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1. Introduction

If r is a nc rational function of d non-commuting
variables x1, ...,xd , that is regular at 0 (or any d−tuple of
scalars), it is known that r admits a minimal realization
and using the minimal realization the (stable extended)
domain of r can be fully described (this is Theorem 1).
In addition, the set of all of nc rational functions reg-
ular at 0 can be characterized in terms of their power
series expansions (this is Theorem 2). However, there
are nc rational functions which do not contain d−tuples
of scalars. For example, the nc rational function

r(x1,x2) = (x1x2− x2x1)
−1

is not regular at any (y1,y2) ∈ C2; however, r is regular
at some (Y1,Y2) ∈ (C2×2)2, for example at

(Y1,Y2) =

((
0 1
1 0

)
,

(
1 0
0 −1

))
∈ (C2×2)2.

We will not limit ourself for functions regular at 0. In
this talk we work in the more general settings of all nc
rational functions, i.e., r is regular at some Y which
is a d−tuple of s× s matrices, say Y = (Y1, ...,Yd) ∈
(Cs×s)d , and we prove generalizations of both Theo-
rems 1 and 2 for such an r.

1.1. Characterizations of NC Rational Func-
tions Regular at 0

The next theorem gives a full characterization
of nc rational functions which are regular at 0, and
their (stable extended) domains of regularity, in terms
of their minimal realizations (for the proofs, see
[1, 3, 4, 5, 6]).

∗These results are based on joint work with Daniel Alpay (Ben
Gurion University of the Negev) and Victor Vinnikov (Ben Gurion
University of the Negev).
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Theorem 1 If r is a nc rational function of x1, ...,xd and
r is regular at 0, then

1. r admits a unique (up to similarity) minimal state
space realization

r(x1, ...,xd) = D+C(IL−
d

∑
i=1

Aixi)
−1(

d

∑
i=1

Bixi),

where A1, ...,Ad ∈ CL×L,B1, ...,Bd ∈ CL×1,C ∈
C1×L,D = r(0) and L ∈ N.

2. For all m ∈ N: X = (X1, ...,Xd) ∈ (Cm×m)d is in
the stable extended domain of r ⇐⇒

det(ImL−X1⊗A1− ...−Xd⊗Ad) 6= 0.

The following theorem provides a full characterization
of nc rational functions regular at 0 in terms of their
power series expansions (for the proof, see [1]).

Theorem 2 (Fliess-Kronecker Theorem) A nc power
series

∑
ω∈Gd

rω xω ∈ C〈〈x1, ...,xd〉〉

is the power series expansion of a nc rational func-
tion at a 0 ⇐⇒ the infinite Gd × Gd Hankel matrix
H= [ruv]u,v∈Gd has a finite rank. (Gd is the free monoid
generated by d generators g1, ...,gd).

2. Main Results:

What is a realization in our settings? A realization
centered at Y = (Y1, ...,Yd) ∈ (Cs×s)d , is a function of
the form

Im⊗D+(Im⊗C)Λ(X1, ...,Xd)
−1

d

∑
i=1

Bi(Xi− Im⊗Yi)

(1)
where

Λ(X1, ...,Xd) = ILm−
d

∑
i=1

Ai(Xi− Im⊗Yi),
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A1, ...,Ad : Cs×s→ CL×L and B1, ...,Bd : Cs×s→ CL×s

are linear mappings, C ∈ Cs×L,D ∈ Cs×s,L ∈ N and

X = (X1, ...,Xd) ∈ (Csm×sm)d

for every m ∈ N. Similarly to the classical theory of
realizations, modified definitions for observability, con-
trollability and minimality of realizations of the form
(1) are introduced. In particular, we obtain a Kalman
decomposition and show that a realization is minimal
(in the sense that L is the smallest integer for which such
a realization exists) if and only if it is both controllable
and observable. The following theorem is a generaliza-
tion of Theorem 1.

Theorem 3 If r is a nc rational function, regular at
some Y = (Y1, ...,Yd) ∈ (Cs×s)d , then r admits a unique
(up to similarity) minimal realization of the form

Im⊗D+(Im⊗C)Λ(X1, ...,Xd)
−1

(
d

∑
i=1

Bi(Xi− Im⊗Yi)

)
as in (1). Moreover, for any minimal realization of r of
the form (1), the stable extended domain of r is equal to

∞⋃
m=1

{(X1, ...,Xd) ∈ (Csm×sm)d : det(Λ(X1, ...,Xd)) 6= 0},

which is the invertibility set of Λ.

The proof is obtained by steps: first, we show the exis-
tence of a realization of the form (1), centered at Y , then
using a modified Kalman decomposition we can choose
the realization to be a minimal one and finally, to obtain
the stable extended domain, we use the minimality of
the realization and the difference-differential operator,
as in [3, 4]. In [2], the authors proved that a generalized
nc formal power series expansion

∑
ω∈Gd

rω(X− Im⊗Y )�sω (2)

is a nc function if and only if the linear mappings (rω)
satisfy the so called lost-Abbey conditions; we found
necessary and sufficient conditions on the coefficients
(rω), so that the power series in (2) is a nc rational func-
tion regular at Y . The following is a generalization of
Theorem 2.

Theorem 4 (Generalized Fliess-Kronecker Theorem)
A generalized nc formal power series of the form

∑
ω∈Gd

rω(X− Im⊗Y )�sω , X ∈ (Csm×sm)d

centered at Y ∈ (Cs×s)d is the power series expansion
of a nc rational function r that is regular at Y ⇐⇒

1. (rω) satisfy the lost-Abbey conditions, and

2. the Hankel matrix H(r) given by

H(r) =
[
H(r)

T1,T2

]
T1,T2∈I

has a finite (column) rank.

In the above theorem, the entries of the Hankel matrix
are given explicitly by

H(r)
T1,T2

= (Ei1 j1 , ...,Ei` j` ,Ep1q1 , ...,Ept qt )rων

for each T1 = (ω,((i1, . j1), ...,(i`, j`))) ∈ I and T2 =
(ν ,((p1,q1), ...,(pt ,qt))) ∈ I, where

I=
∞⋃
`=0

(
G

[`]
d × ({1, ...,s}×{1, ...,s})⊗`

)
and {Ei j}s

i, j=1 is the standard basis of Cs×s. In the proof
of Theorem 4, we use Theorem 3 and more results from
the theory of minimal realizations of the form (1). In
particular, if r is a nc rational function, it admits a min-
imal realization and one can get the explicit formulas
r /0 ≡ D and

rω(Z1, ...,Z`) =CAi1(Z
1)...Ai`−1(Z

`−1)Bi`(Z
`),

where ω = gi1 ...gi` , for the coefficients (rω) of the
power series expansion of r, and also reexpress the lost-
Abbey conditions in terms of A1, ...,Ad ,B1, ...,Bd ,C
and D.

No paper will be submitted to the proceedings.
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