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Abstract— This paper studies stabilizability problem with
respect to an arbitrary stability domain for strict closed additive
convex processes. The main results state necessary and sufficient
conditions in terms of the eigenstructure of the dual process.
The results presented in this paper are stronger than those
of existing in the literature in two respects: (i) they are
valid for arbitrary stability domains and (ii) they guarantee
existence of Bohl-type stable trajectories. We also demonstrate
the application of the main results by streamlining them for
linear systems subject to conic input constraints.

Index Terms— Differential inclusion (34A60), Set-valued and
variational analysis (49J53), Set-valued maps (54C60), Problems
involving relations other than differential equations (49K21)

I. INTRODUCTION

Ever since introduced by [11,12], convex processes have
been a subject of study in different contexts from different
angles. Roughly speaking, convex processes are generaliza-
tions of linear maps with the distinguishing property that
they enjoy certain closure property with respect to conic
combinations rather than linear combinations as in the case of
linear maps. The interest in convex processes mainly stems
from their fine mathematical structure as well as from the
applications they are encountered in.

One line of research on convex processes focuses on their
mathematical properties from various angles with an eye
towards applications in optimization and control. Example
of such work include studies of normed convex processes in
[4], norm duality between convex processes and their duals
in [5], and estimation of eigenvalue sets in [1].

Another line of research more akin to what this paper
studies focuses on differential inclusions ([2,9,15]) with
convex processes with an eye towards systems and control
theory. Such differential inclusions arise sometimes due
to the intrinsic conic constraints (see e.g. [10, Ex. 2.1])
or sometimes as approximations of set-valued maps (see
e.g. [15, Sec. 2.2] or [6]). Examples of work this line of
research include controllability of strict convex processes
in the seminal paper [3], controllability of nonstrict convex
processes in [13], and Lyapunov theory in [8].

In this paper we study yet another system-theoretic prob-
lem for differential inclusions with convex processes: sta-
bilizability with respect to a given stability domain. From
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application point of view, one is often interested in not
only the ordinary stability but also with the stability with
a prescribed rate of convergence and/or the stability by
avoiding certain frequencies. Such practical scenarios are the
foremost motivation for the current paper. At the same time,
the study of stabilizability with respect to a given stability
domain sheds a stronger light on the spectral structure of
convex procesess and hence is of interest in its own.

Stabilizability problem for differential inclusions with con-
vex processes have already been addressed in the literature.
For instance, the papers [7,14] addressed the stabilizability1

problem and presented spectral conditions for a given convex
process to be stabilizable. In particular, [14] (see also [15,
Sec. 8.3]) provides necessary and sufficient conditions for
exponential stabilizability of strict convex processes whereas
[7] presents a set of necessary and a set of sufficient
conditions for the nonstrict case. In addition, [7] provides
interesting results on the eigenstructure of convex processes.

Being highly inspired by the earlier work [3,7,14], this
paper deals with differential inclusions based on strict ad-
ditive convex processes and investigates the stabilizability
problem with respect to a given stability domain. This
problem significantly differs from the ordinary stabilizability
problem studied in [7,14] and requires a different approach.
Still, the necessary and sufficient conditions that are stated
in the main results very much resemble those presented in
[14]. However, the conditions we present are stronger than
those of [14] in two respects for additive convex processes.
They are valid for arbitrary stability domains as well as they
guarantee stabilizability within Bohl-type trajectories.

The organization of the paper is as follows. In Section II,
we recall basic definitions and results of convex processes.
This will be followed by the introduction of the stabiliz-
ability problem with respect to a given stability domain in
Section III. The main results will be presented in Section IV.
These results are applied to linear systems with conic input
constraints in Section V. Finally, the paper closes with
conclusions in Section VI.

II. PRELIMINARIES

Throughout the paper we use standard mathematical no-
tation. In what follows we quickly review some notions and
results for the sake of completeness.

1These papers use the terminology of ‘weakly asymptotically stable’ for
what we call stabilizability in this paper.
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A. Cones and polar cones

We say that a set C ⊆ Rn is a cone if αx ∈ C whenever
x ∈ C and α > 0. For a nonempty set S, we define its polar
cone by

S− := {y | xT y 6 0 for all x ∈ S}.

Clearly, S− is always a closed convex cone.

B. Convex processes

Let H : Rr ⇒ Rh be a set-valued mapping, that is
H(x) ⊆ Rh is a set for all x ∈ Rr. The domain and graph
of H are defined, respectively, by

domH = {x ∈ Rr | H(x) 6= ∅}
grH = {(x, y) ∈ Rr × Rh | y ∈ H(x)}.

The inverse H−1 of H is the set-valued map from Rh to Rr
defined by

(η, ξ) ∈ gr(H−1) ⇐⇒ (ξ, η) ∈ gr(H).

We say that a set-valued mapping H : Rr ⇒ Rh is
• strict if domH = Rr,
• convex if its graph is convex,
• closed if its graph is closed,
• a process if its graph is a cone,

Given a set-valued mapping H : Rr ⇒ Rr, the dual convex
process H− : Rr ⇒ Rr is defined by

(q, p) ∈ grH− ⇐⇒ qT y 6 pTx for all (x, y) ∈ grH.

An immediate consequence of this definition is the following
relationship between the graphs of H and H−:

grH− =

[
0r×r Ir
−Ir 0r×r

]
(grH)−. (1)

Clearly, H− is a closed convex process for every set-valued
mapping H .

In this paper, we are particularly interested in additive
convex processes.

Definition 1 [16] A convex process H : Rr ⇒ Rr is said
to be an additive process if for any x1, x2 ∈ domH

H(x1 + x2) = H(x1) +H(x2) (2)

Throughout the paper, we are interested in convex pro-
cesses. A detailed treatment of convex processes and their
duals can be found in [15, Sec. 2.6]. To be self-contained,
we recall the following facts. If H is a strict closed convex
process, then it follows from [15, Lem. 2.11 and Thm. 2.12]
that domH− =

(
H(0)

)−
and hence domH− is a closed

convex cone. As such, − domH− ∩domH− is a subspace.
Moreover, the restriction of H− to the subspace −domH−∩
domH− is a linear map [15, Thm. 2.12]. We denote this
linear map by L(H−). Let J(H−) ⊆ −domH−∩domH−

be the largest subspace that is invariant under L(H−). We
denote the restriction of L(H−) to J(H−) by LJ(H−).

We say that a real number λ is an eigenvalue of the set
valued mapping H : Rn ⇒ Rn, if there exists a nonzero

vector x ∈ Rn such that λx ∈ H(x). Such a vector
x is called an eigenvector of H corresponding to λ. The
spectrum, that is the set of eigenvalues, of H will be denoted
by σ(H).

C. Bohl functions

A function x : R → Rn is said to be a Bohl function if
there exist a monic polynomial p(ζ) = ζr+pr−1ζ

r−1+· · ·+
p1ζ + p0 such that

p(
d

dt
)x :=

drx

dtr
+ pr−1

dr−1x

dtr−1
+ p1

dx

dt
+ p0x = 0. (3)

We denote the set of all Bohl functions from R to Rn by
Bn. If (3) holds for a Bohl function x ∈ C∞, we call p
an annihilator polynomial of x. Every Bohl function x has
infinitely many annihilator polynomials. Nevertheless, there
is a unique monic polynomial, called minimal polynomial of
x, such that it divides any other annihilator polynomial. The
spectrum of x is defined as the set of the roots of its minimal
polynomial and will be denoted by σ(x).

III. Cg -STABILIZABILITY PROBLEM

Consider the differential inclusion

ẋ(t) ∈ H
(
x(t)

)
(4)

where H : Rn ⇒ Rn is a convex process. Let T > 0
and AC = AC([0, T ],Rn) denote the set of absolutely
continuous functions defined from [0, T ] to Rn. We define
the set of all trajectories satisfying (4) as the behavior of H:

BT (H) := {x ∈AC | x satisfies (4)

for almost all t > 0}.

Next, we will define various fundamental sets for a given
differential inclusion of the form (4). The set of feasible
states is defined by

XT (H) := {ξ ∈ Rn | ∃x ∈ BT (H) with x(0) = ξ}. (5)

Since H is a convex process, XT (H) is always a convex
cone. In general, it is not closed even if H is closed. If H
is a strict closed convex process, then

XT (H) = Rn (6)

for all T > 0 in view of [15, Cor. 4.1 and Thm. 2.12].
A subset Cg of C is said to be stability domain if it is

closed under complex conjugation and Cg ∩R is nonempty.
The set of Cg-stabilizable states is defined by

S(H;Cg) := {ξ ∈ Rn | ∃x ∈ B∞(H) ∩ Bn
such that x(0) = ξ and σ(x) ⊆ Cg}.

Definition 2 We say that the differential inclusion (4) (or
equivalently H) is Cg-stabilizable if X∞(H) ⊆ S(H;Cg),
i.e. if all feasible states are Cg-stabilizable.

From (6), it is clear that a strict convex process H is
stabilizable if and only if S(H;Cg) = Rn.
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The goal of this paper is to present necessary and sufficient
conditions for Cg-stabilizability of strict closed convex pro-
cesses. Before doing so, we summarize the existing results
on similar problems.

Stabilizability of strict convex processes have already been
studied in the literature. In [15], Smirnov defines a strict
closed convex process H as weakly asymptotically stable if
S(H) = Rn where

S(H) := {ξ ∈ Rn | ∃x ∈ B∞(H)

such that x(0) = ξ and lim
t→∞

x(t) = 0}.

To state the main result (Thm. 8.10) of [15], we need a bit of
nomenclature. A vector ξ ∈ Rn is said to be an exponentially
stabilizable state of H if there exists x ∈ B∞(H) with
x(0) = ξ such that for some positive numbers a and γ

|x(t)| 6 aeγt|ξ| for all t > 0

where | · | denotes the Euclidean norm on Rn. The set of all
exponentially stabilizable states of H is denoted by Sexp(H).
Finally, let

C− := {z ∈ C | Re(z) < 0}

and
C+ := C \ C− = {z ∈ C | Re(z) > 0}.

Necessary and sufficient conditions for H being weakly
asymptotically stable are stated next.

Theorem 3 [15, Lem. 8.4 and Thm. 8.10] Let H : Rn ⇒
Rn be a strict closed convex process. Then, the following
statements are equivalent:

1) H is weakly asymptotically stable, that is S(H) = Rn.
2) Sexp(H) = Rn.
3) σ

(
LJ(H−)

)
∩ C+ = ∅ and σ(H−) ∩ C+ ∩ R = ∅.

The Cg-stabilizability problem we want to address in
this paper differs from that of what Smirnov calls weak
asymptotical stability in two ways. To begin with, we work
with an arbitrary stability domain whereas [15, Thm. 8.10]
deals with C− in a sense. Also, we require the trajectories not
only to be stable but also to be Bohl functions whereas [15,
Thm. 8.10] deals with exponentially stabilizable trajectories.

IV. MAIN RESULTS

Let Cg be a stability domain. Define

Cb = C \ Cg
and

Rb = {λ ∈ R | λ > µ for all µ ∈ Cg ∩ R}.

The following theorem is the main result of this paper.

Theorem 4 Let H : Rn ⇒ Rn be a strict closed additive
convex process and Cg be a stability domain such that Rb
is closed. Then, the following statements are equivalent:

1) H is weakly asymptotically stable, that is S(H;Cg) =
Rn.

2) σ
(
LJ(H−)

)
∩ Cb = ∅ and σ(H−) ∩ Rb = ∅.

The proof of this theorem differs from [15, Thm. 8.10] in
a fundamental way and cannot be obtained by following the
same ideas/tools. Two main ingredients that do not appear
in the proof of [15, Thm. 8.10] are the invariance properties
of the set S(H;Cg) and the use of results from asymptotic
behavior of almost periodic functions.

Remark 5 In the special case of Cg = C−. We have
Cb = C+ and Rb = C+ ∩ R. As such, the condition 3
in Theorem 3 and the condition 2 in Theorem 4 coincide.
However, the result of Theorem 4 is still slightly stronger
(for additive convex processes) as it proves S(H;Cg) = Rn
whereas Theorem 3 proves only S(H) = Sexp(H) = Rn.

V. LINEAR SYSTEMS WITH CONIC INPUT CONSTRAINTS

As an application of Theorem 4, consider the continuous-
time, linear and time-invariant system

ẋ(t) = Ax(t) +Bu(t) (7a)

where the state x is an n-vector, the input u is an m-vector,
A ∈ Rn×n, and B ∈ Rn×m. We assume that B is of full
column rank. Suppose that the inputs take values in a closed
convex cone U ⊆ Rm, that is

u(t) ∈ U (7b)

for all t > 0. We assume that the set U has nonempty
interior. The constrained system (7) can be described by the
differential inclusion:

ẋ(t) ∈ F
(
x(t)

)
where

F (x) := {Ax+Bu | u ∈ U}.

Note that

grF =

[
In 0n×m
A B

]
(Rn × U).

Clearly, grF is a convex cone and domF = Rn. Since
B is full column rank and U is a closed convex cone, it
follows from [12, Thm. 9.1] both BU and grF are closed
convex cones. As such, F is a strict closed convex process.
In addition, it follows from [16, Prop. 2] that F is additive.

From (1) and [12, Cor. 16.3.2], we have that

gr(F−) =

[
0n×n In
−In 0n×n

]
(grF )−

=

[
0n×n In
−In 0n×n

] [
In 0n×m
A B

]−T
({0} × U−)

=

[
AT −In
BT 0m×n

]−1
({0} × U−)

where M−1S denotes the inverse image of S under M , that
is M−1S = {ξ |Mξ ∈ S}. Consequently, we obtain

F−(q) = {AT q | BT q ∈ U−}.

Note that domL(F−) = −F (0)−∩F (0)− = −B−TU−∩
B−TU− = B−T (−U−∩U−) = B−T (U−U)− = {0} since

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

268



U has nonempty interior. This means that domL(F−) =
kerBT , L(F−)(ξ) = {AT ξ | ξ ∈ kerBT }, and
J(F−) = 〈kerBT | AT 〉 := kerBT ∩ A−1 kerBT ∩ · · · ∩
A−n+1 kerBT .

Therefore, applying Theorem 4 we can obtain the follow-
ing à la Hautus test for Cg-stabilizability of the system (7).

Corollary 6 Consider a linear system with conic input con-
straints of the form (7). Assume that B is of full column rank,
U is a closed convex cone with nonempty interior, and Cg is
a stability domain such that Rb is closed. Then, the system
(7) is Cg-stabilizable if and only the following implications
hold:

1) z ∈ Cn, λ ∈ Cb, AT z = λz, BT z = 0 =⇒ z = 0,
2) z ∈ Rn, λ ∈ Rb, AT z = λz, BT z ∈ U− =⇒ z = 0.

VI. CONCLUSIONS

This paper provided necessary and sufficient conditions
for the stabilizability problem of strict closed additive convex
processes with respect to a prespecified stability domain. In
addition, we demonstrated the main results by applying them
to linear systems with conic input constraints. For additive
processes, the results we presented extends the earlier results
on stabilizability in two ways as they apply to arbitrary sta-
bility domains and to Bohl-type trajectories. Further research
directions are dropping the strictness assumption in order to
be able to deal with state constraints.
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