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EXTENDED ABSTRACT

In recent two decades, the technology of wireless com-
munication network grew rapidly and has been applied to
numerous fields. This technology also benefits the field of
control: by introducing the wireless communication, more
complex and flexible control systems are realized. In a
wireless control system, accompanied with the convenience
brought by the wireless communication, the communication
between system components often consumes a majority of
power. Meanwhile, the system may spread widely in a terrain
and the components may be supplied by local unrechargeable
battery. Hence, it is important to save the communication
resources. One direction is to schedule the communication
of the system components. Usually, the schedule is well
designed before the system process. To sufficiently use
the real-time information, the event-triggered scheduling is
proposed, which further saves the sensor communication
[1]. The mechanism is briefly explained as follows. The
triggering condition usually has the form of

||yk − b|| ≤ ε,

where yk is the measurement at the sampled time k, b is a
pre-specified real vector, and ε is a small real number. Once
this triggering condition is satisfied, the sensor could save
the transmission of yk while the component which the sensor
communicates with is able to know that yk is close to the
value b. This type of trigger is called deterministic trigger,
since the triggering condition has no uncertainty [1], [2].
However, at the receiver side, the estimation of the measured
states based on the measurements cannot preserve the Gaus-
sian property anymore, as the triggering condition causes a
truncated probability density function. This problem brings
additional complexity in the calculation of the estimates. A
stochastic event trigger is proposed by Han et al. [3], [4],
which smartly addresses the problem mentioned above. The
stochastic event trigger not only has the similar function
as a deterministic trigger, but also preserves the Gaussian
property of the estimation.

In this paper, we consider to design the sensor com-
munication which best saves the communication resources
using the stochastic event triggers. In many applications,
the accurate estimation performance is not necessary, but
long lifetime of the system and low equipment cost are
urgently demanded. For example, in the field of environment
monitoring, a large amount of sensors are used to monitor
the environment parameters, which may be distributed in the
wild and be battery charged. The estimation of the monitored
environment parameters need not to be exactly accurate, but

the sensor power should be best saved to maintain a long
lifetime. Meanwhile, since a large number of sensors are
used, the cost of producing a sensor is demanded to be cheap,
which requires simple equipment embedded in the sensor.
The study in this paper is towards those applications.

We summarize the contribution of this paper as follows:
1) We propose a framework of the communication-saving

design. We pre-specify a set of the stochastic event
triggers for the sensor. When one of the triggers is
triggered, the identity of the corresponding trigger
is sent to the estimator; otherwise nothing is sent.
In this way, continuous communication is avoided;
meanwhile, the identity of the trigger only needs a few
bits, which allows the communication can be realized
by very simple signal transmission equipment.

2) We figure out that one stochastic event trigger is trig-
gered and the sensor sends the corresponding identity
of the trigger to the estimator is equivalent to that
a virtual sensor sends a certain measurement to the
estimator. This equivalence facilitates the analysis of
the estimation performance and the succeeding design
task.

3) A design problem subject to specific requirements is
considered, which demonstrates the proposed design
framework.

I. FRAMEWORK OF COMMUNICATION-SAVING DESIGN

In this section, we present the general model of the system.
We first give the formulations of the process and sensors;
then we propose a novel design of the communication
from the sensor to the estimator using the event-trigger
mechanism, which consumes the most saved communication
resource; last we describe the task of the estimator.

A. State Process and Sensor

The system to be studied is shown in Fig. 1. The state of
a single dynamic process is measured by a sensor:

xk+1 = Axk + wk, (1)
yk = Cxk + vk. (2)

In the above equations, xk ∈ Rn is the process state of time
k and yk ∈ Rm is the measurement of the sensor. {wk}
and {vk} are zero-mean white Gaussian noise processes,
satisfying E[wkw

′
j ] = δkjQ (Q ≥ 0), E[vkv

′
j ] = δkjRi

(Ri > 0), and E[wkv
′
j ] = 0, ∀j, k. The initial state x0

is assumed Gaussian with distribution N (0,Σ0). It is also
assumed uncorrelated with wk and vk, ∀k. Let the pair
(A,Q

1
2 ) be controllable and (C,A) be detectable.
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Fig. 1. The system diagram.

B. Saved Communication by Stochastic Event Triggers

After taking measurements of the process states, the sensor
needs to transmit its data to a remote estimator. In an ordinary
framework, the sensor usually sends the quantized value
of the measurements via a communication channel at each
sampled time instances. This manner guarantees accurate
estimation while consumes great communication resource.
However, in many applications, communication resource is
scarce, while the performance of the estimator is not required
to be that accurate. The scenarios have been discussed in
the introduction. The goal of this paper is subject to those
scenarios. Instead of sufficient communication, we make use
of the mechanism of event triggers and propose a novel
design for the sensor communication, which consumes the
most saved communication resource.

Define the trigger function as follows

φ(y, b) = exp

(
−1

2
(y − b)′Y (y − b)

)
. (3)

The sensor is assigned n vectors: b1, b2, ..., bn ∈ Rm. The
way how to choose bi is to be proposed in the next section.
Define γk as the communication decision variable. At each
time k, after obtaining yk, the sensor generates a random
variable ζk, which is uniformly distributed within the interval
[0, 1], and then obtain γk as follows:

γk =

{
i, if ζk ≤ φ(yk, bi),

0, otherwise.

If ζk ≤ φ(yk, bi) are satisfied for more than one i, we only
choose one of them.

The sensor communicates with the estimator according to
the following rules: if γk = 0, the sensor does not send
anything to the estimator; if γk = i, the sensor sends the
binary code of i using corresponding bits.

Remark 1 (The saved communication): The advantage of
this sensor communication design is that it greatly saves the
communication resource and is easy to install. Firstly, the
sensor does not have to do the data transmission at each
sampled time instance. Secondly, the data transmitted by the
sensor only requires several bits. Compared with the general
scenario that the sensor sends the quantized value of the
measurement, which usually requires a larger bits packet,
the way we propose saves more communication resource.
Thirdly, the communication of the sensor can be realized by
simple equipment, since only packets of short bits are to be
sent.

On the other hand, the trade-off of the saved communi-
cation is the sacrificed estimation performance. Hence, this
paper faces to those applications where the estimation per-
formance is less important but the communication resource
is relatively scarce. For these applications, the result in this
paper may be found applicable.

C. Estimator

Define the information set of the estimator at time k as

Ik , {γ1, γ2, ..., γk}. (4)

Further define the estimates as

x̂−k , E[xk|Ik−1], (5)

x̂k , E[xk|Ik], (6)

and the associated error covariances as

P−k , E[(xk − x̂−k )(xk − x̂−k )′|Ik−1],

Pk , E[(xk − x̂k)(xk − x̂k)′|Ik].

The task of the estimator is to calculate x̂−k , x̂k, P−k , and Pk
at each time k.

Remark 2: The typical Kalman filter is used to calculate

x̂k , E[xk|Yk],

Pk , E[(xk − x̂k)(xk − x̂k)′|Yk],

where Yk = {y1, y2, ..., yk}. In this case, the Kalman filter
is not applicable, since the estimator receives no sensor
measurements.

II. COMMUNICATION-SAVING DESIGN BY STOCHASTIC
EVENT TRIGGERS

In this section, we investigate the detailed design of the
communication-saving model.

A. Estimation Process

First we find how the estimator works. At each time k, the
estimator first calculate the prediction x̂−k and the associated
error covariance P−k :

x̂−k = Ax̂k−1, (7)
P−k = APk−1A

′ +Q. (8)

When γk = 0, i.e., the estimator received nothing from
the sensor, it simply use the prediction values as its final
estimate:

x̂k = x̂−k , (9)
Pk = P−k . (10)

When γk = i, we present the following result.
Theorem 1 (Virtual Sensor): When γk = i, it is equiva-

lent for the estimator to receiving from a virtual sensor

ỹk = Cxk + ṽk, ṽk ∼ N
(
0, R+ Y −1

)
(11)
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a measurement ỹk = bi. Correspondingly, the estimator
computes x̂k and Pk as follows:

Kk = P−k C
′(CP−k C

′ +R+ Y −1)−1, (12)
x̂k = x̂−k +Kk(bi − Cx̂−k ), (13)
Pk = P−k −KkCP

−
k . (14)

Proof: The proof is in the appendix.
Theorem 1 reveals the advantage of the event-triggered

communication. The sensor only sends the simple code γk
rather than the measurement yk, but for the estimator it
is equivalent to receiving the measurement from a certain
sensor.

Remark 3: Through Theorem 1, we can see that the
proposed design of event-triggered communication works
similarly as a quantizer, while it allows the estimator to
preserve the Gaussian property like running a Kalman filter,
which maintains the simplicity of the estimation process.

B. Performance Analysis

After we propose the design of event-triggered communi-
cation, we need to analyze the performance of the system
under the proposed design. In this section, we assume that
A is stable.

First, we study the communication rate of the channel.
Define λk as the communication rate at time k. We have

λk = Pr(γk > 0). (15)

Lemma 1: A Gaussian random variable y has the prob-
ability distribution N (ŷ,Π). Then the expectation of the
function

V (y) = exp

(
−1

2
(y − b)′Y (y − b)

)
is

EV =
(2π)

m
2

|Y | 12
φ(b; ŷ,Π + Y −1),

where the function φ(x;µ,Σ) is the probability distribution
of Gaussian random variable with mean µ and covariance Σ.

Proof: Direct but tedious calculation can obtain the
result.

Theorem 2: The communication rate λ

λ , lim
k→∞

λk

= 1−
n∏
i=1

(
1− (2π)

m
2

|Y | 12
φ(bi; 0,Π + Y −1)

)
,

where Π = CΣC ′+R and Σ is the solution to Σ = AΣA′+
Q.

Proof: Since A is stable, the solution to Σ = AΣA′+Q
exists. Hence, xk has a limit distribution of N (0,Σ). Then
the limit of yk’s distribution is N (0,Π).

We have

Pr(γk = i) = Pr

(
ζk ≤ exp

(
− 1

2
(y − b)′Y (y − b)

))
= E

[
exp
(
− 1

2
(y − b)′Y (y − b)

)]
.

Applying Lemma 1 we can obtain the result.
Second, we study the estimation performance of the esti-

mator. Since the estimator receives “measurements” from the
virtual sensors intermittently, the estimation error covariance
Pk depends on γk and hence is stochastic. We consider the
performance of EPk instead to eliminate the uncertainty of
communication. Define the Lyapunov operator as follows:

h(X) , AXA′ +Q, (16)

and let

R = R+ Y −1. (17)

Consider the modified algebraic Riccati equation (MARE)

g(X) = h(X)− λh(X)C ′
(
Ch(X)C ′ +R

)−1
Ch(X). (18)

We use this MARE to construct a series {Vk}: V0 = P0,
Vk = g(Vk−1).

Lemma 2: EPk is bounded by Vk:

EPk ≤ Vk. (19)
Proof: The proof is similar to the one of Theorem 4 in

[5]. Hence, we omit the proof.
Since A is stable, Vk will always converge to a steady state.
Let

lim
k→∞

Vk = V . (20)

C. The Design of Event Triggers

In the previous section, we reveal how the event-triggered
communication affects the performance of the system, which
allows us to investigate the design task in this subsection. We
have to tackle the following three facts:

1) Bits to present γk,
2) Communication rate λ,
3) Estimation performance V .
We notice the coupling of the three quantities as follows.

The bits of γk is determined by the number of the event
triggers (the number of bi). The communication rate λ is
determined by bi and Y , where a larger Y (in the sense of
positive definite) causes a smaller probability to trigger the
triggering conditions, and hence a smaller communication
rate. The upper bound of estimation error covariance V is
determined by λ and Y : larger λ and larger Y leads to
smaller V . Based on the framework, many problems can
be investigated. Hence, we need to tune these quantities to
achieve the design demands in specific problem scenarios.

In this subsection, we propose one problem to demonstrate
this communication-saving design. Consider the estimation
performance needs to satisfy

Tr(V ) ≤ P, (21)

where P is a specified performance level. Moreover, the
communication rate should be no larger than a given α:

λ ≤ α. (22)

We intend to design bi and Y to realize the goal that the bits
of γk are minimized.
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To solve the problem, we first fix the value of λ: λ = α. If
we want fewer bits of γk, we would like to obtain a relatively
small Y in the sense of positive definite. We propose the
following optimization problem:

Problem 1:

min Tr(Y )

s.t. Tr(V ) ≤ P.
Since V is implicit, we need to do transformation of the
problem. It is simple to see that this problem is equivalent
to

Problem 2:

min Tr(Y )

s.t. Tr(X) ≤ P,
X > g(X).

Define

ψ(L,X) = h(X) + λ2L
(
(1 + q)(Ch(X)C ′ +R)

)
L′

−λh(X)H ′L′ − λLHh(X).

where q = 1−λ
λ . Furthermore, we have the following result.

Lemma 3: The following statements are equivalent:

(1) ∃X � 0, such that X ≥ g(X),
(2) ∃X ≥ 0 and L, such that X ≥ ψ(L,X) holds.

Proof: The proof is similar to the one of Theorem 5
of [5].

Lemma 4: The following statements are equivalent:

(1) ∃X ≥ 0, such that X ≥ ψ(L,X),
(2) ∃W ≥ 0 and Z, such that



W M1A M1 M2A M2 M3 M3

A′M ′1 W
M ′1 Q−1

A′M ′2 W
M ′2 Q−1

M ′3 R−1

M ′3 Y


≥ 0.

where M1 = Y A − λZCA, M2 =
√
λ(1− λ)(Y −

ZC), and M3 =
√
λZ.

Moreover, for W satisfying the inequality in (2), X = W−1

is a solution to the inequality in (1). It is also true conversely.

Proof: By using Schur decomposition, which is similar
to the one of Theorem 5 of [5], the argument can be proved.

Hence, Problem 23 is equivalent to the following problem.

Problem 3:

min
X,W,Z

Tr(Y )

s.t. X ≤ P,[
X I
I W

]
� 0,

W M1A M1 M2A M2 M3 M3

A′M ′1 W
M ′1 Q−1

A′M ′2 W
M ′2 Q−1

M ′3 R−1

M ′3 Y


≥ 0.

This problem is convex and can be solved efficiently by
numerical algorithm.

After solving Y , we need to obtain the proper number and
values of bi by heuristic tuning, such that the communication
rate is achieved.

Remark 4: In this section, we have to assume that A
is stable. If A is unstable, the measurements yk may be
unbounded, and the event triggers with pre-specified bi’s
cannot be triggered, which destroys the system performance.
This is due to the simplicity of sensor equipment, which
is unable to carry too complicated tasks. When the sensor
is more powerful, for example it has local computation
capacity, it can manage more complicated tasks.

In practical applications, since the dynamic of the process
is usually controlled to be stable, our proposed design is able
to serve a large class of systems.
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