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Abstract— This paper deals with optimizing a transceiver,
which consists of a linear time invariant (LTI) matrix filter at
the transmitter and a generalized (nonlinear) decision feedback
(DF) receiver, for single-carrier data transmission over multi-
input multi-output (MIMO) inter-symbol interference (ISI)
channels. Considering a spatial multiplexing approach for
which multiple scalar substreams are transmitted simultane-
ously, we adopt some cost function f0({MSEi}) to measure
the overall system performance, where MSEi’s are the mean-
squared errors (MSE) of the unquantized estimates at the
receiver. Based on majorization theory and the generalized
triangular decomposition (GTD), we derive the optimum DF
based transceiver which minimizes f0({MSEi}) subject to the
total input power constraint. It is proven that for any cost
function f0 the optimum transmitter is of the same special
structure and hence the original complicated matrix optimiza-
tion problem can be significantly simplified to a problem with
scalar variables. Furthermore, if the cost function is specialized
to the cases where the composite function f0 ◦ exp is Schur-
convex, then the optimum nonlinear transceiver turns out to be
a generalization of the uniform channel decomposition (UCD)
scheme; when f0◦exp is Schur-concave, the optimum nonlinear
design degenerates to diagonal transmission, which converts a
MIMO ISI channel into multiple decoupled SISO ISI channels.

Index Terms— MIMO transceiver optimization, majorization
theory, Schur-convex, matrix spectral factorization.

I. INTRODUCTION

In digital communications, the channel state information
(CSI) can often be made available to the transmitter (CSIT)
either through feedback or using the channel reciprocity
when time division duplex (TDD) is used. Using full CSI,
one may jointly optimize the transmitter and receiver pair
for high rate and reliable communication. Much research
effort has been placed on mulit-input multi-output (MIMO)
transceiver designs since the late 1990s [1][2][3]. Using
the majorization theory and the convex optimization theory
[4], the authors of [2] established a unifying framework
which encompasses the existing linear transceiver designs.
A different paradigm of nonlinear transceiver designs was
developed based on matrix decomposition algorithms [5][6]
and from a channel decomposition perspective [7][8][9].
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The nonlinear designs employ a linear transmitter with a
(nonlinear) decision feedback (DF) receiver [10]. The de-
signs of the linear and nonlinear transceivers are unified
using majorization theory in [11] . Due to the popularity
of the orthogonal frequency division modulation (OFDM)
technology, which divides an ISI (frequency elective) channel
into multiple ISI-free (frequency flat) channel, the endeavors
of MIMO transceiver design focus mostly on the ISI-free
channels.

In this paper, we consider the transceiver optimization
problem for single-carrier data transmission over MIMO
ISI channels, where multiple independent SISO substreams
are spatially multiplexed and transmitted but without using
OFDM. The quality of the substreams is measured by the
MSEs of their respective estimates at the receiver side. We
establish a theoretical framework of jointly optimizing the
transceiver, which consists of a linear time invariant (LTI)
matrix filter at the transmitter and a generalized (nonlinear)
decision feedback equalizer (DFE) [10] at the receiver,
according to some cost function f0({MSEi}) subject to the
total input power constraint. We first show that for any
cost function f0 which is increasing in each argument, the
optimum DF receiver must be the minimum mean squared
error DFE (MMSE-DFE). Using the generalized triangular
decomposition (GTD) [6] and majorization theory [4], we
further prove that for any cost function f0 the optimum
transmitter is of the same special structure. Based on this
observation, the original complicated matrix optimization
problem can be greatly simplified to an optimization problem
with scalar-valued variables. Moreover, if the cost function
is such that the composite function f0 ◦exp is Schur-convex,
then the optimum nonlinear transceiver design turns out to
be a generalization of the uniform channel decomposition
(UCD) scheme proposed in [7]. On the other hand, when
f0 ◦exp is Schur-concave, the optimum nonlinear design de-
generates to diagonal transmission, which converts a MIMO
ISI channel into multiple decoupled SISO ISI channels.

II. TRANSCEIVER ARCHITECTURE AND PROBLEM
FORMULATION

Consider a MIMO ISI channel with Mt transmit and Mr

receive antennas. Assuming pulse shaping filter and Nyquist
sampling, the received sampled baseband data are

yt =

∞∑
k=0

Hkst−k + nt, t ∈ Z (1)

where {yt} is the received Mr-dimensional vector sequence,
{st} is the transmitted Mt-dimensional vector sequence
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which is assumed to be stationary and have the average
power

PT = E[‖st‖2]. (2)

Without loss of generality, {nt} is assumed to be a stationary
vector Gaussian process white in both spatial and temporal
domain, i.e., nt ∼ N(0, IMr

) and E[ntn∗t−n] = δ(n)I,
where (·)∗ is the conjugate transpose, and δ(n) is the
Kronecker delta. The channel response denoted by the matrix
sequence {Hk} is known to both the transmitter and receiver
and remains fixed within a reasonably long time period.

Using the D-transform

H(D) =

∞∑
k=0

HkD
k (3)

and regarding D as the unit delay operator, i.e., Dkst =
st−k, we can represent (1) by

yt = H(D)st + nt, t ∈ Z. (4)

A. Transceiver Architecture

This paper deals with the transceiver architecture consist-
ing of a linear transmitter and a DFE as illustrated in Figure
1. The transmitted sequence {st} is obtained by transforming
the L-dimensional information sequence {xt} using a causal
LTI matrix filter:

st =

∞∑
k=0

Pkxt−k = P(D)xt, (5)

where Pk ∈ CMt×L ∀k, P(D) is similarly defined as
H(D) in (3) and the L entries of xt are the L independent
substreams at time t. We shall see later that the major
function of P(D) is to shape the power spectrum of the input
signal in both spatial and frequency domain. Substituting (5)
into (4), we have the received signal

yt = H(D)P(D)xt + nt, t ∈ Z. (6)

We assume that {xt} is a stationary vector random process
with auto-correlation function E[xtx∗t−n] = Iδ(n). Hence

PT = E‖st‖2 =

∞∑
k=0

Tr(PkP
∗
k)

=

∫ 1

0

Tr(P(ej2πf )P∗(ej2πf ))df, (7)

where the last equality is due to the generalized Paseval’s
identity. Here we emphasize that

P∗(ej2πf ) , [P(ej2πf )]∗ =
∞∑
k=0

P∗ke
−j2πfk. (8)

At the receiver side, we apply the DFE to the received
data vector sequence {yt} to recover the information vector
sequence {xt}. The DFE consists of a feed-forward filter
(FFF), which is an anti-causal LTI MIMO system with D-
transform W∗(D) =

∑0
i=−∞W∗

tD
i, a feed-backward filter

(FBF), which is a causal LTI system B(D) =
∑∞
i=0 BiD

i,
and a (nonlinear) quantizer Q[·] which maps the analog

decision feedback equalizer

L

Q[·]
L L

+

−

xt

nt

Mr Mr

yt
x̂t x̃t

L×Mr

Mt

Mt × L Mr ×Mt

P(D) H(D) W∗(D)

B(D)

Fig. 1. Scheme of a MIMO Communication system with decision feedback
equalizer (DFE) receiver

estimates onto the closest constellation points [12]. As the
input into the detector, the analog estimate of xt is

x̂t =W∗(D)yt − B(D)x̃t. (9)

Denote xi,t as the ith entry of xt. The DFE detects signals
successively in the ordering:

{. . . , xL,t−1 → xL−1,t−1 → . . .→ x1,t−1

→ xL,t → xL−1,t → . . .}, (10)

which is a zig-zag path in the spatial-temporal domain.
Corresponding to this detection ordering, B0, the leading
matrix of the series B(D), should be a strictly upper tri-
angular matrix. Invoking the usual simplifying assumption
that the quantizer gives correct estimates of the information
sequence, i.e., x̃t = xt, we obtain that

x̂t = [W∗(D)H(D)P(D)− B(D)]xt +W∗(D)nt, (11)

and the error vector is

et , x̂t − xt = F(D)xt +W∗(D)nt, (12)

where F(D) = W∗(D)H(D)P(D) − B(D) − I. The D-
transform of the autocorrelation sequence of et is [recall
that E[ntn∗t−n] = E[xtx∗t−n] = Iδ(n)]

E(D) = F(D)F∗(D−1) +W∗(D)W(D−1), (13)

where F∗(D−1) , [F(D−∗)]∗ =
∑∞
i=0 F

∗
i D
−i. By the

Wiener-Khinchin Theorem, the MSE matrix is

E , E[ete∗t ] =
∫ 1

0

E(ej2πf )df, (14)

and the MSE of the ith substream is

MSEi , [E]ii for 1 ≤ i ≤ L, (15)

where [A]ij stands for the (i, j)th entry of A. Clearly, the
MSEs depend on the transmitter P(D) and the DFE W(D)
and B(D).

B. Problem Formulation

We study the problem of jointly optimizing the MIMO
transmitter and receiver by some global cost function of the
MSEs subject to the input power constraint. This problem
was studied for linear MIMO transceiver designs in the
scenario of ISI-free channel [2]. Here we consider the
DF based nonlinear transceiver design in the more general
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MIMO-ISI channel. The nonlinear DF design optimization
can be represented by the following generic form:

minimize
P(D),W(D),B(D)

f0({MSEi})

subject to
∫ 1

0
Tr(P(ej2πf )P∗(ej2πf ))df ≤ P0,

(16)
where the cost function f0({MSEi}) is increasing in
each argument and is chosen based on some criterion
of practical significance. For example, the cost function
may include but not be limited to (i) the sum of MSEs
(f0({MSEi}) =

∑L
i=1 MSEi), (ii) the weighted sum of the

MSEs (f0({MSEi}) =
∑L
i=1 MSEi), (iii) the product of the

MSEs f0({MSEi}) =
∏L
i=1 MSEi, and (iv) the maximal

MSE (f0({MSEi}) = max1≤i≤LMSEi). The paper [13]
considered the cost function (i) and (iii).1 Therefore, (16)
includes the problems of [13] as special cases. Moreover,
even for the cost functions (i) and (iii), we can obtain better
transceiver designs than those obtained in [13] due to the
GTD algorithm[6], as we shall discuss later.

C. Optimal Receiver

To solve the seemingly complicated optimization problem
(16), we first optimize the receiver, i.e., the FFF W(D) and
the FBF B(D) as functions of the transmitter P(D). This
result is summarized in the following theorem.

Theorem 2.1: Let

P∗(D−1)H∗(D−1)H(D)P(D) + I = R∗(D−1)R(D).
(17)

be the matrix spectral factorization where R(D) =∑∞
n=0 RnD

n and R0 is upper triangular. Denote DR0 the
diagonal matrix with the same diagonal as R0. For any FFF
and FBF pair {W(D),B(D)}, the MSEs

MSEi ≥ [D−2R0
]ii, 1 ≤ i ≤ L, (18)

where equality holds if and only if

W(D) = H(D−1)P(D−1)[R(D−1)]−1D−1R0
,

B(D) = D−1R0
R(D)− I, (19)

respectively. Moreover, if the equality in (18) is achieved,
the MSE matrix E = D−2R0

is diagonal.
Proof: The derivation is rather standard and thus is

omitted.
It is important to note that using the DFE given in (19)

the minimum MSEs are achieved simultaneously without
incurring tradeoffs among them. Such a DFE is called the
MMSE-DFE [12]. According to this theorem, for any cost
function f0({MSEi}) which is increasing in each argument,
the optimum receiver must be the MMSE-DFE. With this
observation, the MIMO transceiver optimization problem is

1In [13], the considered cost function is the determinant |E|. However,
we shall see soon that E is diagonal if the MMSE-DFE is used. Hence
|E| = ∏L

i=1 MSEi.

significantly simplified:

minimize
P(D)

f0
({

[R0]
−2
ii

})
subject to P∗(D−1)H∗(D−1)H(D)P(D) + I

= R∗(D−1)R(D)
R(D) =

∑∞
i=0 RiD

i∫ 1

0
Tr(P(ej2πf )P∗(e−j2πf ))df ≤ P0.

(20)

Using the MMSE-DFE, the output signal-to-inference-
noise ratios (SINR) of the substreams is related to the MSEs
by [10]

SINRi =
1

MSEi
− 1. (21)

Suppose that the transmitted data substreams are Gaussian
codes. Then the L substreams effectively pass through L
scalar subchannels with mutual information

Ri = log(1+SINRi) = − logMSEi = log[R0]
2
ii, 1 ≤ i ≤ L.

(22)
The MMSE-DFE is information lossless. That is, the sum of
the mutual information is

L∑
i=1

Ri = − log

L∏
i=1

MSEi = log

L∏
i=1

[R0]
2
ii (23)

=

∫ 1

0

log
∣∣I +H(ej2πf )P(ej2πf )P∗(ej2πf )H∗(ej2πf )∣∣ df.

(24)

where the right hand side is the mutual information of the
MIMO ISI channel.

III. TRANSMITTER OPTIMIZATION FOR ISI CHANNEL

In this section, we derive the optimum transmitter accord-
ing to (20).

A. General Cost Function

Two major hurdles complicate the problem (20): (i) there
is no analytical expression for the diagonal of R0 in terms
of the transmitter filter P(D), and (ii) it is a variational
optimization problem as the variable to optimize is a function
rather than a finite dimensional vector. However, based on
majorization theory and the generalized triangular decompo-
sition (GTD) [6], we circumvent the two hurdles and show
that (20) can be solved in a rather simple way. To this end,
we first introduce a lemma with respect to the diagonal of
R0. The full proof will be included in the journal version of
the paper, and is omitted here due to the space limit.

Lemma 3.1: For the matrix spectral factorization (17), the
diagonal of R0, the leading matrix of R(D), must satisfy

([R0]
2
11, . . . , [R0]

2
LL)

≺×
{
exp

(∫ 1

0

log
(
1 + σ2

HP,i(e
j2πf )

)
df

)}L
i=1

(25)

where σHP,i(e
j2πf ) is the ith largest singular value of

H(ej2πf )P(ej2πf ).
Based on Lemma 3.1, we can prove the following theorem

of more general interest.
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Lemma 3.1 is only one-directional. That is, Lemma 3.1
does not imply that the squared diagonal of R0 can be any
point in the set{

x ∈ RL+ : x ≺×
{
exp

(∫ 1

0

log
(
1 + σ2

HP,i(e
j2πf )

)
df

)}L
i=1

}
.

(26)
In this sense, the problem (20) and the following are not
necessarily equivalent

minimize
P(D),{[R0]2ii}

f0
({

[R0]
−2
ii

})
subject to {[R0]

2
ii} ≺×{

exp
(∫ 1

0
log(1 + σ2

HP,i(e
j2πf ))df

)}
∫ 1

0
Tr(P(ej2πf )P∗(e−j2πf ))df ≤ P0.

(27)
Indeed, the minimized cost function in (27) is a lower bound
to that in (20). But we shall show soon that this lower bound
is achievable.

Let us first consider the solution to (27). We have the
following lemma.

Lemma 3.2: The solution to (27) may be set to be
P(ej2πf ) = VH(ej2πf )ΣP (e

j2πf )Ω(ej2πf ) without loss of
optimality, where VH(ej2πf ) is the right singular matrix
of H(ej2πf ), ΣP (e

j2πf ) is the diagonal singular matrix of
P(ej2πf ).

Proof: We give the sketch of the proof.
It is not difficult to prove that∑k

i=1 log(1 + σ2
HP,i(e

j2πf ))

≤∑k
i=1 log(1 + σ2

H,i(e
j2πf )σ2

P,i(e
j2πf )), 1 ≤ k ≤ K,

(28)
where the equality holds if P(ej2πf ) =
VH(ej2πf )ΣP (e

j2πf )Ω. It follows from (28) that

k∏
i=1

exp

(∫ 1

0

log(1 + σ2
HP,i(e

j2πf ))df

)
≤

k∏
i=1

exp

(∫ 1

0

log(1 + σ2
H,i(e

j2πf )σ2
P,i(e

j2πf ))df

)
, (29)

for 1 ≤ k ≤ K.
Hence for any feasible P(D), settingP(ej2πf ) =
VH(ej2πf )ΣP (e

j2πf )Ω. relaxes the majorization constraint
in (27) to

{[R0]
2
ii}Li=1 ≺×{

exp
(∫ 1

0
log(1 + σ2

H,i(e
j2πf )σ2

P,i(e
j2πf ))df

)}L
i=1

,

(30)
and it does not affect the power constraint∫ 1

0

Tr(P(ej2πf )P∗(e−j2πf ))df ≤ P0.

Now it is proven that we may set

P(ej2πf ) = VH(ej2πf )ΣP (e
j2πf )Ω(ej2πf ) (31)

without loss of optimality.

Based on the above observation, we can
simplify the solution to (27) to be P(ej2πf ) =
VH(ej2πf )ΣP (e

j2πf )Ω(ej2πf ) where ΣP (e
j2πf ) and

Ω(ej2πf ) are solved by

minimize
ΣP (ej2πf ),Ω(ej2πf )

f0
({

[R0]
−2
ii

})
subject to {[R0]

2
ii} ≺×{

exp(
∫ 1

0
log(1 + σ2

H,i(e
j2πf )σ2

P,i(e
j2πf ))df)

}L
i=1∑K

i=1

∫ 1

0
σ2
P,i(e

j2πf )df ≤ P0.
(32)

We want to emphasize that Ω(ej2πf ) is relevant in (32)
because it influences the diagonal of R0. The following
theorem provides further insights on the solution to (32).

Lemma 3.3: As an optimal solution to (32), Ω(ej2πf ) is
frequency independent, i.e., Ω(ej2πf ) = Ω, ∀f ∈ [0, 1).
Moreover, for any {[R0]

2
ii} that satisfies

{[R0]
2
ii} ≺×

{
exp

(∫ 1

0

log(1 + σ2
H,i(e

j2πf )σ2
P,i)df

)}L
i=1

,

(33)
there exists an orthogonal matrix Ω such that the matrix
spectral factorization yields R0 with such diagonal elements.

Proof: The proof is straightforward based on the GTD
theorem [6] and is omitted here.

We remark that Lemma 3.3 actually shows that the con-
verse direction of Lemma 3.1 is also true, i.e., the squared
diagonal of R0 can be any point in the set (26). Therefore,
the optimization problem (20) is equivalent to (27) and (32).

As the final step of the derivation, we give an observation
with regard to the frequency power allocation. Denote pi as
the total power allocated to the ith eigen-subchannel, 1 ≤
i ≤ K. The optimum power distribution σ2

P,i(e
j2πf ) must

be the solution to the following

maximize
σ2
P,i(e

j2πf )

∫ 1

0
log(1 + σ2

H,i(e
j2πf )σ2

P,i(e
j2πf ))df

subject to
∫ 1

0
σ2
P,i(e

j2πf )df = pi.
(34)

This is because maximizing
∫ 1

0
log(1 +

σ2
H,i(e

j2πf )σP,i(e
j2πf ))df relaxes the multiplicative-

majorization constraint of (32) to the maximal extent. The
solution to (34) is the standard waterfilling power allocation
[14]

σ2
P,i(e

j2πf ) =

(
µi −

1

σ2
H,i(e

j2πf )

)+

,

where (x)+ = max{x, 0} and µi is chosen such that∫ 1

0

(
µi − 1

σ2
H,i(e

j2πf )

)+
df = pi.

At this point, we have transformed the optimization prob-
lem (20) to the most simplified form, which is summarized
in the following theorem.

Theorem 3.4: Let

H(ej2πf ) = UH(ej2πf )ΣH(ej2πf )V∗H(ej2πf ) (35)
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be the SVD where the diagonal elements of ΣH(ej2πf ) are
σH,i(e

j2πf ). Suppose the following problem

minimize
µ , {[R0]ii}

f0
(
{[R0]

−2
ii }
)

subject to {[R0]
2
ii} ≺×{

exp(
∫ 1

0

(
log(µiσ

2
H,i(e

j2πf ))
)+
df)
}L
i=1∑K

i=1

∫ 1

0

(
µi − 1

σ2
H,i(e

j2πf )

)+
df ≤ P0,

(36)
has the optimal solution µi and [R0]ii for 1 ≤ i ≤
L. Then the optimal precoder has the SVD P(ej2πf ) =
VH(ej2πf )ΣP (e

j2πf )Ω, where ΣP (e
j2πf ) has diagonal

σ2
P,i(e

j2πf ) =
(
µi − 1

σ2
H,i(e

j2πf )

)+
and Ω is obtained by

applying the GTD to the matrix Φ = QR0Ω
T so that the

diagonal entries of R0 are the optimal solution to (36). Here
the diagonal matrix Φ is defined as

[Φ]ii , exp

(
1

2

∫ 1

0

log(1 + σ2
H,i(e

j2πf )σ2
P,i(e

j2πf ))df

)
.

(37)

B. Schur-convex and Schur-concave Cost Functions

Now we further specialize the cost function to the case
where f0 is increasing in each argument and the composite
function f0 ◦exp : RL → R is either Schur-convex or Schur-
concave, where the composite function is defined as

f0 ◦ exp(x) , f0(e
x1 , ex2 , . . . , exL). (38)

Many cost functions of interest can be categorized into such
functions. The following are some examples.

1) Minimization of the sum of MSEs: The cost function
is

f0({MSEi}) =
L∑
i=1

MSEi, (39)

which is both Schur-concave and Schur-convex. The com-
posite function f0 ◦ exp(x) =

∑
i e
xi is Schur-convex, since

ex is a convex function.
2) Minimization of the exponentially weighted product of

MSEs: The cost function is

f0({MSEi}) =
L∏
i=1

MSEαii . (40)

Without loss of generality, it is assumed that 0 < α1 ≤ . . . ≤
αL. The composite function f0 ◦ exp is

f0 ◦ exp(x) = exp

(
L∑
i=1

αixi

)
. (41)

It is easy to prove that
∑L
i=1 αixi (assuming αi ≤ αi+1) is

a Schur-concave function on DL , {x ∈ RL : x1 ≥ . . . xL},
so is exp

(∑L
i=1 αixi

)
.

3) Maximization of the product of MSEs: The objective
function to maximize is

∏L
i=1 MSEi. The composite function

f0 ◦ exp is

f0 ◦ exp(x) = exp

(
L∑
i=1

xi

)
. (42)

Since
∑L
i=1 xi is both Schur-convex and Schur-concave, so

is exp
(∑L

i=1 xi

)
.

Such specialization leads to an exceedingly simple solu-
tion to (20) as shown in the following theorem.

Theorem 3.5: An optimal solution P(ej2πf ) of the prob-
lem (20), where f0 : RL → R is a function increasing in
each argument, can be characterized as follows:
• If f0 ◦ exp is Schur-concave on DL , {x ∈ RL : x1 ≥
. . . ≥ xL}, then

P(ej2πf ) = VH(ej2πf )ΣP (e
j2πf ), (43)

where the diagonal elements of ΣP (e
j2πf ) are

σP,i(e
j2πf ) =

(
µi − 1

σ2
H,i(e

j2πf )

)+
for 1 ≤ i ≤ K

with µi being obtained by solving

minimize
µ

f0

({
exp

(
−
∫ 1

0

(
log(µiσ

2
H,i(e

j2πf ))
)+
df
)})

subject to
∑K
i=1

∫ 1

0

(
µi − 1

σ2
H,i(e

j2πf )

)+
df ≤ P0.

(44)
• If f0 ◦ exp is Schur-convex on RL, then

P(ej2πf ) = VH(ej2πf )ΣP (e
j2πf )Ω (45)

where ΣP (e
j2πf ) is obtained via standard waterfilling

power allocation

σ2
P,i(e

j2πf ) =

(
µ− 1

σ2
H,i(e

j2πf )

)+

, 1 ≤ i ≤ K,
(46)

with µ being chosen such that
K∑
i=1

∫ 1

0

(
µ− 1

σ2
H,i(e

j2πf )

)+

df = P0, (47)

and the unitary matrix Ω is obtained from the geometric
mean decomposition (GMD)[5]

Φ = QR0Ω
T (48)

where Φ is diagonal with Φ]ii =

exp
(

1
2

∫ 1

0

(
log(µσ2

H,i(e
j2πf ))

)+
df
)

, 1 ≤ i ≤ L.
Proof: The proof will be given in the journal version of

this paper.
For the case that f0◦exp is Schur-concave, the transmitter

matrix filter P(e2πf ) = VH(ej2πf )ΣP (e
j2πf ) transforms

the MIMO channel into

H(ej2πf )P(ej2πf ) = UH(ej2πf )ΣH(ej2πf )ΣP (e
j2πf ).

(49)
Note that this effective MIMO channel has orthogonal
columns at any frequency. Hence

P∗(D−1)H∗(D−1)H(D)P(D)
= Σ∗P (D

−1)Σ∗H(D−1)ΣH(D)ΣP (D)
(50)
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is diagonal and the matrix spectral factorization

P∗(D−1)H∗(D−1)H(D)P(D) + I = R∗(D−1)R(D)

yields R(D) =
∑∞
i=0 RiD

i with diagonal Ri for ∀i. The
MMSE-DFE given in (19) is

W(D) = UH(D−1)ΣH(D−1)ΣP (D
−1)[R(D−1)]−1D−1R0

.
(51)

It is ready to verify that

W∗(D)H(D)P(D)
= D−1R0

[R∗(D−1)]−1Σ∗P (D−1)Σ∗H(D−1)ΣH(D)ΣP (D)

= D−1R0
(R(D)− [R∗(D−1)]−1).

(52)
From the above equation, we see that the transmitter matrix
filter and the FFF convert the MIMO ISI channel into K
diagonal SISO ISI channels, and the FBF, which consists
of L decoupled SISO decision feedback filters, removes the
ISI. Figure 2(a) illustrates the architecture of the transceiver,
where the function block r−1i (f)[R]−1ii corresponds to the
item [R(D−1)]−1D−1R0

in (51).
For any cost function f0 such that f0 ◦ exp is Schur-

convex, the optimum transceiver design is the same! That
is, the transmitting matrix filter is a concatenation of
UH(D)ΣP (D), which applies capacity-achieving waterfill-
ing power allocation in both spatial and frequency domain,
and a frequency-independent unitary matrix which rotates the
channel such that the DF receiver, which has the FFF

W(D) = UH(D−1)ΣH(D−1)ΣP (D
−1)Ω[R(D−1)]−1D−1R0

,
(53)

yields L identical subchannels. (Note that [R(D)] given in
(53), which is non-diagonal, is different from that in (51),
which is diagonal.) This is actually an extension of the UCD
scheme [7] to the MIMO ISI channel. Figure 2(b) illustrates
the architecture of this transceiver.

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

Q[·]

BL(f)

x̂L,t

x̂1,t

σP,L(f) σH,L(f)

n̄Ln̄L,t

Q[·]σP,1(f) σH,1(f)

n̄1,t

σH,1(f)σP,1(f)

σH,L(f)σP,L(f)

x1,t

xL,t

B1(f)

(a) Diagonal transmission for Ω = I

(b) Nondiagonal transmission (diagonal + rotation)

σP,L(f) σH,L(f)

n̄Ln̄L,t

σP,1(f) σH,1(f)

n̄1,t

σH,L(f)σP,L(f)

x1,t

xL,t

Ω ΩT
D−1

R0
[R(D)]−∗ Q[·]

B(f)
L

x̂L,t

x̂1,t

r−1
L (f)[R]−1

LL

σH,1(f)σP,1(f)

r−1
1 (f)[R]−1

11

Fig. 2. Scheme of a MIMO Communication system with decision feedback
equalizer (DFE) receiver

IV. CONCLUSION

In this paper, we have studied optimizing the decision
feedback (DF) based nonlinear transceivers for data trans-
mission over multi-input multi-output (MIMO) inter-symbol

interference (ISI) channels. Adopting some cost function f0
of the MSEs of the multiplexed substreams, we establish
a theoretic framework for transceiver optimization, which
consists of a linear time invariant (LTI) matrix filter at the
transmitter and a generalized (nonlinear) decision feedback
equalizer (DFE) at the receiver, subject to the total input pow-
er constraint. Under the mild assumption that f0 is increasing
in MSEs, the optimum DFE receiver is the MMSE-DFE.
We further prove that using the MMSE-DFE as the receiver,
the optimum transmitter is of the same special structure for
any cost function f0, which applies power allocation in both
spatial and frequency domain before a spatial rotation. Hence
the original complicated matrix optimization problem can
be significantly simplified. Moreover, for the cost function
such that the composite f0 ◦ exp is Schur-convex, then the
optimum nonlinear transceiver design is a generalized form
of the uniform channel decomposition (UCD) scheme; when
f0 ◦ exp is Schur-concave, the optimum nonlinear design
degenerates to diagonal transmission.
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