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Abstract— The paper presents a new algorithm which “dif-
ferentiates” noisy signals with values in a Hilbert space. The
algorithm provides an iterative estimation procedure which
converges to the weighted pseudoinverse of a compact operator
with (possibly unbounded) linear weighting operator for a
wide class of signals. The case of differentiation of 1D signals
corrupted by a random noise with uncertain but bounded
second moments is studied in details.

I. INTRODUCTION

The problem of computing derivatives of a given signal is
fundamental in diverse fields including control engineering
(e.g. design of observers requiring to compute numerical
derivatives of the input [1]), image processing (e.g. edge
detection and motion estimation by computing numerical
gradients of the image brightness function [2]), and signal
processing. The latter provides a very simple example: given
a signal y represented by the sum of an absolutely continuous
function x 7→ ψ(x) ∈ R and a bounded measurable function
x 7→ η(x) ∈ R on an interval (x1, x2), i.e.

y(x) = ψ(x)+η(x), t ∈ (x0, x1), −∞ < x0 < x1 < +∞

one needs to compute
dy

dx
, i.e. to estimate dψ

dx from the

noisy data y. Noting that ψ(x) = ψ(x0) +
∫ x
x0
ϕ(z)dz,

the aforementioned problem can be reformulated as follows:
given
• the signal y(t, x) = [C(t)ϕ](x) + η(t, x) on [x0, t], and

operator [
C(t)ϕ

]
(x) =

∫ x

x0

k(t, x)ϕ(x)dx

k(t, x) =

{
1, x0 ≤ x ≤ t
0, x > t

• the class of admissible derivatives ϕ of ψ in the form
of solutions of a linear operator equation {ϕ : Nϕ =
f, δϕ = f0, [f0, f ] ∈ G0} for a given bounding set G0

and operators N, δ

one needs to estimate ϕ =
dψ

dx
from y.

Intuitively, t 7→ C(t)ϕ can be interpreted as a “window func-
tion”, which “reveals” all the information about the function
ϕ up until the current time instant t, but no information is
provided about ϕ in the “future”, for x > t as k(t, x) = 0
for x > t so that y(t, x) = η(t, x) if t < x ≤ x1. In this
interpretation, the estimator should gradually accumulate the
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information about ϕ over time, i.e. when t → x1, and this
information is then used to improve the estimate ϕ̂ of ϕ.

The aforementioned reformulation allows us to relate
differentiation to a more general problem of state estimation
for linear operator equations in a Hilbert space. As a result,
one can use powerful abstract methods developed for state
estimation [3], [4], [5], [6], [7], [8], [9], [10], and in
this paper we specifically rely upon results of [4] where
optimal estimates of ϕ were derived assuming that C(t)
is a continuous operator-valued function with values in the
space of linear bounded operators, η is a random process
with values in a Hilbert space, and N, δ correspond to an
abstract Neumann problem. It turns out that this abstract
setting is closely related to the weighted pseudoinverse
of a compact operator ϕ 7→

∫ T
x0
C?(t)C(t)ϕdt with the

weighting operator/regularizer defined by N : if, in particular,
C corresponds to a Green function of a differential operator
L then the resulting estimate of ϕ will “mimic” the effect of
applying L to y provided η = 0, and, more importantly, the
impact of the noise η will be minimized if η 6= 0. Thus, this
abstract setting provides a generic template for (i) the design
of optimal differentiating algorithms for multidimensional
signals corrupted by random noise, and (ii) the optimal
estimation of differentiating errors. The proposed abstract
setting represents the main theoretical contribution of this
paper.

The aforementioned template is then “implemented” to
design a differentiator for signals in L2(x0, x1) subject
to a random noise with unknown but bounded correlation
operator. The resulting differentiation algorithm is given in
the form of a well-known two-point boundary value problem
for a linear quadratic optimal control problem provided

N =
d2

dx2
+ µI and C is defined as suggested above.

The algorithm allows to estimate first, second and third
derivatives of the signal y, and is confirmed numerically
on a simple example. The higher-order L2-differentiator for
signals subject to random measurement noise represent the
main practical contribution of this paper.

The literature on estimating the derivative of an L2-signal
from noisy measurements is rich enough, and many authors
transform this problem into a state estimation problem in
order to apply different types of observers/filters to estimate
both the derivative and the differentiation error. Popular
techniques rely upon sliding mode differentiators [11] which
are exact in a finite time for continuously differentiable
Lipschitz signals and noise free measurements, and otherwise
the corresponding derivative estimates converge into a zone
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provided the measurement noise is uniformly bounded. A
related family of differentiators is based upon high-gain
observers [12] and the corresponding derivative estimates are
asymptotically exact for noise free measurements. To achieve
the convergence the observer’s gain must grow unbounded
which amplifies the noise in observations, and also leads
to stiff time discretizations. This technique also assumes
uniformly bounded measurement’s noise. For the case of a
stochastic noise one can construct a differentiator assuming
stochastic models of the signal to be differentiated and of the
measurement noise [13], and then apply a linear filter. It is
well-known that the estimate obtained by the filter/observer
is optimal only at the current time instant t in contrast
to the estimate provided by an optimal smoother which
“fits” the entire function to the data and thus improves the
estimate of the entire function when new observations arrive.
Of couse this comes at price: the smoother is not suitable
for online estimation, but provides better estimates over the
entire interval. The algorithms developed here have a similar
property as they estimate the entire function on [x0, t].
Further, we work with a stochastic noise with uncertain
but bounded second moments - a very practical assumption
especially when the statistical characteristics of the noise
process are obtained experimentrally, and so the moments are
not given exactly. In addition, we provide an optimal worst-
case differentiation error which depends only on N and the
bounding set for noise correlation operators, and hence is
robust w.r.t. errors of the statistical/empirical estimates of
the moments of the noise process. Finally, in the proposed
framework the equations Nϕ = f and δϕ = f0 do not
play a role of the standard state equations, and f0, f are
not considered as uncertain parameters, as this is the case in
the aforementioned works. Instead, we consider N and δ as
regularizers/weighting operators as it was mentioned above,
and f0 and f control the signal’s energy. In other words,
the estimate of the derivative is sought in a special class
defined by N , δ and the bounding set for f0 and f , and
this estimate is, in fact a solution of a certain ill-posed least-
squares problem with minimal energy norm induced by N .
This, in particular, allows us to achieve asymptotic exactness
of the estimate (under some assumptions on the operator C)
without assuming a specific stochastic model for the noise,
or introducing strong observability assumptions.

Notation. Given an abstract Hilbert space H we denote by
(·, ·)H its canonical inner product with values in R, and set
‖x‖2H := (x, x) for any x ∈ H . [x, y] denotes an element of
X×Y , the Cartesian product of two Hilbert spaces X and Y .
We also define a space of all linear continuous operators from
a Hilbert space H1 to Hilbert space H2 by L (H1, H2), H?

1

denotes the adjoint space of H1, ΛH1 denotes the canonical
isomorphism of the Hilbert space H1 onto H?

1 , I denotes the
identity operator. 〈·, ·〉 denotes the duality pairing between H
and its adjoint space H?.

Outline. Section II provides a brief overview of abstract
Neumann problems, and recalls the basics of singular value
decomposition for compact operators which is closely related
to the construction of the pseudoinverse of a compact opera-

tor. Section III states the main results: a generic template
for the design of optimal differentiating algorithms, and
its implementation in L2(x0, x1). Section III-B provides a
numerical example. Appendix contains all the proofs.

II. MATHEMATICAL PRELIMINARIES

In this section we collect all the required mathematical
notions and results on state estimation for abstract Neumann
problems, which define the class the derivatives of the admis-
sible signals. We also review the pseudoinversion of compact
operators by means of singular value decomposition. These
tools are then used to design the estimates of the derivatives
of the observed signal subject to a stochastic noise.

A. Abstract Neumann problems

Assume that H0, H− and H+ are given Hilbert spaces
such that

H+ ⊆ H0 ⊆ H− .

In what follows, we identify H0 with its adjoint space H?
0 .

Let (·, ·)0,−,+ denote inner products in H0,−,+ respectively,
and let a be a continuous bilinear form on H+ ×H+ such
that

∃α > 0 : a(φ, φ) ≥ α2(φ, φ)+ , ∀φ ∈ H+ , α 6= 0 . (1)

Let H∂ denote a Hilbert space and consider a linear operator
γ ∈ L (H+, H∂) such that
• γ(H+) = H∂

• H̊+ := ker(γ) = {φ ∈ H+ : γφ = 0} is dense in H+

Define H̊− := H̊?
+. Then, clearly,

H̊+ ⊆ H0 ⊆ H̊− .

Define a linear operator

∀φ ∈ H+ : Nφ := a(φ, ·) ∈ H̊− ,

i.e. N maps a vector φ ∈ H̊+ to a linear continuous
functional ψ 7→ `φ = a(φ, ψ) over H̊+, so that `φ ∈ H̊− =
H̊?

+. The operator N is a bounded linear operator in the
Hilbert space H+(N) := {φ ∈ H+ : Nφ ∈ H0} equipped
with the graph norm ‖φ‖H+(N) := (‖φ‖2+ + ‖Nφ‖20)

1
2 , and,

by definition of N , it follows that

N ∈ L (H+, H̊−) ∩L (H+(N), H0) .

Define N+, the formal adjoint of N as follows:

∀ψ ∈ H+ : N+ψ := a(·, ψ) ∈ H̊− .

Clearly, N = N+ provided a(φ, ψ) = a(ψ, φ), and N+ ∈
L (H+, H̊−) ∩L (H+(N+), H0) where H+(N+) := {φ ∈
H+ : N+φ ∈ H0}.

There exist a linear bounded operator δ ∈
L (H+(N), H?

∂) such that the following Green formula
holds true:

a(φ, ψ) = (Nφ,ψ)0 + 〈δφ, γψ〉 , φ ∈ H+(N) , ψ ∈ H+ ,

and the formal adjoint of N , N+ verifies the following
equality: ∀φ ∈ H+(N) , ψ ∈ H+(N+)

(N+ψ, φ)0 − (ψ,Nφ)0 = 〈γψ, δφ〉 − 〈δ+ψ, γφ〉,
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where δ+ ∈ L (H+, H
?
∂) is such that

a(ψ, φ) = (N+φ, ψ)0+〈δ+φ, γψ〉 , φ ∈ H+ , ψ ∈ H+(N+) .

The abstract Neumann problem associated with the form a
is to find ϕ ∈ H+(N) such that:

Nϕ = f , δϕ = f0 , f0 ∈ H?
∂ , f ∈ H0 . (2)

This latter problem can be equivalently reformulated in a
variational form [14], namely ϕ ∈ H+(N) solves eq. (2) if
and only if

a(ϕ,ψ) = (f, ψ)0 + 〈f0, γψ〉 , ∀ψ ∈ H+ . (3)

We stress that eq. (2) has the unique solution provided eq. (1)
holds true [14].

B. Pseudoinverse of a compact operator

Let K be a compact linear operator in H0. Then, the
compact self-adjoint operator K?K possesses total orthonor-
mal system of eigenvectors {ϕn} with eigenvalues λn ≥ 0:
K?Kϕn = λnϕn. Note that the numerical range of K?K,
defined by {(Kx,Kx)0 , ‖x‖0 = 1} contains the continuous
spectrum of K?K, and so infψ:‖ψ‖0=1(Kψ,Kψ)0 = 0 if 0 is
in the spectrum of K?K. The latter is the case, for instance,
for the Volterra operator: Kϕ =

∫ x
x0
ϕ(z)dz. In what follows

we provide formulas for pseudoinversion of K?K and K.
The unique solution of the optimization problem ‖Kq −

Kϕ‖20 +ε(q, q)0 → minq coincides with the unique solution
of the equation εq+K?Kq = K?Kϕ, and this solution q(ε)
is given by the following formula:

q(ε) = (εI +K?K)
−1
K?Kϕ

=

∞∑
n=1

λn
ε+ λn

(ϕ,ϕn)0ϕn .

Clearly, λn
ε+λn

6= 0 if λn > 0 and λn
ε+λn

= 0 otherwise.
Hence, for ε→ 0 we get that q(ε)→ ϕ provided minn λn >
0 and q(ε) → ϕ⊥(:= (K?K)+ϕ) otherwise, where ϕ⊥ =
(K?K)+ϕ is the solution of the following ill-posed least-
squares problem: ‖Kq − Kϕ‖20 → minq with the minimal
‖ · ‖0-norm. Note that ϕ⊥ coincides with the projection of ϕ
onto the orthogonal completion of the null-space of K?K.

The situation changes when one tries to solve εq +
K?Kq = K?ϕ. Indeed, by using singular value decomposi-
tion of K, i.e.

Kq =
∑
n

λ
1
2
n (vn, q)0un, K?ϕ =

∑
n

λ
1
2
n (un, ϕ)0vn,

for some total orthonormal systems {un} and {vn} we get
that

(εI +K?K)q =
∑
n

(ε+ λn)(vn, q)0vn

hence

q(ε) := (εI +K?K)
−1
K?ϕ =

∑
n

λ
1
2
n

ε+ λn
(un, ϕ)0vn

and clearly q(ε) converges to the solution of ‖Kq− ϕ‖20 →
minq with the minimal ‖ · ‖0-norm.

III. MAIN RESULTS

a) Problem statement: Assume that we observe a “sig-
nal” in the form of a vector-function y(t) with values in a
Hilbert space H0 such that

y(t) = C(t)ϕ+ η(t) , (4)

where C(t) ∈ L (H0) is a given linear bounded transfor-
mation for all t ∈ [T0, T ], and t 7→ C(t) is a continuous
operator-valued function for all t ∈ [T0, T ], T ≤ T̄ . Here T̄
indicates the upper bound of the “time interval” where the
information is available1. The noise η(t) is modelled as a
realisation of a random process with values in H0 such that:

Eη(t) = 0,

∫ T

T0

E‖η(t)‖2H0
dt < +∞

i.e. the process has zero mean and finite second moments on
[T0, T ], T ≤ T̄ ; moreover, the correlation operator

(Rη(t, s)x1, x2)H0
:= E(η(t), x1)H(η(s), x2)H0

is unknown and belongs to the given bounding set G1:

G1 = {Rη :

∫ T

T0

E(Q(t)η(t), η(t))H0
dt ≤ γ2

T } (5)

where Q(t) ∈ L (H0) and Q(t) = Q?(t) ≥ α2I , α 6= 0,
and t 7→ ‖Q(t)‖ ∈ C(T0, T ).

As noted in section I, we will interpret ϕ as a “derivative”
(w.r.t. x!) of a function ψ(t, x) = [C(t)ϕ](x), so that the
inverse of C(t), if it does exists, is a differential operator Lx.
The most simple example of this abstract setup is considered
below in section III-A where ψ(t, x) =

∫ x
T0
ϕ(z)dz if x ≤ t

and ψ(t, x) = 0 if x > t. In this case C(T ) has unbounded

inverse, Lx =
d

dx
on T0 ≤ x ≤ T .

Now, given y we want to “differentiate” it, i.e. we need to
compute Lxy. The latter cannot be done directly as y is
subject to the additive random noise. To overcome this we
propose to estimate “the derivative”, ϕ instead. The latter
would be equivalent to the aforementioned “differentiation”
if there was no noise in the signal y. To proceed we further
assume a class of admissible “derivatives”, namely ϕ is
sought among solutions of the following abstract Neumann
problem:

Nϕ = B1f1 δϕ = B0f0. (6)

Here B0 ∈ L (F0, H
?
∂) and B1 ∈ L (F1, H0) are given, and

input f1 and boundary condition f0 belong to the ellipsoid

G0 = {[f0, f1] ∈ F0×F1 : (Q0f0, f0)F0
+(Q1f1, f1)F1

≤ 1} ,
(7)

where F0 and F1 are Hilbert spaces, Qi ∈ L (Fi) is a given
self-adjoint linear operator such that Qi ≥ βiI , βi > 0,
i = 1, 2. Hence, in fact, all the admissible “derivatives” ϕ
belong to a pre-image of the ellipsoid G0 with respect to
the operators N and δ. This representation has three key
advantages:

1For instance, in the example given in section I T̄ would be equal to x1

– the upper bound of the domain where the observed signal is available.
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• the class H+(N) is very wide, e.g. H2-functions with
weak derivatives of L2-class as discussed in section III-
A

• for any ϕ ∈ H+(N) it holds that: ‖δϕ‖2H?∂ +‖Nϕ‖2H0
=

C < +∞ and hence ϕ belongs to the preimage of
G0 w.r.t. N and δ provided B1, B0 are invertible and
Q0 and Q1 are chosen appropriately to accomodate the
energy of the admissible Nϕ and δϕ

• the estimate of ϕ can be constructed using a suitable
state estimation framework for linear operator equations

The next theorem provides an estimate of ϕ given the
signal y(t) on the interval [T0, T ] and relies upon abstract
results of [4].

Theorem 1: The boundary value problem

N+p̂ = γ−2
T

∫ T

T0

C?(t)Q(t)y(t)dt− γ−2
T BT ϕ̂,

Nϕ̂ = B1Q
−1
1 Λ1B

?
1 p̂ , δϕ̂ = B0Q

−1
0 Λ0B

?
0γp̂,

δ+p̂ = 0, BT :=

∫ T

T0

C?(t)Q(t)C(t)dt

(8)

has the unique solution [p̂, ϕ̂] such that the mean-squared
worst-case distance between ϕ and ϕ̂ in the direction ` ∈ H0

is given by:

sup
[f0,f1]∈G0,Rη∈G1

E[(`, ϕ)0 − (`, ϕ̂)0]2 = (`, p)0 (9)

provided p solves

N+z = `− γ−2
T BT p , δ+z = 0 ,

Np = B1Q
−1
1 Λ1B

?
1z , δp = B0Q

−1
0 Λ0B

?
0γz

(10)

If B̃1 := B1Q
−1
1 Λ1B

?
1 has bounded inverse, B0 = 0,

Q(t) ≡ qT then ϕ̂(T ) defined by eq. (8) solves the following
equation:

A(T )ϕ̂ = YT , δϕ̂ = δ+(B̃1)−1Nϕ̂ = 0 (11)

provided

A(T ) :=
γ2
T

qT
N+(B̃1)−1N +

∫ T

T0

C?(t)C(t)dt

and

YT :=

∫ T

T0

C?(t)y(t)dt.

If, in addition, γ
2
T

qT
→ 0 when T approaches T̄ then

ϕ̂(T ) = A−1(T )YT → ϕ⊥ (12)

where ϕ⊥ denotes least-squares solution of BT̄φ = YT̄ with
minimal norm Ψ(φ) := (Nφ,Nφ)0.
The proof of this and all the following statements is provided
in the appendix.

Remark 1: It should be stressed that ϕ̂(T ) obtained in
theorem 1 provides an estimate of ϕ based on the data avail-
able on [T0, T ], and eq. (12) suggests a “sliding window”
mechanism, namely one can make a number of estimates
ϕ̂(T1), ϕ̂(T2) . . . for T1 < T2 < . . . T̄ , i.e. to update the

estimate when the new information arrives. This process re-
sembles iterative weighted pseudoinverse of a linear operator
BT , and according to the above theorem, it does converge
to the least-squares solution of BT̄φ = YT̄ which at the very
least belongs to H+(N). Now, if N = I , B̃1 = I and BT̄
is compact then A(T ) =

γ2
T

qT
I +BT and since

YT̄ = BT̄ϕtrue +

∫ T

T0

C?(t)η(t)dt

it follows that (see section II-B)

lim
T→T̄

ϕ̂(T ) = ϕ⊥true , provided lim
T→T̄

γ2
T

qT
= 0,

where ϕ⊥true is the projection of the “true” derivative, ϕtrue
onto the orthogonal completion of the null-space of BT̄ .
Hence, if the null-space of BT̄ is trivial, we get that ϕ̂(T )→
ϕtrue.

A. 1D differentiation in L2

In this section the abstract “differentiation” algorithm of
theorem 1 is “implemented” for the case of computing
derivatives of noisy signals in one spatial dimension.

Define Ω := (x0, x1) and set H+ := H1(Ω) and H0 :=
L2(Ω). Define

a(φ, ψ) = β

∫ x1

x0

dφ

dx

dψ

dx
dx+ µ

∫ x1

x0

φψdx , β ≥ 0 , µ > 0 .

Note that the form a is symmetric so that N+ = N and
δ+ = δ. On the other hand,

Nϕ = −β d
2ϕ

dx2
+ µϕ ,H+(N) = {ϕ ∈ H+ :

d2ϕ

dx2
∈ H0}

and so, by using standard integration-by-parts formula one
can find that, for all ψ ∈ H1(Ω) and φ ∈ H2(Ω) it holds
that:

〈δφ, γψ〉 = a(φ, ψ)− (Nφ,ψ)0

=
dφ

dx
(x1)ψ(x1)− dφ

dx
(x0)ψ(x0)

In other words, in this case the trace operator γ is represented
by two Dirac deltas concentrated at the boundary of the
interval (x0, x1), i.e. γφ = (φ(x0), φ(x1))>, and δ-operator
is given by the weak-derivatives of the aforementioned Dirac

deltas, i.e. δφ = (
dφ

dx
(x0),

dφ

dx
(x1))>. Both operators are

bounded in H2(Ω) as the latter is continuously embedded
into C1(Ω) (see [15, p.217]). Set F1 := H0, B1 = I and
F0 := R2. We also take B0 =

(
b 0
0 b

)
. In this case, the

Neumann problem eq. (6) reads as follows: find ϕ ∈ H2(Ω)
such that

−β d
2ϕ

dx2
+ µϕ = f1 ,

 dφdx (x0)=bf l0

dφ

dx
(x1)=bfr0

 (13)

We further assume that the set G0 is given by all f l0, f
r
0 , f1

such that

(f l0)2 + (fr0 )2 +

∫ T

x0

f2
1 (x)dx ≤ 1
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i.e. we take Q0 = I ∈ R2×2 and Q1 = I – the identity
mapping in H0.

To define the observation operator, let us define an indi-
cator function χ as follows:

χ(x, t|x ≤ t) :=

{
1 , x ≤ t ,
0 , x > t

Set T0 := x0, k(x, t) := χ(x, t|x ≤ t) and define

[C(t)ϕ](x) :=

∫ x

x0

k(x, t)ϕ(z)dz. (14)

Now, let us note that supRη∈G1
in eq. (9) is attained at

some (deterministic!) element g ∈ L2(x0, T,H0) such that∫ T
x0

(Q(t)g(t), g(t))0 = 1 (see [4, Proof of T.4.4]). Hence, in
what follows, without changing the mean-squared worst-case
error eq. (9), we can restrict our attention to the deterministic
noises. To simplify the presentation we consider the worst-
case deterministic noise of the form:

η(t) = f(t)ξ(x),

∫
Ω

ξ2(x)dx ≤ 1, qT

∫ T

x0

f2(t)dt ≤ γ2
T

Of course, for this specific type of η, the worst-case error
(the r.h.s. of eq. (9)) becomes an upper bound (possibly tight)
for the minimal worst-case estimation error associated with
the chosen class of noises η. We also set Q(t) ≡ qT I . It then
follows that for any x ∈ (x0, x1) we observe

y(x, t) = k(x, t)

∫ x

x0

ϕtrue(z)dz + f(t)ξ(x), (15)

for T0 = x0 ≤ t ≤ T . The interpretation of this observation
equation is as follows: one observes y on [x0, T ], and T < T̄
so that the information about the “true derivative” ϕtrue is
available only on [T0, T ], T < T̄ = x1, i.e. we cannot use
the “future” [T, T̄ ] in our estimates.

The following proposition implements the abstract differ-
entiation procedure from theorem 1 for the specific case of
differentiating noisy signals in L2.

Proposition 1 (1D differentiation): Define

F (x) :=

∫ T

x0

C?(t)y(t)dt

=

∫ T

x0

(T − z)2

2
ϕtrue(z)dz

−
∫ x

x0

(x− z)2

2
ϕtrue(z)dz

+

∫ T

x

(∫ T

z

f(t)dt

)
η(z)dz.

(16)

Then ϕ̂, the estimate of ϕ solves the following boundary-

value problem:

dp̂

dx
= p1, ϕ1(x0) = bp̂(x0),

dp1

dx
= p2, p1(x0) = p1(x1) = 0,

−β dp2

dx
+ µp1 = qT γ

−2
T

dF

dx
+ qT γ

−2
T q,

dϕ̂

dx
= ϕ1, −βp2(x1) + µp̂1(x1) = 0,

−β dϕ1

dx
+ µϕ̂ = p̂, ϕ1(x1) = bp̂(x1),

dq

dx
= q1, q(x0) = 0,

dq1

dx
= ϕ̂, q1(x0) = 0.

(17)

Hence, to differentiate y given by eq. (15) on [x0, T ] one
needs to solve eq. (17). Note that the null-space of BT̄ equals
{0}. Hence, as it was pointed out in remark 1 above, the
derivative of y computed from eq. (17), i.e. the estimate
ϕ̂(T ) converges to ϕtrue if γ2

T

qT
→ 0 when T → T̄ = x1.

In particular, ϕ̂(T ) is “close” to ϕtrue if γ2
T is “small

enough”, and so the worst-case observation error is “small
enough”. The worst-case mean-squared estimation error in
the direction ` ∈ H2(Ω) given in eq. (9) can be computed

by solving eq. (17) with
dF

dx
substituted by

d`

dx
.

In the next section we illustrate the efficacy of the differen-
tiation algorithm eq. (17) by numerical examples.

B. Numerical example

In the setting of section III-A we further assume that
ϕtrue(x) = cos(3x) sin(x), x0 = 0, qT = 1, b = 1 and
x1 = 75. We perform a “crash-test”, namely we do not force
the noise η to be an element of G1, instead we set η(t, x) ≡
ν sin(2νx)

20 where ν is drawn from the uniform distribution
supported on [0, 1]. Fig. 1a displays a realisation of η over
the interval [0, 25]. The L2-norm of the noise is ≈ 1.8. We
also set γ2

T := T−3 so that the noise does not belong to G1

neither for T = 25 (γ−2
T = 6.4e − 05 ) nor for T = 75

(γ−2
T = 2.37e − 06). Nevertheless, the 1st derivative of the

noisy signal y, ϕtrue is estimated with very good precision of
11% relative L2-error. Fig. 2a compares two estimates, ϕ̂(25)
with γ−2

T = 6.4e−05 and ϕ̂(75) with γ−2
T = 2.37e−06 over

the interval [0, 25]. Clearly, ϕ̂(75) outperforms ϕ̂(25) (10%
relative L2-error versus 47%) as it is suggested by eq. (12).
Fig. 2b compares ϕ̂(75) and ϕtrue over the larger segment
[0, 75]. We stress that the algorithm provides estimates of the
first and second derivatives of ϕtrue (2nd and 3rd derivatives
of y!) as well, and these are estimated with a reasonable
level of precision which, however, is not as good as that of
the first derivative’s estimation: see Figs. 3a-3b. Finally we
note that setting η(t, x) ≡ ν sin(2νx)

T 3 we get that the relative

L2-error for estimating ϕtrue,
dϕtrue

dx
and

d2ϕtrue

dx2
is 3%,

5% and 11% respectively. Setting η(t, x) ≡ ν sin(2νx)
T 6 and
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(a) Noise: L2-norm circa 1.8,

Fig. 1: Noise realisation

T = 175 we get further reduction down to 1%, 2% and 9%
respectively.

APPENDIX

Proof: [Proof of Theorem 1] The solvability of the
equations eq. (8)- eq. (10) together with the estimate eq. (9)
was demonstrated in [4] in the context of minimax state
estimation of solutions of abstract Neumann problems sub-
ject to uncertain inputs and boundary conditions which are
represented by elements of G1. By direct substitution it is
verified that the unique solution of eq. (8) solves eq. (11)
provided B̃1 has bounded inverse, B0 = 0, and Q(t) ≡ qT .
Now, to prove eq. (12) we note that ϕ̂(T ) defined by eq. (8)
coincides with the unique minimizer of the following convex
optimization problem

JT (φ) :=

∫ T

T0

‖C(t)φ−y(t)‖2H0
dt+

γ2
T

qT
(Nφ,Nφ)0 → min

φ∈H+(N)

Since the norm of H0 is lower semi-continuous, and the
graph of N is weakly closed it follows that

φ 7→ Ψ(φ) := (Nφ,Nφ)0

is a lower semi-continuous functional. Moreover, recall that
the form a verifies eq. (1). Hence Ψ is a strictly convex lower
semi-continuous functional, and so it has the unique mini-
mum point, ϕ⊥ over the set of all minimizers of the quadratic
form φ 7→ (BT̄φ, φ)0 − 2(φ, YT̄ )0. Finally, analogously to
the justification of Tikhonov regularisation method [16], it is
easy to demonstrate that ϕ̂(T ) converges strongly in H0 to
ϕ⊥ provided γ2

T

qT
→ 0 when T approaches T̄ . Note that in

the latter case the second moments of the noise η must go
to 0 implying that the observations are exact at time T̄ . This
completes the proof.

Proof: [Proof of Proposition 1] Let us transform eq. (8)
according the specific form of operators N , δ and γ given
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(a) Estimates for T = 25, 75 over [0, 25] (relative L2-error
circa 47% and 10% resp.)
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(b) Estimate at T = 75 over [0, 75] (relative L2-error circa
11%)

Fig. 2: Estimates of the ϕtrue

in section III-A. We get:

−β d
2ϕ̂

dx2
+ µϕ̂ = p̂,

dp

dx
(x0) =

dp

dx
(x1) = 0,

−β d
2p̂

dx2
+ µp̂ = qT γ

−2
T BT ϕ̂+ qT γ

−2
T

∫ T

x0

C?(t)y(t)dt,

dϕ̂

dx
(x0) = bp̂(x0),

dϕ̂

dx
(x1) = bp̂(x1)

(18)
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Fig. 3: Estimates of the derivatives of ϕtrue

We stress that t 7→ C(t) is a continuous operator-valued
function so that theorem 1 applies. Indeed:

[C(t)ϕ](x)− [C(s)ϕ]2(x)

= (k(t, x)− k(s, x))2

(∫ x

x0

ϕ(z)dz

)2

≤ (k(t, x)− k(s, x))2

(∫ x

x0

|ϕ(z)|dz
)2

≤ (k(t, x)− k(s, x))2

(∫ x1

x0

|ϕ(z)|dz
)2

≤ (x1 − x0)‖ϕ‖2H0

so that

‖C(t)ϕ− C(s)ϕ‖H0

≤
(∫ x1

x0

(k(t, x)− k(s, x))2dx

) 1
2

(x1 − x0)
1
2 ‖ϕ‖H

= (t− s) 1
2 (x1 − x0)

1
2 ‖ϕ‖H

We note that:

[C?(t)ψ](x) :=

∫ t

min{t,x}
ψ(z)dz .

Indeed, by definition

(C(t)ϕ,ψ)H0 =

∫ x1

x0

k(x, t)

∫ x

x0

ϕ(z)dzψ(x)dx

=

∫ x1

x0

∫ x1

x0

k(x, t)ϕ(z)ψ(x)χ(z, x|z ≤ x)dzdx

=

∫ x1

x0

ϕ(z)

(∫ x1

x0

k(x, t)ψ(x)χ(z, x|z ≤ x)dx

)
dz

=

∫ x1

x0

ϕ(z)

(∫ x1

z

k(x, t)ψ(x)dx

)
dz

=

∫ x1

x0

ϕ(z)

(∫ t

min{z,t}
ψ(x)dx

)
dz

= (ϕ,C?(t)ψ)H0

If x0 ≤ T ≤ x1 then[∫ T

x0

C?(t)C(t)ϕdt
]

=

{∫ T
x0

(T−z)2
2 ϕ(z)dz −

∫ x
x0

(x−z)2
2 ϕ(z)dz , x ≤ T ,

0 , x > T

Indeed, assume that z ≤ T . We get:[∫ T

x0

C?(t)C(t)ϕdt
]
(z)

=

∫ T

x0

∫ t

min{t,z}

(∫ x

x0

k(x, t)ϕ(a)da

)
dxdt

=

∫ T

x0

∫ t

x0

χ(z, x|z ≤ t)
∫ t

x0

χ(a, x|a ≤ x)ϕ(a)dadxdt

=

∫ T

x0

∫ t

x0

ϕ(a)

∫ t

x0

χ(z, x|z ≤ t)χ(a, x|a ≤ x)dxdadt

=

∫ T

x0

χ(t, z|z ≤ t)
∫ t

x0

ϕ(a)(t− a)dadt

=

∫ T

x0

∫ T

x0

χ(t, z|z ≤ t)χ(a, t|a ≤ t)ϕ(a)(t− a)dadt

=

∫ T

x0

ϕ(a)

∫ T

x0

χ(t, z|z ≤ t)χ(a, t|a ≤ t)(t− a)dtda

=

∫ T

x0

ϕ(a)

∫ T

max{a,z}
(t− a)dtda

=

∫ z

x0

ϕ(a)

∫ T

z

(t− a)dtda

+

∫ T

z

ϕ(a)

∫ T

a

(t− a)dtda

=

∫ z

x0

ϕ(a)

2

(
(T − a)2 − (z − a)2

)
da

+

∫ T

z

ϕ(a)
(T − a)2

2
da

=

∫ T

x0

ϕ(a)
(T − a)2

2
da−

∫ z

x0

ϕ(a)
(z − a)2

2
da
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If z > T it then follows that[ ∫ T

x0

C?(t)C(t)ϕdt
]
(z)

=

∫ T

x0

∫ t

t

(∫ x

x0

k(x, t)ϕ(a)da

)
dxdt = 0 .

Hence
∫ T
x0
C?(t)y(t)dt = F (x) for F defined as in the

proposition’s statement. To conclude the proof we note that
F (T ) = 0 and BT ϕ̂(T ) = 0 as it follows from the
representation of

∫ T
x0
C?(t)C(t)ϕdt given above, and hence

−β d
2p̂

dx2
(T )+µp̂(T ) = 0. Differentiating the second equation

of eq. (18) we get:

−β d
3p̂

dx3
+ µ

dp̂

dx
= qT γ

−2
T

dF

dx
+ qT γ

−2
T q,

q(x) :=

∫ x

x0

(x− z)ϕ(z)dz

Define p1 :=
dp̂

dx
, p2 :=

dp1

dx
, ϕ1 :=

dϕ̂

dx
, q1 :=

dq

dx
, and

recall that p2(T ) + µp̂(T ) = 0. We deduce that eq. (18) is
equivalent to eq. (17). This completes the proof.
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