (i =
1, . . . ,m) and a sufficiently large ξ (x) ∈ R are given. Find

u = (u1, . . . ,um)
> ∈ Rm and γ ∈ R
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that minimize

J3(u,γ;x) = k̃1(x)|u1|+ · · ·+ k̃m(x)|um|+ξ (x)(1− γ), (14)

subject to

V̇ = L fV (x)+Lg1V (x)u1 + · · ·+LgmV (x)um

≤−γW (x)
(15)

γ ≤ 1 (16)
ūi− ≤ ui ≤ ūi+ (i = 1, . . . ,m), (17)

where

k̃i(x) =

{
ki{1− exp(−|LgiV (x)|/ki)} (LgiV (x) 6= 0)
ki (LgiV (x) = 0)

W (x) = η

√
L fV 2 +ρ‖LgV ·Kiv‖4

∞ (0 < η < 1, ρ > 0).

Notice that the coefficients k1, . . . ,km are replaced by k̃i(x)
like (4). As discussed in Section II, this modification has no
effect on the solution insofar as the solution satisfies γ = 1.

B. Selection of ξ (x)

Because ξ (x)(1− γ) is the penalty for an increase in the
upper bound of V̇ , we suppose that ξ (x) is sufficiently large.
In this subsection, we provide a suitable selection of ξ (x).

If LgiV (x) = 0 for some i, then the input ui does not appear
in the constraint (15), i.e. V̇ is independent of ui, and the
optimal solution satisfies ui = 0. We define the set of indices
of non-trivial inputs as

I(x) = {i | LgiV (x) 6= 0}.

Theorem 3: Assume that

ξ (x)>W (x) (18)

holds for any x. For a specified x, if there exists an index
i∗ ∈ I(x) such that the solution of Problem 1 satisfies

ūi∗− < ui∗ < ūi∗+, (19)

then γ = 1 holds.
This theorem means that if γ < 1, all input elements ui

(i ∈ I(x)) are saturated under (18).
Proof: By introducing some Lagrange multipliers, the

cost function (14) is extended as

Jext =
m

∑
i=1

k̃i(x)|ui|+ξ (x)(1− γ)

−µ1{−L fV (x)−LgV (x)u− γW (x)}−µ2(1− γ)

−µ
>
3 (|ū1,s̃gn(u1)

|− |u1|, . . . , |ūm,s̃gn(um)|− |um|)>

where

s̃gn(s) =

{
“+ ” (s≥ 0)
“− ” (s < 0),

and µ1, µ2, and µ3 = (µ3,1, . . . ,µ3,m)
> are Lagrange multi-

pliers for (15), (16), and (17), respectively. We obtain the

necessary conditions for the optimality

∂Jext

∂ui
= µ1LgiV (x)+(k̃i(x)+µ3,i)sgn(ui) = 0,

i = 1, . . . ,m
(20)

∂Jext

∂γ
=−ξ (x)+µ1W (x)+µ2 = 0 (21)

with Karush–Kuhn–Tucker conditions
−L fV (x)−LgV (x)u− γW (x)≥ 0
µ1 ≥ 0
µ1{−L fV (x)−LgV (x)u− γW (x)}= 0

(22)


1− γ ≥ 0
µ2 ≥ 0
µ2(1− γ) = 0

(23)


ūi− ≤ ui ≤ ūi+

µ3,i ≥ 0
µ3,i(|ūi,s̃gn(ui)|− |ui|) = 0

(i = 1, . . . ,m), (24)

where

sgn(s)


= 1 (s > 0)
∈ [0,1] (s = 0)
=−1 (s < 0).

From (19) and (24), it is obvious that µ3,i∗ = 0. Therefore,
from (20), we obtain∣∣∣∣µ1Lgi∗V (x)

k̃i∗(x)

∣∣∣∣≤ 1,

which derives

µ1 ≤
k̃i∗(x)
|Lgi∗V (x)|

=
1

s(|Lgi∗V (x)|/ki∗)
≤ 1, (25)

where s( ·) is defined by (5). From (18), (21), and (25), the
value of µ2 is evaluated as

µ2 = ξ (x)−µ1W (x) = (ξ (x)−W (x))+(1−µ1)W (x)> 0.

From (23), the above inequality implies γ = 1, and the proof
is completed.

Theorem 3 derives the following two corollaries.
Corollary 1: Under the solution of Problem 1 with (18),

V̇ = max
(

min(L fV (x),−W (x)),

L fV (x)+min
u∈U

LgV (x)u
) (26)

holds.
Proof: From Theorem 3, we can see that the inputs

ui (i ∈ I(x)) are saturated, if γ < 1. Obviously, the solution
satisfies LgiV (x)ui ≤ 0, and therefore if γ < 1, then the opti-
mal input minimizes LgV (x)u, and V̇ = −γW (x) > −W (x)
(x 6= 0) holds. When γ = 1, the constraint (15) becomes
V̇ ≤−W (x)≤minu(L fV (x)+LgV (x)u). When µ1 > 0, then
the constraint (15) is strict. On the other hand, if and only if
L fV (x)≤−W (x) holds, u = 0 is optimal, µ1 becomes zero,
and V̇ = L fV (x). From these results, we can conclude that
(26) holds.
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Corollary 2: Under the optimal input of Problem 1 with
(18), the origin of the controlled system is asymptotically
stable, and the domain of attraction contains the set D.

Proof: From Corollary 1, it is obvious that V̇ < 0
(x ∈ D, x 6= 0). Although the control input is discontinuous
with respect to x, from the smoothness of V (x), we can
see that V (x(t)) is a decreasing function when x(0) ∈ D.
Therefore, the closed-loop system is asymptotically stable
with a domain of attraction that includes D.

V. SUPPRESSION OF CHATTERING

Since the control law proposed in the previous section
is discontinuous with respect to the state, chattering phe-
nomenon may occur. For example, in the case with two
inputs, if no input constraint is active, a switch of the active
input occurs on the curve |Lg1V (x)|/k1 = |Lg2V (x)|/k2. If on
the curve

1
k1

d|Lg1V |
dt

∣∣∣∣
u=(u10,0)>

<
1
k2

d|Lg2V |
dt

∣∣∣∣
u=(u10,0)>

1
k1

d|Lg1V |
dt

∣∣∣∣
u=(0,u20)>

>
1
k2

d|Lg2V |
dt

∣∣∣∣
u=(0,u20)>

u10 =−(W (x)+L fV (x))/Lg1V (x)

u20 =−(W (x)+L fV (x))/Lg2V (x)

hold, a chattering phenomenon is caused, and the solution
slides on the curve.

A frequently switching input may increase energy con-
sumption, because the activation of an actuator often requires
extra power. In this paper, the sparse property has been intro-
duced for the purpose of energy savings, but the chattering
phenomenon ruins it. Hence, in this section, we propose a
mechanism to suppress the chattering, where the values of
k1, . . . ,km vary with respect to time.

Notice that k̃i is an increasing function with respect to
ki (> 0) for a fixed LgiV (x) 6= 0. When ki is large for an
index i, the penalty for the activation of the input ui is
also large. Therefore, making the values of ki for currently
inactive inputs large prevents the activation of these inputs.
Such a mechanism suppresses the switching of the input. The
mechanism is described as

ki(t) =

{
σki,default if ui(t−0) = 0
ki,default others

(i = 1, . . . ,m),

(27)
where ki,default (i = 1, . . . ,m) are default values of k1, . . . ,km,
ui(t− 0) is the input just before the current time, and σ >
1 is a constant. This mechanism can suppress the frequent
switching when the input constraints are not active.

Because the constraint set is not strictly convex, chattering
due to the constraint set may also occur. To prevent this kind
of chattering is our future work.
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Fig. 1. Responses of state variables for the sparse input controller without
chattering suppression.

VI. SIMULATION

In this section, we show simulation results for an example.
We consider a nonlinear system

ẋ =

 x2
x3

−x2 +0.1sinx1

+

0 0
1 0
1 1

u,

where x = (x1,x2,x3)
> is the state and u = (u1,u2)

T is the
input. We assume that input constraints −3≤ u1≤ 3, −3≤ u2
≤ 3 exist. For this system, a clf

V (x) =
1
2

xT

 1 1/2 3/4
1/2 1 1/2
3/4 1/2 1

x

is considered here.
We construct two asymptotically stabilizing controllers for

the system. One is a controller generated by Problem 1 with
(18) for fixed k1 = k2 = 1. Other parameters are chosen
as ρ = 2, η = 0.8, and ξ (x) = 3W (x) + 0.01. The other
is a controller generated by Problem 1 with (18) and the
chattering-suppression mechanism. The default values of ki
are k1,default = k2,default = 1 and σ = 1.8. The parameters ρ ,
η , and ξ (x) are same as the first controller.

Simulations for both the controllers are performed, where
the initial state is x(0) = (1,2,2)>. As an LP solver, IBM
ILOG CPLEX 12.8 is adopted, which is called from a C++
program. Figures 1 and 2 show the simulation result for the
first controller. The time responses of the state variables are
plotted in Fig. 1, and the time responses of the input variables
and γ are shown in Fig. 2. All state variables converge to
zero, and the input vector is sparse when the inputs are free
for the input constraints. However, in some time periods
the choice of the active input is frequently switched, i.e.
a chattering phenomenon occurs. Figures 3 and 4 show
the simulation result for the controller with the chattering-
suppression mechanism. Figure 3 shows the time responses
of the state variables, while the time responses of the input
variables and γ are plotted in Fig. 4. All state variables
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Fig. 2. Responses of input variables and γ for the sparse input controller
without chattering suppression.
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Fig. 3. Responses of state variables for the sparse input controller with
chattering suppression.

converge to zero as in the first-controller case. Input vector
is sparse when it is inside the input-constraint boundary.
The chattering phenomenon is removed by the chattering-
suppression mechanism.

As Theorem 3 claims, in both simulations, only for
the time period where all inputs are saturated, the value
of γ is less than one, and the constraint V̇ ≤ −W (x) is
relaxed as V̇ ≤−γW (x). Moreover, around the points where
Lg1V (x) = Lg2V (x) = 0, both inputs u1 and u2 are zero,
because L fV (x)+W (x) becomes L fV (x)+η |L fV (x)| (< 0)
at the points such that LgV (x) = 0. This behavior often
contributes energy savings.

In these simulations, the switching of the active input
occurs even around the origin. The system is controllable
only by the input u2, and hence we can improve the proposed
method where only u2 is active around the origin by changing
the definition of k̃i(x), but this issue is our future work.

VII. CONCLUSIONS

An asymptotically stabilizing controller using a control
Lyapunov function V (x) has been proposed. The proposed
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Fig. 4. Responses of input variables and γ for the sparse input controller
with chattering suppression.

controller generates a sparse input vector when no input
constraint is active, and the sparse property is effective
for energy savings. For the cases with no input constraint,
the control law can be described in an explicit form, and
it is similar to Sontag-type controllers. When some input
constraints are subjected to the system, the control input
can be obtained by solving an LP problem, which can be
easily calculated online. The controller makes V̇ negative,
if possible. When negative V̇ is impossible owing to the
input constraints, an input minimizing V̇ is chosen. We
have also proposed a chattering-suppression mechanism. The
effectiveness of the proposed method has been confirmed by
computer simulations. To develop a mechanism that changes
the input-selection behavior around the origin is our future
work.
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