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I. GENERAL DISCUSSION

Diffusion representations have long been utilized in the
study of Hamilton-Jacobi partial differential equations (HJ
PDEs), cf. [5], [10], [13] among many others. The bulk
of such results apply to real-valued HJ PDEs, that is, to
HJ PDEs where the coefficients and solutions are real-
valued. The Schrödinger equation is complex-valued, al-
though generally defined over a real-valued space domain,
which presents difficulties for the development of stochastic
control representations. There is substantial existing work
on the relation of stochastic processes to the Schrödinger
equation, cf. [11], [15], [25], [26], [27]. The approach
considered here is in the spirit of the Feynman path-integral
interpretation [6], [7], where in particular, one looks at a
certain action-based functional, S, where ψ = exp{ i~S} and
~ denotes Planck’s constant. One seeks a representation for
S in the form of a value function for a stochastic control
problem where the action functional is the payoff, cf. [2], [3],
[6], [7], [8], [14], [17]. We note that this latter approach is
also sometimes employed in analysis of semiclassical limits,
cf. [1], [3], [8], [14].

An issue that arises in such approaches is that control has
traditionally considered classical optimization (minimization
or maximization) of some payoff. Implicit in that is an
assumption that the payoff is real valued. In [4], [22], [24],
the authors consider a least-action approach to obtaining
fundamental solutions to two-point boundary value problems
(TPBVPs) for conservative dynamical systems. However,
that formulation, which was in terms of minimization of the
action, induced duration limits on the problems which could
be addressed, where those limits were also similar to duration
limits present in existing results on the Schrödinger equation
representation in terms of action, cf. [2], [3], [8]. We note
that the duration limits are related to a loss of convexity of
the payoff as the time horizon is extended. While in [4],
[22], [24], the least-action principle was applied, the more
generally applicable form is the stationary-action principle,
which coincides with the least-action principle when the
action functional is convex and coercive. Consequently and
more recently, the notion of “staticization” was introduced
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for such TPBVPs, in which case one seeks a stationary point
of the action over the space of control inputs. The extension
to stationarity removes the restriction on problem duration.
This yields a dynamic program which takes the form of
an HJ PDE in the case of continuous-time/continuous-space
processes, where these were studied in the context of deter-
ministic dynamics in [20], [21], [23].

As staticization seeks points where the derivative of a
functional is zero, as opposed to optimization of the func-
tional, it is easily extended to the case of complex-valued
systems. The extension to stochastic dynamics is easily made
as well. Also, as staticization does not require the imposition
of duration limits on the problems, one can apply this
new tool to the stochastic-control representation problem for
the dequantized Schrödinger equation, and that is the topic
considered herein.

In order to clarify the details in the above, we recall the
Schrödinger initial value problem, given as

0 = i~ψt(s, y) + ~2

2m∆ψ(s, y)− ψ(s, y)V (y), (s, y) ∈ D,
(1)

ψ(0, y) = ψ0(y), y ∈ Rn, (2)

where m ∈ (0,∞) denotes mass, initial condition ψ0 takes
values in C, V denotes a known potential function, ∆
denotes the Laplacian with respect to the space (second)
variable, D .

= (0, t) × Rn, and subscript t will denote
the derivative with respect to the time variable (the first
argument of ψ here) regardless of the symbol being used
for time in the argument list. We also let D .

= (0, t] × Rn.
We consider what is sometimes referred to as the Maslov
dequantization of the solution of the Schrödinger equation
(cf. [16]), which as noted above, is S : D → C given
by ψ(s, y) = exp{ i~S(s, y)}. The Maslov dequantization
is clearly similar to the logarithmic transform (cf. [9]), but
with a modification induced through multiplication by an
imaginary constant. Note that ψt = i

~ψSt, ψy = i
~ψSy

and ∆ψ = i
~ψ∆S − 1

~2ψ|Sy|2c where for x ∈ Cn, |x|2c
.
=∑n

j=1 x
2
j . (We remark that notation | · |2c is not intended to

indicate a squared norm; the range is complex.) We find that
(1)–(2) become

0 = −St(s, y) +
i~
2m

∆S(s, y) +H(y, Sy(s, y)), (3)

S(0, y) = φ(y), y ∈ Rn, (4)
where H : Rn × Cn → C is the Hamiltonian given by

H(y, p) = −
[

1
2m |p|

2
c + V (y)

]
= stat
u0∈Cn

{
(u0)T p+ m

2 |u
0|2c − V (y)

}
, (5)
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stat will be defined in the next section, and throughout,
superscript T denotes transpose. We look for solutions in
the space

S .
= {S : D → C |S ∈ C1,2

p (D) ∩ C(D)}, (6)

where C1,2
p denotes the space of functions which are con-

tinuously differentiable once in time and twice in space,
and which satisfy a polynomial-growth bound. We will
find it helpful to reverse the time variable, and hence we
look instead, and equivalently, at the Hamilton-Jacobi partial
differential equation (HJ PDE) problem given by

0 = St(s, y) +
i~
2m

∆S(s, y) +H(y, Sy(s, y)), (s, y) ∈ D,
(7)

S(t, y) = φ(y), y ∈ Rn. (8)

Working mainly with this last form, we will fix t ∈ (0,∞),
and allow s to vary in (0, t].

Recall that in semiclassical limit analysis, one views ~ as
a small parameter, and examines the limit as ~ ↓ 0. Applying
this in (7)–(8) yields an HJ PDE problem of the form

0 = St(s, y) +H(y, Sy(s, y)), (s, y) ∈ D, (9)
S(t, y) = φ(y), y ∈ Rn. (10)

Recalling the above-noted recent work on least-action and
stationary-action formulations of certain TPBVPs [4], [20],
[22], [24], [21], [23], it was found that the associated
HJ PDEs for such problems also take the form (9)–(10).
This was the original motivation for the effort here, where
we develop a stationary-action based representation for the
solution of (7)–(8) (and consequently (1)–(2)). Due to the
complex multiplier on the Laplacian, this representation is
in terms of a stationary-action stochastic control problem
with a complex-valued diffusion coefficient.

II. STATIONARITY-BASED REPRESENTATION

The use of stationarity rather than optimization allows for
the extension of the stochastic representation to arbitrary
duration problems. The efforts to date have assumed a
smooth potential that may be extended to a holomorphic
potential over Cn [18], [19]. This precludes the Coulomb
potential. In a parallel effort on the application of stationary
action to conservative dynamics, specifically including the
n-body problem, a staticization-based representation for the
gravitational potential proved to be of critical importance
[22], [23], [24]. Here, we will obtain a staticization-based
representation for an extension of the Coulomb potential to
Cn.

In order to indicate this representation, we first need to
define the staticization operator, [20], [21]. Suppose (U , | · |)
is a generic normed vector space with G ⊆ U , and suppose
F : G → R. We say v̄ ∈ argstat{F (v) | v ∈ G} if v̄ ∈ G
and either

lim sup
v→v̄,v∈G\{v̄}

|F (v)− F (v̄)|/|v − v̄| = 0,

or there exists δ > 0 such that G ∩ Bδ(v̄) = {v̄}. If
argstat{F (v) | v ∈ G} 6= ∅, we define the possibly set-
valued stats operation by

stats
v∈G

F (v)
.
=
{
F (v̄)

∣∣ v̄ ∈ argstat{F (v) | v ∈ G}
}
.

If argstat{F (v) | v ∈ G} = ∅, statsv∈G F (v) is undefined.
Where applicable, we are also interested in a single-valued
stat operation (note the absence of superscript s). In particu-
lar, if there exists a ∈ R such that statsv∈G F (v) = {a}, then
statv∈G F (v)

.
= a; otherwise, statv∈G F (v) is undefined.

Note that in the case where U is a Hilbert space, G is
open, and F : G → R is Fréchet differentiable at v̄ ∈ G with
derivative denoted by Fv(v̄), v̄ ∈ argstat{F (y) | y ∈ G} if
and only if Fv(v̄) = 0.

With the staticization operator in hand, we may indicate
the staticization-based representation for the extension of
the Coulomb potential. More specifically, for x ∈ Cn, this
representation is given by

−V (x) = exp
{−1

2 log
(
|x|2c
)}

= ( 3
2 )3/2 stat

α∈AR

{
α− α3|x|2c

2

}
,

where

AR .
=
{
α = r[cos(θ) + i sin(θ)] ∈ C

∣∣ r ≥ 0, θ ∈
(−π

2 , π2
)}
.

In the simple one-dimensional case, the resulting function
on C has a branch cut along the negative imaginary axis,
and this generalizes to the higher-dimensional case in the
natural way. Recall that the observable portion of the solution
lies entirely on the real domain. This representation for the
potential results in a diffusion representation for the solution
of the Schrödinger equation that takes the form of an iterated
staticization operator. In the gravitational case, a reordering
of these operators on short time-horizons plays a critical
role in generating fundamental solutions. The extension to
the Coulomb potential and Schrödinger equation will be
explored here.
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