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Abstract— In this paper, we study the stability of a linear
time-invariant dynamical network with both node and edge
dynamics. It is demonstrated that at each frequency, the
phases of the eigenvalues of the loop-gain transfer function are
bounded from above (below, respectively) by the sum of the
maximal (minimal, respectively) phases of the node and edge
dynamics. Based on this property and the generalized Nyquist
stability criterion, a sufficient condition for closed-loop stability
is derived in terms of the phases of node and edge dynamics.
This serves as an interesting starting point in developing a more
general “small phase theorem”.

I. BACKGROUND

Large-scale networks consisting of dynamical nodes and
static edges have been the focus of numerous studies over
the past decades. Take for instance opinion dynamics in so-
cial networks [1], structural controllability and observability
of complex networks [2], and stability analysis in electri-
cal power networks [3]. More recently, general dynamical
networks containing both node and edge dynamics have
attracted considerable attention [4]–[8] due to increasing
awareness that edge dynamics are often of equal importance
to node dynamics in the study of complex networks. Among
others, one fundamental issue is to investigate the closed-
loop stability of such general dynamical networks.

One of the most successful stories on closed-loop stability
is the small gain theorem which can be found in many control
textbooks [9]–[11]. It appears that much less attention has
been paid to what is supposed to be a natural counterpart:
a “small phase theorem”. In the literature, there have been
some interesting initiative attempts towards such a counter-
part [12]–[14]. However, the development of a “small phase
theorem” is far from settled to the extent that how to define
the phases of a multivariable linear system remains obscure.
This leads to a series of open questions: What is a suitable
definition of phases of a matrix? What properties of the
matrix phases shall we expect? How the phases are connected
to the closed-loop stability?

The generalized Nyquist stability criterion [15] may pro-
vide a clue in understanding the connection between phases
and closed-loop stability. It says that the closed-loop system
is stable if and only if the eigenloci of the loop-gain transfer
function do not encircle the point (−1, 0). Hence, if we can
show the phases of the eigenvalues of the loop-gain transfer
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function lie in the interval (−π, π) for all frequencies, then
the closed-loop system is stable.

Inspired by the questions raised above and the generalized
Nyquist stability criterion, we study the closed-loop stability
of dynamical networks by analysing the frequency response
of the loop-gain transfer function of the network. We propose
a definition of matrix phases for a class of matrices that are
congruent to unitary matrices. It is demonstrated that at each
frequency, a majorization relation exists between the phases
of the eigenvalues of the loop-gain transfer function and the
phases of the node and edge frequency responses. Then a
sufficient condition for closed-loop stability is derived by
using the generalized Nyquist stability criterion.

II. PROBLEM FORMULATION

In this paper, we study the stability of a linear time-
invariant dynamical network with both node and edge dy-
namics. We adopt the framework proposed in [8] and con-
centrate on the case of an undirected network topology as a
starting point. In the network shown in Fig. 1,

P = diag{P1, P2, . . . , Pn},
W = diag{W1,W2, . . . ,Wm},

where Pi is a proper stable scalar transfer function rep-
resenting the dynamics of agent i, and Wk is a proper
stable scalar transfer function representing the dynamics
of edge ek. The concatenated outputs of all the agents
y(t) =

[
y1(t) y2(t) . . . yn(t)

]′
is transmitted to the

edges through a linear map represented by the matrix E′,
which is full rank and determines the information available to
each edge. Analogously, the outputs of the dynamical edges
z(t) =

[
z1(t) z2(t) . . . zm(t)

]′
are aggregated and fed

back to the agents through the matrix E. The structure of
the matrix E reflects the network topology. As a whole, the
network dynamics are described by K = EWE′.
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Fig. 1. A dynamical network
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In this paper, we denote by arg c ∈ (−π, π] the principal
value of the argument of a complex number c. For x ∈
Cn, we use arg x to denote

[
arg x1 arg x2 . . . arg xn

]′
.

Given a matrix A ∈ Cn×n, the conjugate transpose of A is
denoted by A∗, and the vector of eigenvalues of A is denoted
by λ(A) =

[
λ1(A) λ2(A) . . . λn(A)

]′
.

III. PRELIMINARIES

A. Majorization

The main result in this paper is based on a majorization
relation between the phases of the eigenvalues of the loop-
gain transfer function at each frequency and the phases of
node and edge dynamics. Here, we briefly review some basic
concepts in majorization theory. For an extensive treatment
of majorization and its applications, one can refer to [16].

For x, y ∈ Rn, we denote by x↑ and y↑ the rearranged
versions of x and y so that their elements are arranged in
a nondecreasing order. We say that x is majorized by y,
denoted by x ≺ y, if

k∑
i=1

x↑i ≥
k∑

i=1

y↑i , for k = 1, . . . , n− 1,

n∑
i=1

x↑i =

n∑
i=1

y↑i .

Majorization defines a partial order on the evenness of the
elements in two vectors when the averages of the elements
are the same. If x ≺ y, the elements of x are more even, or
less spread out, than those of y.

B. Generalized Nyquist stability criterion

There have been several generalizations of the Nyquist sta-
bility criterion to deal with multi-input multi-output systems.
One may refer to [15], [17]–[19]. Here we introduce the one
proposed in [15], which will be used for the stability analysis
of dynamical networks.

Lemma 1: Consider a proper stable transfer matrix G(s)∈
Rp×p with eigenloci1 (λi)i=1,...,p. The closed-loop system in
Fig. 2 is stable if and only if the eigenloci (λi)i=1,...,p do
not encircle the point (−1, 0).
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Fig. 2. A feedback system.

IV. MAIN RESULTS

A. Phases of a matrix

A fundamental issue we are facing is to define the phases
of a matrix. In the context of stability of dynamical network
as shown in Fig. 1, a class of matrices that are congruent to

1The eigenloci are obtained by rearrangements of the eigenvalue loci of
G(jω), ω ∈ (−∞,∞).

unitary matrices are of particular interest. For such matrices,
we propose the following definition of phases.

Definition 1: Let A = T ∗UT ∈ Cn×n, where U is a
unitary matrix and T is a nonsingular matrix. The phases of
A, denoted by argi(A), i = 1, 2, . . . , n, are defined to be the
phases of the eigenvalues of U , i.e., argi(A) = arg λi(U).

Hereinafter, we order the phases of matrix A = T ∗UT
nondecreasingly, i.e., arg1(A) ≤ arg2(A) ≤ · · · ≤ argn(A).
Denote arg(A) =

[
arg1(A) arg2(A) . . . argn(A)

]′
.

We also oder the eigenvalues of a general matrix M ∈
Cn×n with the phases nondecreasing, i.e., arg λ1(M) ≤
arg λ2(M) ≤ · · · ≤ arg λn(M).

This definition of matrix phases leads to the following nice
property which plays a significant role in stability analysis
of dynamical networks.

Theorem 1: Let A = T ∗UT ∈ Cn×n and B = R∗V R ∈
Cn×n, where T , R are nonsingular matrices and U , V are
unitary matrices. If there exist θ1, θ2 ∈ [−π, 0] such that

θ1 < arg1(B) ≤ · · · ≤ argn(B) < θ1 + π,

θ2 < arg1(A) + arg1(B) ≤ . . .
≤ argn(A) + argn(B) < θ2 + π,

then arg λ(AB) ≺ arg(A) + arg(B).

The following lemma also plays an important role in
network stability analysis.

Lemma 2 ([20]): Let A = T ∗UT ∈ Cn×n and C ∈ Cl×l

be a principal submatrix of A. If there exists θ ∈ [−π, 0]
such that θ < arg1(A) ≤ · · · ≤ argn(A) < θ+ π, then C is
congruent to another unitary matrix V and

argi(A) ≤ argi(C) ≤ argn−l+i(A) for i = 1, 2, . . . , l.

Remark 1: In the literature, there are other attempts to
define the phases of a matrix. For instance, the authors in
[20] define the phases of a matrix A as the phases of the
eigenvalues of the unitary part of A. That is, if A = PU is
the polar decomposition of A, where P is positive semidef-
inite and U is unitary, then argi(A) = arg λi(U). This
definition also possesses many properties that are analogous
to the phase of a complex number and can be defined for
any matrix. However, the majorization relation demonstrated
in Theorem 1 does not hold.

B. Stability of dynamical networks

Applying Theorem 1 and Lemma 2 to the node dynamics
P and edge dynamics W evaluated at some frequency s =
jω, we have

arg λ1(P (jω)K(jω)) ≥ arg1(P (jω)) + arg1(W (jω)),

arg λn(P (jω)K(jω)) ≤ argn(P (jω)) + argm(W (jω)).

We can see from Lemma 1, if arg λi(P (jω)K(jω)) ∈
(−π, π) for all ω ∈ R and i = 1, . . . , n, the eigenloci
of P (jω)K(jω) will never encircle (−1, 0) point and thus
the closed-loop system is stable. This can be achieved by
restricting the sum of phases of the node and edge frequency
responses to (−π, π). Then we have the following theorem
regarding the closed-loop stability of the network in Fig. 1.
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Theorem 2: If the following inequalities

argm(W (jω))− arg1(W (jω)) < π,

argn(P (jω)) + argm(W (jω))

− arg1(P (jω))− arg1(W (jω)) < π

hold for all ω ∈ R, then the closed-loop system is stable.
This theorem characterizes a set of node dynamics and a

set of edge dynamics in terms of the phases. For heteroge-
nous node dynamics and edge dynamics within the respective
sets, the closed-loop system is guaranteed to be stable even
though the node or edge dynamics may have different orders.

REFERENCES

[1] M. H. DeGroot, “Reaching a consensus,” Journal of the American
Statistical Association, vol. 69, no. 345, pp. 118–121, 1974.

[2] C.-T. Lin, “Structural controllability,” IEEE Transactions on Automatic
Control, vol. 19, no. 3, pp. 201–208, 1974.

[3] A. Araposthatis, S. Sastry, and P. Varaiya, “Analysis of power-
flow equation,” International Journal of Electrical Power & Energy
Systems, vol. 3, no. 3, pp. 115–126, 1981.

[4] S. Z. Khong, E. Lovisari, and A. Rantzer, “A unifying framework
for robust synchronization of heterogeneous networks via integral
quadratic constraints,” IEEE Transactions on Automatic Control,
vol. 61, no. 5, pp. 1297–1309, 2016.

[5] T. Nepusz and T. Vicsek, “Controlling edge dynamics in complex
networks,” Nature Physics, vol. 8, no. 7, pp. 568–573, 2012.

[6] M. Bürger, D. Zelazo, and F. Allgöwer, “Duality and network theory
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