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Abstract— In this talk we extend the vessel theory, or
equivalently, the theory of overdetermined 2D systems to the
Pontryagin space setting. The associated transfer function
becomes a mapping with a finite number of negative squares
between certain vector bundles defined on a compact Riemann
Surface. Furthermore, we present a realization theorem of these
mappings. In particular, we develop an indefinite version of
the de Branges Rovnyak spaces over real compact Riemann
surfaces, i.e. reproducing kernel Pontryagin spaces of analytic
sections defined on real compact Riemann surfaces.

I. 2D SYSTEM OVER PONTRYAGIN SPACES

A 2D overdetermined linear time–invariant system over a
Pontryagin space is the set of equations

i
∂ f
∂ t1

+A1 f = Φ
[∗]

σ1u, (1)

i
∂ f
∂ t2

+A2 f = Φ
[∗]

σ2u, (2)

v = u− iΦ f , (3)

where A1 and A2 are commuting bounded operators on
Pontryagin space P with κ negative index such that Ak−
A[∗]

k = iΦ[∗]σkΦ for k = 1,2. The functions u, f and v are two-
variable functions of t1 and t2 denoted by the input, system
and output functions of the system, respectively. E is a finite
dimensional Pontryagin space, σk are selfadjoint operators
on E and Φ : P → E.

Equivalently, the collection

V = (A1 , A2 ; P , Φ , E ; σ1 , σ2 , γ , γ̃ )

equipped with the equations

γΦ = σ1ΦA[∗]
2 −σ2ΦA[∗]

1 (4)
γ̃Φ = σ1ΦA2−σ2ΦA1 (5)

γ̃− γ = i
(

σ1ΦΦ
[∗]

σ2−σ2ΦΦ
[∗]

σ1

)
(6)

where γ and γ̃ are selfadjoint operators on E, is called a
commutative two-operator vessel over Pontryagin space.

One can notice that Equations (1-3) together with the
compatability equations(
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)
u = 0 (7)(
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These results are based on joint work with Daniel Alpay (Schmid College
of Science and Technology, Chapman University) and Victor Vinnikov (Ben
Gurion University of the Negev).
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are exactly commutative two-operator vessel over Pontryagin
space.

When assuming that the principal subspace of a vessel

P̂
def
=

∞∨
n=0

Ak1
1 Ak2

2 Φ
[∗](E)

is non–degenerate (and hence a Pontryagin space) then the
input and the output discriminant polynomials coincide

p(z1,z2) = det(z1σ2− z2σ1 + γ) = det(z1σ2− z2σ1 + γ̃)

and furthermore the generalized Cayley-Hamilton theorem,
i.e. p(A1,A2) = 0, holds in P̂ . These two results are first
introduced in the Hilbert space setting by Livšic [6], [7].

II. CHARACTERISTIC FUNCTIONS AND REALIZATION
THEOREMS

The complete characteristic function (CCF) of a vessel is
defined by

W (ξ1,ξ2,z) = I− iΦ(ξ1A1 +ξ2A2− zI)−1
Φ

[∗](ξ1σ1 +ξ2σ2),

and it satisfies

W (ξ1,ξ2,x)∗(ξ1σ1 +ξ2σ2)W (ξ1,ξ2,x) = ξ1σ1 +ξ2σ2.

for all x ∈ R and the kernel
W (ξ1,ξ2,w)∗(ξ1σ1 +ξ2σ2)W (ξ1,ξ2,z)− (ξ1σ1 +ξ2σ2)

−i(z−w)
,

has κ negative squares for Im w,Im z≥ 0 in any direction
(ξ1,ξ2).

The joint characteristic function of a vessel over Pontrya-
gin space P is a mapping from ker(λ1σ2 − λ2σ1 + γ) to
ker(λ1σ2−λ2σ1 + γ̃) and given by

S(λ1,λ2)
def
= W (ξ1,ξ2,ξ1λ1 +ξ2λ2)

∣∣
ker(λ1σ2−λ2σ1+γ)

where (λ1,λ2) belongs to C0 and ξ1λ1+ξ2λ2 does not belong
to the spectrum of ξ1A1 + ξ2A2. The joint characteristic
function defines the frequency domain relation between input
and the output [8].

Assuming the homogeneous discriminant polynomial is
irreducible and the determinantal representations are max-
imal (see [8]), there exist isomorphisms from the input and
output kernel bundles to certain vector bundles on a real
compact Riemann surface X . Under these isomorphisms the
joint transfer function becomes the normalized joint transfer
function T : Lζ ⊗ ∆ → L

ζ̃
⊗ ∆. Here L

ζ̃
is a unitary flat

line bundle corresponding to ζ̃ in J(X) and ∆ satisfies
∆⊗∆ = KX , that is, the square root of the canonical line
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bundle KX on X . The Cauchy kernel (in the line bundle case)
is given by

Kζ (u,v) =
θ [ζ ](v−u)

iθ [ζ ](0)E(u,v)
, (9)

where E(·, ·) is the prime form, see [5] and θ [ζ ] is the
theta function with characteristic ζ . We note that (9) is the
counterpart of the kernel 1

z−w in the case of compact Riemann
surface.

A classification theorem of the class of normalized joint
characteristic functions of vessels over Pontryagin spaces is
stated in the following theorem.

Theorem 1: Let T (p) be a multiplicative function on a
real compact Riemann surface X corresponding to ζ − ζ̃ .
Then T (p) is the normalized joint characteristic function of
a vessel V over Pontryagin space with κ negative index
and with discriminant polynomial p(λ1,λ2) with maximal
input and output determinantal representations corresponding
to ζ , ζ̃ ∈ J(X) if and only if T (p) is a non-zero holomorphic
function in the neighborhood of C at infinity, meromorphic
on X \XR, T (p)T (T (p)) = 1 and the kernel

θ [ζ ](q− p)
iθ [ζ ](0)E(p,q)

−T (p)
θ [ζ̃ ](q− p)

iθ [ζ̃ ](0)E(p,q)
T (q), (10)

has κ negative squares.
In [1] we obtain realization theorems also for kernels asso-
ciated to the complete characteristic function and the joint
characteristic function, respectively.

III. DE BRANGES ROVNYAK SPACES

de Branges Rovnyak spaces in our setting are reproducing
kernel Pontryagin spaces with reproducing kernels of the
form (10) have finite number of negative squares.

Then for a meromorphic function on X , denoted by y, with
n distinct poles p1, ..., pn and where cm are the residue of y(·)
at the pole pm, the resolvent operator Ry

α is given by (see [8,
Equation 3-4] and [3])

Ry
α f (u) =

f (u)
y(u)−α

−
n

∑
j=1

f (u( j))

dy(u( j))

θ [ζ̃ ](u( j)−u)

θ [ζ̃ ](0)E(u( j),u)
. (11)

Here the points u( j) points on X such that y(u( j)) = α . The
model operator My, satisfying (in the neighborhood of the
poles of y) Ry

α = (My−α)−1, is defined by

My f (u) = y(u) f (u)+
n

∑
m=1

cm f (p(m))
θ [ζ̃ ](p(m)−u)

θ [ζ̃ ](0)E(p(m),u)
.

(12)
de Branges theory is closely related to a certain identity,
also known as the structure identity. The structure identity
in Compact Riemann surfaces setting is given by[

Ryk
α f ,g

]
−
[

f ,Ryk
β

g
]
− (α−β )

[
Ryk

α f ,Ryk
β

g
]
=

− i(α−β )
n

∑
l,t=1

f (ν(l))g(ω(t))

dyk(ν(l))dyk(ω(t))
K(ζ̃ ;ν

(l),ω(t)).

(13)

Then the analogue of de Branges structure theorem (see [4])
is given in the following theorems.

Theorem 2: Let X be a real compact Riemann surface. Let
X be a reproducing kernel Pontryagin space, with negative
index κ , of sections of L

ζ̃
⊗∆ analytic in open and connected

set Ω. We choose real meromorphic functions y1 and y2
generating M (X), such that Ω contains all the points above
the singular points of C and contains the poles of y1 and
y2 and all the elements of X are regular at these points.
Furthermore, assume that for every α,β ∈ C such that their
n pre-images lies within Ω and the following two conditions
hold:

1) X is invariant under Ry1
α and Ry2

β
.

2) For every choice of f ,g ∈X such that f and g are
analytic at the poles of y1 and y2, (13) holds.

Then the reproducing kernel of X is of the form (10) for
some ζ ∈ J(X) and for some line bundle mapping T (·) with
κ negative squares.

The converse statement is given below and its proof is
based on the above realization result, i.e. Theorem 1, together
with the strategy we used in [2].

Theorem 3: Let X be a real compact Riemann surface.
let T be a line bundle mapping corresponds to (ζ , ζ̃ ) with κ

negative squares and let X be the corresponding reproducing
kernel Pontryagin space with reproducing kernel of the form
(10). Furthermore, let y be a real meromorphic function on
X such that T is regular at the poles of y. Then, for any
α ∈ C such all its pre-images under y(·) belongs to Ω, X
is Ry

α -invariant and the structure identity (13) holds.
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