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Abstract— We explore the networked control problem under
the effects of disturbance and jamming attacks. Specifically,
we consider the scenarios where an insecure wireless com-
munication channel is used for transmission of the control
input packets from the controller to the plant. This channel
is assumed to face jamming attacks and the likelihood of
transmission failures on this channel depends on the power
of the jamming interference signal emitted by an attacker.
We show that the combined effects of the jamming attacks
and the disturbance can cause instability even if the attacked
system without disturbance is stable. Furthermore, we show
that stability under jamming and disturbance can be achieved
if the average jamming interference power is restricted in a
certain way.

I. INTRODUCTION

Information and communication technologies are becom-

ing essential components of industrial control systems. For

example, nowadays, wireless networks and the Internet are

utilized for tranmission of measurement and control data

packets. These communication technologies bring efficiency

in connecting remotely located parts of a control system, but

they can also make the system vulnerable against various

types of cyber-attacks [1].

Among the types of attacks a control system may face,

jamming attacks seem to be the easiest to achieve from the

viewpoint of an attacker. A jamming attack is a Denial-of-

Service attack where the attacker can effectively block packet

transmissions on a wireless channel by emitting sufficiently

strong interference signals [2], [3]. Jamming attacks can

cause performance issues and instability in wireless net-

worked control systems.

Recently, the effect of jamming attacks and other Denial-

of-Service attacks that cause transmission failures in control

systems have been investigated in several works (see, e.g.,

[4]–[11]). In these works, different approaches have been

explored for modeling the attacks. For instance, the models

in [4]–[8] allow the timing of attacks to be arbitrary as long

as the total attack duration and the frequency of attacks

satisfy certain conditions. Moreover, physical jamming attack

models based on wireless communication theory are consid-

ered in [9]–[11]. In those physical models, the likelihood
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of the occurrence of a transmission failure is influenced by

the strength of the jamming interference. In particular, a

transmission failure at a certain time is more likely, if the

power of the jamming interference signal at that time is large.

In our previous work [12], we used such a physical model

and considered a networked stabilization problem for the

scenarios where the level of interference power used by the

attacker at each time is unknown. The results in [12] indicate

that stabilization can be achieved if the average interference

power is bounded in the long run even if the power level can

be very large at certain times.

In this paper our goal is to extend our previous work

[12] to analyze the combined effects of jamming attacks and

disturbance on the dynamics. When the system is subject to

disturbance, jamming attacks can become more dangerous.

The attacker may take advantage of the disturbance to cause

instability even if the attacked system without disturbance is

stable. Specifically, the attacker can cause the state norm to

grow to arbitrarily large values, while keeping the jamming

interference power below a threshold in the long run.

We show in this paper that stability under jamming and

disturbance can be achieved if the average jamming inter-

ference power is restricted so that the wireless channel is

not subject to long consecutive emissions of high powered

interference signals. First, we investigate the case where

the system is subject to bounded disturbance. Then, we

explore the more general scenario where the distribution of

the disturbance norm may have infinite support. For this

scenario, we obtain an inequality for the first moment of

state that is similar to inequalities used for characterizing

noise-to-state stability in stochastic systems (e.g., [13], [14]).

A key role in our analysis is played by a nondecreasing

and concave function of the attacker’s interference power

that upper-bounds the transmission failure probability. Fur-

thermore, the use of the first moment of the state in the

analysis facilitates the investigation of cross product terms

that involve the disturbance and the indicator process for

transmission failures through induced matrix norms.

The paper is organized as follows. In Section II, we ex-

plain the wireless networked control problem under jamming

attacks. Then in Section III, we discuss the stability of the

system without disturbance and explain the combined effects

of jamming interference and disturbance. We provide an

analysis for the system with disturbance and jamming in

Section IV, and finally we conclude the paper in Section V.

The notation used in the paper is fairly standard. Specif-

ically, N and N0 respectively denote the set of positive and

nonnegative integers. Moreover, ‖ · ‖2 denotes the Euclidean
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Fig. 1. Operation of networked control system under jamming attacks

norm. The notations λmin(P ) (resp., λmax(P )) denote the

minimum (resp., maximum) eigenvalue of the Hermitian

matrix P . We use P[·] and E[·] respectively denote the prob-

ability and the expectation on a probability space (Ω,F ,P).

II. NETWORKED CONTROL UNDER JAMMING ATTACKS

In this paper, we consider the networked control problem

of a discrete-time linear plant with a static state feedback

controller. As illustrated in Fig. 1, a wireless communication

channel is used for transmission of control input packets

from the controller to the plant. This channel is assumed

to be subject to transmission failures at certain times due to

interference caused by the jamming signal of an attacker.

In the networked control operation, at each time step t,
the controller computes a control input using the state infor-

mation and attempts to transmit it on the wireless channel.

If the transmission is successful, then the transmitted control

input is applied at the plant side. If, on the other hand, there

is a transmission failure, then the control input at the plant

side is set to 0. In this setting, the dynamics of the plant is

given by

x(t+ 1) = Ax(t) + (1− l(t))BuC(t) + wP(t), (1)

where x(t) ∈ R
n is the state, uC(t) ∈ R

m is the control

input that is attempted to be transmitted by the controller to

the plant at time t, wP(t) ∈ R
n is the disturbance vector, and

l(t) ∈ {0, 1} represents the transmission status (with l(t) = 1
indicating failure and l(t) = 0 indicating success). Moreover,

A ∈ R
n×n is the unstable system matrix and Bn×m is the

input matrix.

In this paper, the likelihood of a transmission failure at

time t depends on the power of the jamming interference

signal at that time. If the interference power is large, then it is

more likely that there is a transmission failure. In particular,

with v(t) ∈ [0,∞) denoting the jamming interference power

at time t, the failure indicator l(t) in (1) is given by

l(t) , 1[r(t) ≤ p(v(t))], t ∈ N0, (2)

where, p : [0,∞) → [0, 1] is a Borel-measurable, nonde-

creasing function, and r(0), r(1), . . . are independent random

variables that are distributed uniformly in [0, 1]. Furthermore

{r(t) ∈ [0, 1]}t∈N0
and {v(t) ∈ [0,∞)}t∈N0

are assumed to

be mutually independent processes. Notice that for a fixed

scalar ϑ, p(ϑ) ∈ [0, 1] represents the conditional probability

of a transmission failure given that the jamming interference

power is set to ϑ. In particular, (2) implies

P[l(t) = 1|v(t) = ϑ] = P[r(t) ≤ p(ϑ)|v(t) = ϑ]

= P[r(t) ≤ p(ϑ)] = p(ϑ).

Observe that, if v(t) is large so that p(v(t)) is close to 1,

then it becomes more likely that r(t) ≤ p(v(t)), and hence

by (2), a transmission failure is likely to occur. Note also

that transmission failures at different times are conditionally

independent given the interference powers at those times.

Namely, for every t1 < t2 < · · · < tk, k ∈ N,

P[l(t1) = 1, . . . , l(tk) = 1|v(t1) = ϑ1, . . . , v(tk) = ϑk]

=

k
∏

i=1

P[l(ti) = 1|v(ti) = ϑi] =

k
∏

i=1

p(ϑi).

The characterization in (2) enables us to describe security

and reliability properties of different wireless channel models

by utilizing different p functions. For instance, to describe

the additive white Gaussian noise channel with quadrature

amplitude modulation scheme considered in the work [11],

p can be selected as

p(ϑ) = 2Q
(

√

c
ξ

ϑ+ σ

)

, (3)

where Q(y) , 1√
2π

∫∞
y

e−
s
2

2 ds, ξ ∈ (0,∞) and σ ∈ (0,∞)
are constants associated respectively with the transmission

power and the power of the channel noise, and c ∈ (0,∞) is

a constant associated with the parameters of the communi-

cation protocol. Notice that the term ξ
ϑ+σ

in (3) corresponds

to Signal to Interference plus Noise Ratio (SINR), which is

an indicator of the quality of a wireless channel [15]. Even

if there is no attack at time t (i.e., v(t) = ϑ = 0), there may

still be a transmission failure due to channel noise σ > 0,

since p(0) > 0.

We remark that the case where the interference power is

constant (i.e., v(t) = ϑ∗, t ∈ N0, for some fixed deterministic

scalar ϑ∗) corresponds to Bernoulli-type packet losses (see

[16]–[18]) with packet loss probability p(ϑ∗). In this paper,

we follow the problem setting in our previous work [12] and

explore the scenarios where the attacker can jam the network

with different interference powers at different times.

III. COMBINED EFFECTS OF DISTURBANCE AND

JAMMING INTERFERENCE ON NETWORKED CONTROL

In this section, we investigate the networked stabilization

of the plant (1) through a state-feedback controller, where

the control input transmitted by the controller is given by

uC(t) = Kx(t) + wC(t), t ∈ N0, (4)

where K ∈ R
m×n denotes the feedback gain, and wC(t) ∈

R
m is used for describing malicious or nonmalicious dis-

turbances on the control input. Notice that the effects of

state-measurement noise can also be represented through the

process {wC(t)}t∈N0
. Specifically, if the state measurement

is noisy, then the control input is given by Kx̃(t), where

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

388



x̃(t) = x(t)+ η(t) is the measured state and η(t) ∈ R
n rep-

resents the measurement noise. This situation is represented

through (4) by setting wC(t) , Kη(t).
With w(t) , wP(t) + (1 − l(t))wC(t), the closed-loop

networked control system (1), (4) becomes

x(t+ 1) = Ax(t) + (1− l(t))BKx(t) + w(t), t ∈ N0. (5)

In what follows, we first investigate the stability of (5) in the

disturbance-free case (w(t) = 0, t ∈ N0). Then we discuss

how a strategic jamming attacker can take advantage of the

disturbance to prevent stabilization.

A. Stabilization in the Disturbance-Free Case

For the case without disturbance (w(t) = 0, t ∈ N0), our

previous work [12] shows that stabilization can be achieved if

the long run average jamming interference power is bounded

by a sufficiently small scalar. In particular, the jamming

characterization in [12] allows the interference power v(t)
to arbitrarily change at each time t as long as it satisfies the

following assumption.

Assumption 3.1: There exist scalars κ ≥ 0 and v ≥ 0 such

that

P
[

t−1
∑

i=0

v(i) ≤ κ+ vt
]

= 1, t ∈ N. (6)

Here, v ≥ 0 is an asymptotic upper-bound on the average

interference power (i.e., lim supk→∞
1
k

∑k−1
t=0 v(t) ≤ v).

Notice that if p in (2) is a concave function, then p(v) can

be utilized in the stability analysis as an upper bound on the

long run average number of transmission failures. On the

other hand, if p is not concave, then a concave function that

upper-bounds p can be used for the same purpose. To this

end, we utilized in [12] a continuous, nondecreasing, and

concave function p̂ : [0,∞) → [0, 1] such that

p̂(v) ≥ p(v), v ∈ [0,∞). (7)

As discussed in [12], p̂ satisfying (7) always exists. More-

over, it is shown in [12] that

lim sup
t→∞

1

t

t−1
∑

i=0

l(i) ≤ p̂(v). (8)

In other words, the average number of transmission failures

is upper bounded in the long run by p̂(v). The inequality (8)

was used in [12] for establishing stability of the closed-loop

system (5) in the case without disturbance. The analysis in

[12] indicates that if v is sufficiently small, then the closed-

loop system is asymptotically stable almost surely, implying

P[limt→∞ ‖x(t)‖2 = 0] = 1.

In addition to almost sure asymptotic stability, moment

stability of the networked control system can also be an-

alyzed under Assumption 3.1. In particular, the following

result provides a condition under which the first-moment

of the state (E[‖x(t)‖2]) converges to zero at a geometric

rate. In presentation of this result, we utilize induced matrix

norms (see Section 5.6 in [19]). Specifically, for a given

matrix M ∈ R
n×n, let ‖M‖ denote the induced matrix norm

defined by ‖M‖ , supx∈Rn\{0}
‖Mx‖
‖x‖ , where ‖ · ‖ on the

right-hand side denotes a vector norm on R
n.

Proposition 3.1: Consider the closed-loop networked con-

trol system (1), (4) for the case where w(t) = 0, t ∈
N0. Suppose that the attacker’s interference power process

{v(t) ∈ [0,∞)}t∈N0
satisfies Assumption 3.1. Assume

(1− p̂(v))‖A+BK‖+ p̂(v)‖A‖ < 1. (9)

Then the closed-loop system (1), (4) is first-moment geomet-

rically stable, that is, there exist µ ≥ 0 and θ ∈ (0, 1) such

that

E[‖x(t)‖2] ≤ µθ
t‖x0‖2, t ∈ N. (10)

In Proposition 3.1, the scalar θ represents the rate of

convergence of the first moment, and it depends on p̂(v)
as well as the scalars ‖A + BK‖ and ‖A‖, which are

associated with the closed-loop and the open-loop dynamics.

In particular, θ is a linear function of the left-hand side of

(9). As a result, if the bound v on the long run average

jamming interference power is small, then θ is also small,

indicating faster convergence of the first-moment. We note

that geometric convergence of the first-moment also implies

that the state converges to the origin almost surely (i.e.,

P[limt→∞ ‖x(t)‖2 = 0] = 1).

B. Destabilizing Effects of Disturbance and Jamming Inter-

ference

So far we investigated the stability of the closed-loop

networked control system (1), (4) for the case without

disturbance. Proposition 3.1 indicates that if v in Assump-

tion 3.1 is sufficiently small, then stability can be achieved.

We now look at the case with disturbance. We observe

that in this case, jamming attacks can become considerably

more dangerous. Even if the disturbance is very small and

the attacker has very limited jamming resources, there still

exist attack strategies that can destabilize the system while

satisfying Assumption 3.1 with very small v. We illustrate

this idea in the following example.

Example 3.1: Consider a scalar networked control system

(1), (4) with x0 > 0, A + BK ∈ [0, 1), A > 1, and

constant disturbance w(t) = w∗ > 0, t ∈ N0. Suppose that

the conditional probability p of transmission failures is a

strictly increasing function (e.g., p given by (3)). For this

networked control system setup, an attacker can wait for a

sufficiently long duration and then attack for a duration with

a sufficiently large interference power so that the state norm

grows to large values but the average interference power does

not go above v. In particular, for any v > 0, x0 > 0, z > 0,

and ρ ∈ (0, 1), the attack strategy

v(t) ,

{

v∗, t ∈ {τ1, . . . , τ1 + τ2 − 1},
0, otherwise,

(11)

with v∗ , p−1(ρ
1

τ2 ) + 1, τ1 , ⌊max{v∗−v,0}τ2
v

⌋ + 1, τ2 ,

⌊max{logA(z/w∗), 0}⌋+ 1 guarantees that Assumption 3.1

is satisfied and the state exceeds the value z with probability
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larger than ρ at time τ , τ1 + τ2, i.e., P[x(τ) > z] > ρ. To

show this, first we define the event E(τ1, τ2) ∈ F by

E(τ1, τ2) ,
{

ω ∈ Ω: l(t) = 1, t ∈ {τ1, . . . , τ1 + τ2 − 1}
}

.

This is the event that all packet transmissions during t ∈
{τ1, . . . , τ1 + τ2 − 1} fail. By (11), we have P[E(τ1, τ2)] =
pτ2(v∗). Now, since x0 > 0, A > 1, and w∗ > 0, we obtain

x(t) ≥ w∗, t ∈ N. Therefore,

P[x(τ) > z] ≥ P[x(τ) > z |E(τ1, τ2)]P[E(τ1, τ2)]

≥ P[Aτ2x(τ1) +

τ2−1
∑

i=0

Aiw∗ > z |E(τ1, τ2)]p
τ2(v∗)

≥ P[Aτ2w∗ > z |E(τ1, τ2)]p
τ2(v∗) > 1 · ρ

τ2

τ2 = ρ.

Furthermore, the attack strategy (11) satisfies Assumption 3.1

with κ = 0, because τ1 ≥ max{v∗−v,0}τ2
v

≥ (v∗−v)τ2
v

, and

thus,
∑τ−1

i=0 v(i) = v∗τ2 ≤ v(τ1 + τ2) = vτ .

The attack strategy (11) can make the state grow arbitrarily

large even if the upper bound v of the average interference

power is very small. This attack strategy is effective, because

even if the attacker initially waits for a long duration without

attacking, the state never reaches a small neighborhood of

zero due to the disturbance. Hence, after waiting for a while,

the attacker can consecutively attack with high interference

powers to cause many transmission failures and make the

state norm grow to large values due to lack of control. In

the next section, we show that stability under the combined

effects of jamming and disturbance can be achieved if the

average jamming interference power is further restricted in

a certain way.

IV. STABILIZATION UNDER JAMMING INTERFERENCE

AND DISTURBANCE

To ensure stability under both disturbance and jamming,

the attacks need to be restricted in a way that high jamming

interference powers at consecutive times are not allowed. To

this end, we consider the following assumption.

Assumption 4.1: There exist scalars κ̂ ≥ 0, v̂ ≥ 0 such

that

P
[

t2−1
∑

i=t1

v(i) ≤ κ̂+ v̂(t2 − t1)
]

= 1, (12)

for all t1, t2 ∈ N0 with t1 < t2.

Notice that (12) implies (6) (with κ = κ̂ and v = v̂),

but the converse is not true. Assumption 4.1 is thus more

restrictive than Assumption 3.1. In particular, under Assump-

tion 4.1, the attacker can attack with a jamming interference

power v∗ > v̂ consecutively for at most ⌊κ̂/(v∗ − v̂)⌋ time

steps. As a result, under Assumption 4.1, the destabilizing

attacks discussed in Example 3.1 are avoided.

Assumption 4.1 is related to other characterizations that

describe malicious attacks in the literature. In particular,

in the continuous-time deterministic denial-of-service attack

characterization of [4], the number of attacks in a given

time frame as well as the total duration of those attacks

are bounded by certain ratios of the length of that time

frame. Under that characterization, the maximum possible

length of a continuous attack duration is bounded, which

enables analysis of input-to-state stability under disturbance.

The restriction on jamming through Assumption 4.1 is

similar, since long consecutive emissions of high powered

interference signals are not allowed. We note, however, that

Assumption 4.1 allows the scenario where the channel is

attacked at all times if the attacker’s interference power for

certain times is small. Notice that emission of interference

signals in jamming attacks require energy [2], [3]. In this

respect, Assumption 4.1 can describe the constraints of an

attacker with limited energy resources.

A. Stabilization Under Jamming Interference and Bounded

Disturbance

In what follows, we investigate the networked control

system (5) for the case where the jamming attacks satisfy

Assumption 4.1 and the disturbance is bounded. The analysis

is then extended in Section IV-B to the case where the

disturbance has finite second moments but its norm may not

be bounded by a fixed scalar.

In this paper, we consider scenarios where the norm of

the disturbance does not approach zero, and hence the state

or its moments may not converge to the origin. Therefore,

instead of exploring asymptotic stability, our goal here is to

obtain conditions under which the first moment of the state

stays bounded. To this end, let

Â(t) , l(t)A+ (1− l(t))(A+BK), t ∈ N0,

and moreover, for every t1, t2 ∈ N0 with t1 ≤ t2, let

F (t2, t1) ,

{

Â(t2), t1 = t2,

Â(t2) · · · Â(t1), t1 < t2.

For the closed-loop system (5), we have

x(t) = F (t− 1, 0)x0 +

t−2
∑

j=0

F (t− 1, j + 1)w(j)

+ w(t− 1), t ∈ N.

Therefore, for any induced norm ‖ · ‖, it follows from the

triangle inequality and the submultiplicativity property of the

induced norm that

‖x(t)‖ ≤
(

t−1
∏

i=0

‖Â(i)‖
)

‖x0‖+
t−2
∑

j=0

(

t−1
∏

i=j+1

‖Â(i)‖
)

‖w(j)‖

+ ‖w(t− 1)‖.

Here, we have ‖Â(i)‖ = l(i)‖A‖ + (1 − l(i))‖A + BK‖,

i ∈ N0. Hence, by letting

ζ1 , ‖A‖ − ‖A+BK‖, ζ0 = ‖A+BK‖, (13)
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we obtain for t ∈ N,

‖x(t)‖ ≤
(

t−1
∏

i=0

(ζ1l(i) + ζ0)
)

‖x0‖

+

t−2
∑

j=0

(

t−1
∏

i=j+1

(ζ1l(i) + ζ0)
)

‖w(j)‖+ ‖w(t− 1)‖.

(14)

By using (14), we can also obtain an upper-bound of the

Euclidean norm of the state. Specifically, by Corollary 5.4.5

of [19], there exist c1 > 0 and c2 > c1 such that

c1‖y‖ ≤ ‖y‖2 ≤ c2‖y‖, y ∈ R
n. (15)

Therefore, it follows from (14) that

‖x(t)‖2 ≤ c2
c1

(

t−1
∏

i=0

(ζ1l(i) + ζ0)
)

‖x0‖2

+
c2
c1

t−2
∑

j=0

(

t−1
∏

i=j+1

(ζ1l(i) + ζ0)
)

‖w(j)‖2

+
c2
c1

‖w(t− 1)‖2. (16)

Notice here that the particular values of c1 and c2 depend on

the choice of the vector norm that induces the matrix norm

‖ · ‖ used in (13). For example, in the case of Euclidean

norm, (16) holds with c1 = c2 = 1. On the other hand, if

‖ · ‖ in (13) is induced by the vector norm ‖x‖P ,
√
xTPx

with a positive definite matrix P ∈ R
n×n, then (16) holds

with c1 = 1/
√

λmax(P ) and c2 = 1/
√

λmin(P ).
We utilize (16) to provide bounds on the first moment

E[‖x(t)‖2] of the state. In the following result, we consider

the case where the disturbance is bounded and the jamming

attacks satisfy Assumption 4.1.

Theorem 4.1: Consider the closed-loop networked control

system (5). Suppose that the attacker’s interference power

process {v(t) ∈ [0,∞)}t∈N0
satisfies Assumption 4.1. Fur-

thermore, suppose that there exists w ≥ 0 such that

P[‖w(t)‖2 ≤ w] = 1, t ∈ N. (17)

If

(1− p̂(v̂))‖A+BK‖+ p̂(v̂)‖A‖ < 1, (18)

then there exist µ̂ ≥ 0, θ̂ ∈ (0, 1), and d̂ ≥ 0 such that

E[‖x(t)‖2] ≤ µ̂θ̂t‖x0‖2 + d̂w, t ∈ N. (19)

Theorem 4.1 shows that if jamming attacks satisfy As-

sumption 4.1 with a sufficiently small v̂ such that (18)

holds, then the first moment of the state stays bounded.

Furthermore, the upper bound given in (19) is geometrically

decreasing towards the constant d̂w, where w is an upper

bound on the Euclidean norm of disturbance vector w(t). No-

tice that the condition (18) of Theorem 4.1 and the condition

(9) utilized in the disturbance-free case in Proposition 3.1 are

in the same form, but they use different scalars v̂ and v due to

the difference of the jamming interference characterizations

in Assumptions 3.1 and 4.1. We remark that for jamming

attacks that satisfy both assumptions, we necessarily have

v ≤ v̂.

The proof of Theorem 4.1 is based on obtaining upper

bounds for the expectation of terms on the right-hand side

of (16). In this regard, the following lemmas are utilized

for deriving bounds for the terms E[
∏t−1

i=0(ζ1l(i) + ζ0)] and

E[
∑t−2

j=0(
∏t−1

i=j+1(ζ1l(i)+ζ0))]. Notice that the scalar v̂ ≥ 0
from Assumption 4.1 and the concave function p̂ satisfying

(7) are essential in the derivation of these bounds.

Lemma 4.2: Suppose that the attacker’s interference

power process {v(t) ∈ [0,∞)}t∈N0
satisfies Assumption 4.1.

Then for every α1 ≥ 0, α0 ≥ 0 that satisfy

α1p̂(v̂) + α0 < 1, (20)

there exist scalars µ ≥ 0 and θ ∈ (0, 1) such that

E[

t2−1
∏

i=t1

(α1l(i) + α0)] ≤ µθ(t2−t1), (21)

for t1, t2 ∈ N0 with t1 < t2.

Lemma 4.2 shows that under Assumption 4.1,

E[
∏t2−1

i=t1
(α1l(i) + α0)] with α1 ≥ 0, α0 ≥ 0 satisfying

(20), converges to zero at a geometric rate. By using this

lemma, we also obtain the following result.

Lemma 4.3: Suppose that the attacker’s interference

power process {v(t) ∈ [0,∞)}t∈N0
satisfies Assumption 4.1.

Then for every α1 ≥ 0, α0 ≥ 0 that satisfy (20), there exists

a scalar d ≥ 0 such that

t−2
∑

j=0

E

[

t−1
∏

i=j+1

(α1l(i) + α0)
]

≤ d, (22)

for t ∈ {2, 3, . . .}.
By using Lemmas 4.2 and 4.3, we have

E
[

t−1
∏

i=0

(ζ1l(i) + ζ0)
]

≤ µθt, (23)

t−2
∑

j=0

E
[

t−1
∏

i=j+1

(ζ1l(i) + ζ0)
]

≤ d, (24)

where µ ≥ 0, θ ∈ (0, 1), and d ≥ 0 are scalars that depend

on ζ1 and ζ0 defined in (13). We use (23) and (24) to obtain

an upper bound for the expectation of the right-hand side of

(16), which we then utilize for showing (19) in Theorem 4.1.

The details are omitted due to space limitations.

B. Stabilization Under Jamming Interference and Distur-

bance with Finite Second Moment

In the previous subsection, we considered the case where

the Euclidean norm of the disturbance is bounded at each

time almost surely by a scalar w. Next, we investigate the

scenarios where the disturbance may not be bounded by such

a scalar. Our goal is to obtain a relation between the state

and the disturbance similar to those used for establishing

noise-to-state stability in stochastic systems (see, e.g., [13],

[14]). Specifically, in the following result, we provide an
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upper bound for the first moment of the state by utilizing

the second moment of the disturbance.
Theorem 4.4: Consider the closed-loop networked control

system (5). Suppose that the attacker’s interference power

process {v(t) ∈ [0,∞)}t∈N0
satisfies Assumption 4.1. Fur-

thermore, suppose E[‖w(t)‖22] < ∞, t ∈ N0. If

(1− p̂(v̂))‖A+BK‖2 + p̂(v̂)‖A‖2 < 1, (25)

then there exist µ̂ ≥ 0, θ̂ ∈ (0, 1), and f̂ ≥ 0 such that

E[‖x(t)‖2] ≤ µ̂θ̂t‖x0‖2 + f̂ max
i∈{0,...,t−1}

(E[‖w(i)‖22])
1

2 , (26)

for t ∈ N.
Theorem 4.4 shows that if the jamming attacks satisfy

Assumption 4.1 with a sufficiently small v̂ such that (25)

holds, then the first moment of the state satisfies the bound

given in (26). The proof of this result relies on certain

upper bounds for the expectation of the terms on the right-

side of (16). In particular, we use Schwarz’s and Jensen’s

inequalities (see [20]) to obtain

E

[(

t−1
∏

i=j+1

(ζ1l(i) + α0)
)

‖w(j)‖2
]

≤
(

E
[(

t−1
∏

i=j+1

(ζ1l(i) + ζ0)
)2]

)
1

2 (

E[‖w(j)‖22]
)

1

2

and E[‖w(t− 1)‖2] ≤
(

E[‖w(t− 1)‖22]
)

1

2 . After noting that

E

[

(
∏t−1

i=j+1(ζ1l(i) + ζ0)
)2
]

= E

[

∏t−1
i=j+1(α1l(i) + α0)

]

with α1 , ζ21 + 2ζ1ζ0 and α0 , ζ20 , we show (26) by using

Lemmas 4.2 and 4.3 together with (25).
Notice that Theorem 4.4 is applicable to scenarios where

the condition (17) of Theorem 4.1 may fail to hold. In

particular, if the entries of the disturbance vector are random

variables with distributions that have infinite support, then

(17) does not hold. This is for example the case if w(t) is

normally distributed (i.e., w(t) ∼ N (m,Σ) where m ∈ R
n

and Σ ∈ R
n×n is a positive-definite matrix). In such cases,

Theorem 4.4 can be utilized. If E[‖w(t)‖22] ≤ w̃ holds for all

t ∈ N0 with a scalar w̃ ≥ 0, then it follows from (26) that

lim supt→∞ E[‖x(t)‖2] ≤ f̂ w̃
1

2 , indicating the boundedness

of expected state norm in the long run.
We remark that although Theorem 4.4 is applicable to a

wider range of scenarios in terms of the disturbance, the

condition (25) concerning the upper bound v̂ of the average

jamming attack interference power is more restrictive than

the condition (18) of Theorem 4.1. In particular, we have
(

(1 − p̂(v̂))‖A + BK‖ + p̂(v̂)‖A‖
)2

< (1 − p̂(v̂))‖A +
BK‖2 + p̂(v̂)‖A‖2 for p̂(v̂) ∈ (0, 1) indicating that (25)

implies (18), but not vice versa.

V. CONCLUSION

We investigated the networked stabilization problem over

wireless channels that face jamming attacks with time-

varying interference power. We explored the joint effects of

jamming attacks and disturbance, and obtained conditions

under which the first moment of the networked control
system state stays bounded. Our results indicate that if the

disturbance is known to be bounded, larger average jamming

interference powers can be allowed.
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