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Abstract— This extended abstract presents an asynchronous
algorithm to solve a class of distributed parametric learning
problems in a multi-agent network. Each agent acquires its pri-
vate streaming data to establish a local learning model at times
determined by its own clock. It is not assumed that the agents’
clocks are synchronized or that the “event times” at which any
one agent updates its variables are evenly spaced. The goal is
for each agent to converge to a common global learning model,
defined as the average of all local ones, by communicating only
with its neighbors. It is shown that the algorithm solves the
asynchronous distributed parametric learning problems almost
surely, or at least with high probability, for any repeatedly
jointly strongly connected sequence of neighbor graphs defined
on the merged sequence of all agents’ event times.

I. INTRODUCTION

Learning, more specifically machine learning, tackles the
question of finding a mapping f : Rm → R that takes a
feature vector x ∈ Rm to a response y, where f often takes
either a functional form (e.g., decision tree for classification
[1]) or a parametric form (e.g., linear regression [2]). The
core idea of learning is to first collect a set of training
data in the form of pairs (x(k), y(k)), k ∈ {1, 2, . . . , T},
where T is the training size or the number of training
samples, and then find an optimal mapping f∗ from the set
of candidate functions F that can best describe the data
with respect to a certain loss function l : R × R → R
(e.g., squared loss l(z, y) = (z − y)2) in the sense that
f∗ = argminf∈F

∑T
k=1 l(f(x(k)), y(k)). There exist a large

body of literature in learning theory and various types of
learning; see [3] for details. In this extended abstract, we
focus on parametric learning in which f is of a parametric
form. Parametric learning techniques have been deployed
in many applications ranging from classical artificial intelli-
gence (e.g., image recognition [4] and robotics [5]) to bio-
medical studies [6] and societal issues [7].

Traditional machine learning relies on a single learning
entity (say an agent) to handle all training data, and we
thus call it centralized learning, which requires a heavy
computation load on the learning agent and may not be
applicable in the case when total training data are of huge
amount. Due to this scalability issue, decentralized machine
learning has been extensively studied in the past few years,
in which different approaches have been proposed for dis-
tributing training data, and thus computational load, among
a group of learning agents (or computational resources).
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Notable successful solutions include the celebrated ADMM
framework [8], the TensorFlow framework [9], the parameter
machine based approach [10], and many others [11]–[15]. We
call these approaches decentralized machine learning, instead
of distributed machine learning (as termed in some litera-
ture), in order to distinguish the term distributed (parametric)
learning used in this extended abstract. A key difference
between the two learning settings is that in decentralized
machine learning, there exists a central agent which collects
all the data and distributes them to other agents to leverage
parallel computation power, whereas in our setting, there
is no such central agent and data are naturally distributed
a priori. Such a distributed data collection scheme arises
in social network platforms and smart grid power systems
in which centralized data collection is not appropriate as
data contain private information. Because of this difference,
in decentralized machine learning, all agents communicate
with the central agent, yet in our setting, each agent only
communicates with its (time-varying) neighbors, which will
be specified. It has been shown both in theory and practice
that learning in a decentralized manner, by distributing
data to local computing sources (i.e., agents) and averaging
the local learned models from them, achieves comparable
results with the corresponding centralized learning [16]–
[18]. Notwithstanding this, it is well known that how to
reduce communication load between computing sources is
a challenging issue in decentralized learning [19].

We consider a more practical scenario that training data
arrives sequentially at each agent, which is the same setting
as in online learning, another recent thread of research in
dealing with large scale learning. The streaming property of
data motivates the need for learning in an online fashion,
as well as the need for learning a model more efficiently
when new training samples arrive. These needs stimulate the
development of online learning techniques [20]–[24].

In the control community, over the past few decades, there
has been significant development in designing algorithms for
information distribution and computation among members
of a group of agents via peer-to-peer interactions [25]–[27].
Lately, various distributed computation and decision making
problems have arisen naturally, such as consensus prob-
lems [28], multi-agent coverage problems [29], rendezvous
problems [30], and multi-sensor localization [31], because
processors onboard sensors or robots are physically sepa-
rated. Distributed computation and control provide promising
settings for large-scale networks because of their desired
properties including fault tolerance, cost saving features, and
capability to accommodate different physical constraints such
as limitations on sensing, computation, and communication.
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With the preceding discussion in mind, we are interested in
distributed parametric learning with streaming data.

In a recent paper [32], a distributed parametric learn-
ing problem in a multi-agent network was introduced and
studied, in which each agent acquires its private streaming
data to establish a local learning model, and the goal is
for all agents to learn a common global learning model,
defined as the average of all local ones, by communicating
only with their neighboring agents. The paper proposes a
synchronous algorithm for solving the problem over time-
varying undirected graphs, in which the agents only transmit
their estimates of the parameter of the global model, but not
their private local training data.

There are two limitations of the algorithm in [32]. First, in
a realistic sensor or wireless network, it is not always possi-
ble to establish bidirectional communication between agents.
For instance, sensors of different agents may have different
sensing radii. Thus, it is more practical to use a directed
graph to specify unidirectional communications among the
agents. Second, the algorithm requires that the updating by
all agents are synchronized. For a large wireless network, it is
difficult and sometimes impossible to synchronize all agents’
clocks [33]. Thus, there is ample motivation to consider an
asynchronous version of the problem in which each agent
independently updates its variables at times determined by
its own clock. What makes the problem asynchronous is that
it is not assumed that the agents’ clocks are synchronized or
that the “event times” at which any one agent updates its
variables are evenly spaced.

In this extended abstract, we propose an asynchronous
algorithm for the distributed parametric learning problem
over time-varying unidirectional communications among the
agents, which solves the problem almost surely, or at least
with high probability, for any repeatedly jointly strongly con-
nected sequence of neighbor graphs defined on the merged
sequence of all agents’ event times.

II. PROBLEM FORMULATION

Consider a network consisting of n > 1 agents. For
the ease of presentation, we label the agents 1 through n.
The agents are not aware of such a global labeling, but
each agent is able to identify its “neighbors” (which will
be defined later). We associate with each agent i a strictly
increasing, infinite sequence of event times ti0, ti1, ti2, . . .
with the understanding that ti0 is the time agent i initializes
its variables and the remaining tik, k > 0, are the times
at which agent i updates its variables. For simplicity and
without loss of generality, we assume that ti0 = 0 for all
i ∈ {1, 2, . . . , n}. Successive event times of an agent need
not be evenly spaced; nor do the event times of one agent
have to all be different than the event times of another. We
assume that for each i ∈ {1, 2, . . . , n}, agent i’s event times
ti0, ti1, ti2, . . . , tik, . . . satisfy the constraint

T̄i ≥ ti(k+1) − tik ≥ Ti, k ≥ 0, (1)

where Ti and T̄i are positive numbers. An agent i’s event
times could be any pre-specified sequence of times satisfying

the above constraint. The assumption does not preclude
arbitrary closeness of event times from different agents’ event
time sequences. In fact, two agents can have an identical
event time.

Each agent observes a sequence of training data
{xi(tik), yi(tik)}k. Each pair of the observations comes from
a local learning model:

yi(tik) = fi (xi(tik), θi) + vi(tik),

where vi(tik) is some noise, and θi is the local parameter to
be learnt. We assume that all θi’s have the same dimension.
The goal of the distributed learning problem here is for each
agent to learn a global learning parameter θ∗, defined as

θ∗ =
1

n

n∑
i=1

θi,

in a distributed manner.
For the problem to be solvable, it is clearly necessary that

each agent i be able to locally learn θi via its private train-
ing data {xi(tik), yi(tik)}k. We thus impose the following
assumption.

Assumption 1: For each agent i, there exists a local learn-
ing algorithm

θ̃i(tik) = gi
(
{xi(tip), yi(tip)}kp=1

)
for which θ̃i(tik) converges to θi almost surely, or at least
with high probability, where by with high probability we
mean that the probability converges to 1 as t→∞.

For a single source regression problem, consistency re-
sults can often be established for estimating parametric
models with i.i.d. training samples; examples include non-
regularized and regularized ridge regression [34], non-linear
regression models [35], [36], and more general statistical
learning [3].

It is worth emphasizing that agents are not allowed to
exchange their sampling data because the data may contain
private information.

III. THE ALGORITHM

This section presents an asynchronous algorithm which
makes use of the idea of double linear iterations [37] (which
is also known as push-sum [38], weighted gossip [39], and
ratio consensus [40]), and was proposed for solving the
distributed averaging problem over directed graphs.

Let Ti denote the set of all agent i’s event times, and T
denote the set of all distinct event times of all n agents.
Relabel the elements in T as t1, t2, . . . , tl, . . . in such a way
so that tl < tl+1, l ≥ 1. It is easy to see that Ti is an
ordered subset of T , and thus there is a positive number
which uniformly bounds above the time between any two
successive event times in T .

Each agent i has control over three variables, θ̃i(t), zi(t),
and si(t), where the updating of θ̃i(t) was introduced in
Assumption 1. The variables θ̃i(t) and zi(t) are agent i’s
estimates of θi and θ∗, respectively. We call zi(t) and si(t)
the agreement and scaling variables of agent i, respectively.
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In the following algorithm, each agent will send informa-
tion to its current “out-neighbors” at each of its event times.
Consequently, each agent will receive information from its
current “in-neighbors” at each of their event times. At each
time t, if agent i can send information to agent j, we call
agent j an out-neighbor of agent i, and agent i an in-neighbor
of agent j. For each agent i, we use N in

i (t) and N out
i (t) to

denote the sets of in- and out-neighbors of agent i at time
t, respectively, and nini (t) and nouti (t) to denote the number
of in- and out-neighbors of agent i at time t, respectively.

In this extended abstract, we assume that there is no com-
munication delay or failure in the network. The algorithm for
the asynchronous distributed learning problem is outlined as
follows.

Algorithm I: At initial time t = 0, each agent i initializes
its agreement and scaling variables as zi(0) = θ̃i(ti0) =
θ̃i(0) and si(0) = 1. At each event time t ∈ T , the following
updating rules apply for each i ∈ {1, 2, . . . , n}:

1) If t ∈ Ti, agent i sends the weighted current values
zi(t)

1+nout
i (t)

and si(t)
1+nout

i (t)
of its agreement and scaling

variables to each of its current out-neighbors. Agent i
then immediately updates its agreement and scaling
variables by setting

znewi =
zi(t)

1 + nouti (t)
+

∑
j∈N in

i (t)

zj(t)

1 + noutj (t)

+ θ̃i(t+ 1)− θ̃i(t),

snewi =
si(t)

1 + nouti (t)
+

∑
j∈N in

i (t)

sj(t)

1 + noutj (t)
.

2) If t 6∈ Ti, agent i updates its agreement and scaling
variables by setting

znewi = zi(t) +
∑

j∈N in
i (t)

zj(t)

1 + noutj (t)

+ θ̃i(t+ 1)− θ̃i(t),

snewi = si(t) +
∑

j∈N in
i (t)

sj(t)

1 + noutj (t)
.

It is worth noting that N in
i (t) may be an empty set. While

we do not require updating to happen instantaneously, we do
assume that it will be completed before the next event time
in T . Agent i then holds these values constant until either
it again receives transmission from at least one in-neighbor,
or it transmits to its out-neighbors, or both.

To state the main result, we need the following concepts.
The communication relationships among the n agents

which exist at time tl ∈ T can be described by a directed
graph G(tl) with vertex set V = {1, 2, . . . , n} and arc set
A(tl) ⊂ V×V which is defined in such a way so that for any
i, j ∈ {1, 2, . . . , n} and i 6= j, the arc from vertex i to vertex
j, denoted by (i, j), is an arc in G(tl) if and only if tl ∈ Ti
and agent j is an out-neighbor of agent i at time tl. In other

words, (i, j) is an arc in G(tl) if agent i sends its current
weighted agreement and scaling variables to agent j at time
tl. Since each agent’s own agreement and scaling variables
are always used in its updating, we assume that each G(tl)
has self-arcs at all n vertices.

A directed graph is called strongly connected if there is a
directed path between each ordered pair of distinct vertices
in the graph. By the union of a finite sequence of directed
graphs, G1,G2, . . . ,Gp, each with the same vertex set V ,
we mean the directed graph with vertex set V and arc set
equaling the union of the arc sets of all of the graphs in
the sequence. We say that such a finite sequence is jointly
strongly connected if the union of its members is a strongly
connected graph. We say that an infinite sequence of directed
graphs G1,G2,G3, . . ., each with the same vertex set, is
repeatedly jointly strongly connected if there is a positive
integer r such that for each integer k ≥ 0, the finite sequence
Grk+1,Grk+2, . . . ,Gr(k+1) is jointly strongly connected.

Theorem 1: Suppose that all n agents adhere to Algo-
rithm I and that the infinite sequence of directed graphs
G(t1),G(t2),G(t3), . . . is repeatedly jointly strongly con-
nected. If each θ̃i(t) converges to θi almost surely (or with
high probability), then

lim
t→∞

zi(t) = θ∗, i ∈ {1, 2, . . . , n},

almost surely (or with high probability).
The proof of this theorem is omitted due to space lim-

itations, and will be given in an expanded version of this
extended abstract.

IV. CONCLUSION

In this extended abstract, we have introduced an asyn-
chronous algorithm to solve a class of distributed parametric
learning problems in a multi-agent network, in which each
agent acquires its private streaming data to establish a local
learning model and aims to learn a common global learning
model, defined as the average of all local ones. Without
assuming that the agents’ clocks are synchronized or that
the event times at which any one agent updates its variables
are evenly spaced, it has been shown that for any sequence
of repeatedly jointly connected graphs describing neighbor
relationships defined on the merged sequence of all agents’
event times, the algorithm leads all agents to asymptotically
converge to the common global learning model, at least with
high probability. For future work, it is of interest to study
the effects of communication and computation delays, as
was done in [41]. Another direction is to further reduce
communication load among the agents by utilizing the round
robin scheme [37].
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