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EXTENDED ABSTRACT

This brief paper presents that the majorization theory plays an
essential role in a class of sensor scheduling problems, whose solu-
tions all have periodic or uniformly distributed patterns. This brief
paper revisits the problem of communication time scheduling for a
single sensor with local computation capability, and strengthens its
original result by the majorization theory.

The sensor scheduling problem to be studied exists in the
networked control systems (NCSs), which has developed fast s-
ince the beginning of the 21 century. It intends to address the
issue of limited communication resource existing in the practical
applications, which may result from the unrechargeable battery
supply for network component individuals, or limited bandwidth
of wireless communication channels. As the resource is limited,
the communications of sensors need to get scheduled so that some
required performance of the system can be achieved when some
criterion is specified. In this paper, state estimation quality is the
performance of concern.

Among the studies in sensor scheduling, the solutions of a class
of problems share a great similarity, where they all have periodic
or uniformly distributed patterns. Hovareshti et al. [1] studies the
scheduling of two sensors with local computing capability (the so-
called smart sensor) and presented that the optimal schedule is use
the two sensors alternatively and periodically. Shi et al. did a series
of research on this field. They studied the scheduling problem of
single smart sensor [2], of two normal sensors [3], and of one
sensor observing two state processes [4]. The solution to the above
problems are periodic. Yang and Shi [5] considered the scheduling
of a single normal sensor in a first-order system within a finite time
horizon, and proved that the necessary condition of a schedule to be
optimal is that the transmission times are distributed as uniformly
as possible. The uniformly distributed pattern also exists in the
solution to the optimal communication channel allocation. Yang et
al. [6] investigated the channel allocation among multiple identical
sensors with local estimators and showed that the optimal allocation
is that the channels connected to each sensor should be uniformly
distributed.

The fact that the optimal solution has a periodic or uniform
pattern implies that an expression as follows holds:

J(ω̄, ω̄, . . . , ω̄) ≤ J(ω1, ω2, . . . , ωn),

where ω̄ = (1/n)
∑
ωi. This phenomenon is also observed and

studied in various fields, such as the study of income inequality
in economics [7], [8], liquid mixing in physics and chemistry [9],
the representation theory of the symmetric groups in group theory
[10], and so on. The intuition among these studies is the need to
compare the degree of spreading or variation of the components of
a vector.

Majorization, one advanced branch of inequality theory in math-
ematics, provides tools for this type of demands [11]. Important
achievements were obtained by many researchers in this field.
Hardy, Littlewood and Polya [12] first studies the comparison of
a category of objective functions for two vectors, and showed that
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Fig. 1. A sensor measures a process and sends its data to a remote estimator
via a controlled channel.

the objective value of one vector is smaller than that of the other
if it is majorized by the other. Another important contribution is
made by Schur [13].

This paper intends to apply the majorization theory to the sensor
scheduling problem. The benefit of the introduction of this theory
is that the comparison of the performances of two schedules is
replaced by the majorization order between the parameters of two
schedules. Usually, the state estimation criterion is updated by the
algebraic Riccati equation, which is difficult to deal with. When the
estimation quality is not required to be extremely accurate, proper
relaxation can be made. The majorization order enables a rough
indication to the estimation performance and the Riccati equations
are avoided. Moreover, since the intrinsic natures of the equations in
state estimation (such as the convexity of algebraic Riccati function)
is closely associated to the conditions of the majorization theory,
the theory is likely to be applied to other problems in the field as
a new powerful tool.

The contribution of the paper is as follows.
1) This paper applies the majorization theory to address the

sensor scheduling problem and points out that majorization
theory is the essence of a class of related problems whose
solutions have periodic or uniform pattern.

2) This paper revisits a problem of scheduling a smart sensor
and provides a stronger result. It enables the comparison of
two non-optimal schedules and reduces it to compare their
orders (if exist) in the sense of majorization.

3) The scheduling of a simple normal sensor in a general-order
system is considered. It is relaxed to minimize the upper
bound of objective function and optimal schedules is given.

A. Problem Setup

In this subsection we propose a communication time scheduling
problem for a single sensor. The system to be considered is shown
in Fig. 1. In the system, a dynamic process is measured by one
sensor:

xk+1 = Axk + wk, (1)

yk = Cxk + vk, (2)

where xk ∈ Rn is the system state at time k and yk ∈ Rm is
the measurement taken by the sensor. {wk} and {vk} are zero-
mean white Gaussian noise processes with E[wkw

′
j ] = δkjQ (Q ≥

0) and E[vk(vj)
′] = δkjR (R > 0). {wk} and {vk} are also

independent processes, i.e., E[wk(vj)
′] = 0, ∀j, k. The initial state

x0 is a zero-mean Gaussian random vector uncorrelated to {wk}
and {vk} for any k and has covariance Π ≥ 0. We assume that the
pair (C,A) is detectable.
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At time k, the sensor transmits its measurement yk to a remote
estimator via a wireless channel. Due to limited communication
resource, the sensor is unable to do the transmission at each time
instant and needs to schedule the communication time. Define the
scheduling variable γk as:

γk =

{
1, to send yk,

0, not to send yk.

Define a sensor schedule as θ , {γk}T1 within the time horizon T .
The estimator calculates the minimum mean-squared error

(MMSE) estimate of xk based on the received sensor measurements
up to time k. Denote the set of all the measurements received up
to time k as Ỹk = {γ1y1, γ2y2, . . . , γkyk}. Define the a priori
estimate and associated error covariance as

x̂k|k−1 , E[xk|Ỹk−1],

Pk|k−1 , E[(xk − x̂k|k−1)(xk − x̂k|k−1)′|Ỹk−1],

and the a posteriori estimate and its associated error covariance as

x̂k|k , E[xk|Ỹk],

Pk|k , E[(xk − x̂k|k)(xk − x̂k|k)′|Ỹk].

The MMSE estimate of xk to be calculated is equal to the
conditional mean x̂k|k. The procedure of computing these quantities
is given as follows. At time k, if yk is received by the estimator,
they are computed by a Kalman filter [14]:

x̂k|k−1 = Ax̂k−1|k−1, (3)

Pk|k−1 = APk−1|k−1A
′ +Q, (4)

Kk = Pk|k−1C
′(CPk|k−1C

′ +R)−1, (5)

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1), (6)

Pk|k = (I −KkC)Pk|k−1, (7)

where the recursion starts from x̂0|0 = 0 and P0|0 = Π. When the
sensor does not send yk, the update is simply

x̂k|k = Ax̂k−1|k−1,

Pk|k = APk−1|k−1A
′ +Q.

The estimation performance under limited measurement trans-
mission is of concern. We investigate the average performance with-
in the time horizon and consider the following objective function:

J(θ) =

T∑
k=0

Tr(Pk|k). (8)

We consider the following problem:

Problem 1:

min
θ

J(θ)

s.t.

N∑
k=1

γk ≤ d,

where d (d ∈ N, d < T ) is the number of available transmission
times of the sensor.

B. Majorization Theory in Sensor Scheduling

The results to be used given be the majorization theory are
presented as follows.

Theorem 1 ( [12]): x ≺ y if and only if for all convex functions
ψ : R→ R,

n∑
i=1

ψ(xi) ≤
n∑
i=1

ψ(yi).

Based on this theory, the following deduction is achieved.

Corollary 1: For a function φ : Rn → R with

φ(x) =

n∑
i=1

ψ(xi)

where ψ(·) is convex, its minimum is given as

φ? =

n∑
i=1

ψ(x̄),

where x̄ = (1/n)
∑n
i=1 ψ(xi).

In next two subsections we apply the majorization theory in
two models. First we revisit the problem of communication time
scheduling for a smart sensor and strengthens its original result by
the majorization theory. Secondly, we study the scheduling for a
single normal sensor in a general-order system, and the optimal
schedules for minimizing the upper bound of objective function is
provided.

C. Scheduling of a Smart Sensor

In this subsection we revisit the problem studied in [2] to reveal
its essential nature by majorization theory.

Process Sensor Preprocessor Estimator
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Fig. 2. Sensor scheduling of a smart sensor.

In the model (Fig. 2), the sensor is equipped a local computation
part in addition to the model proposed in Section II. It is able to
locally compute the MMSE estimate x̂sk and associated estimation
error convariance P sk via the following set of equations:

x̂sk|k−1 = Ax̂sk−1|k−1,

P sk|k−1 = AP sk−1|k−1A
′ +Q,

Kk = P sk|k−1C
′(CP sk|k−1C

′ +R)−1,

x̂sk|k = Ax̂sk−1 +Kk(yk − CAx̂sk−1),

P sk|k = (I −KkC)P sk|k−1,

where the recursion starts from x̂s0|0 = 0 and P s0|0 = Π. The
estimation error covariance P sk|k converges to a steady-state value
exponentially fast:

lim
k→∞

P sk|k = P .

For simplicity we assume that P sk|k = P from k = 1. The sensor
sends x̂sk|k instead of yk when the transmission is allowed. Define
an operator h : Sn+ → Sn+:

h(X) , AXA′ +Q. (9)
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The state estimate x̂k|k and error covariance Pk|k are updated as
follows:

(x̂k|k, Pk|k) =

{ (
Ax̂k−1|k−1, h(Pk−1|k−1)

)
, if γk = 0,

(x̂sk|k, P ), if γk = 1.

Denote the set of transmission times as κ = {k1, k2, . . . , kd},
where γki = 1, and the transmission intervals as ω1 = k1,
ωi = ki − ki−1, i = 2, . . . , d, and ωd+1 = T − kd + 1. The
objective (8) becomes

J(θ) =

d+1∑
j=0

ωj∑
i=0

Tr
(
hi(P )

)
.

The authors of [2] proves by mathematical calculation that the
optimal schedule satisfies that the intervals ωi should be almost
uniformly distributed, i.e., the difference of the lengths is not larger
than 1. We point out that it is the result of the majorization theory.

Define

ψ(x) =

l∑
i=0

Tr
(
hi(P )

)
+ (x− l)hl+1(P ), x > 0, (10)

where l = bxc, the largest number less than x. Notice that when x

is a positive integer, ψ(x) =
x∑
i=0

Tr
(
hi(P )

)
.

Lemma 1 ( [2]): For 0 ≤ t1 ≤ t2, the following inequality
holds:

ht1(P ) ≤ ht2(P ).

In addition, if t1 < t2, then

Tr
(
ht1(P )

)
< Tr

(
ht2(P )

)
.

By Lemma 1 it is simple to verify that ψ(x) is convex. Then

J(θ) =

d+1∑
j=0

ψ(ωi),

which satisfies the conditions of Theorem 1. We have the following
result:

Theorem 2: For two schedules θ and θ′ with ω =
(ω1, ω2, . . . , ωd+1) and ω′ = (ω′1, ω

′
2, . . . , ω

′
d+1) respectively,

ω ≺ ω′ if and only if

J(θ) ≤ J(θ′).
The theorem implies the following corollary.

Corollary 2: A schedule θ is optimal if and only if

ωi = m or m+ 1, i = 1, 2, 3, . . . , d+ 1,

where m = bT+1
d+1
c.

This corollary is exactly the same result of [2], proved from the
perspective of majorization.

D. Scheduling of a Simple Sensor with General Order

In this subsection we consider Problem 1. Since the state process
is secured stable by the controller, we assume that A is stable.
According to Lyapunov theory, there exists a unique P̃ satisfying

h(P̃ ) = AP̃A′ +Q.

Define operators g̃, g : Sn+ → Sn+:

g̃(X) , X −XC′(CXC′ +R)−1CX,

g(X) , g̃h(X).

Then the update for the estimation error covariance is

Pk|k =

{
h(Pk−1|k−1), if γk = 0,
g(Pk−1|k−1), if γk = 1.

The objective is simplified as

J(θ) =

d+1∑
j=0

ωj∑
i=0

Tr
(
hi(Pkj )

)
.

The problem of minimizing J(θ) is generally difficult, due to the
complexity in high order Riccati equations. In this paper we only
investigate the case where C is invertible, and leave the general
case as a future work. Define

M , (C′R−1C)−1.

We study the case that M ≤ Q. Notice that M and Q represent
the randomness degree of the measurements noise and the process
noise respectively. The condition means the requirement that the
measurement contains more precision. Define

J̄(θ) ,
d+1∑
j=0

ωj∑
i=0

Tr
(
hi(M)

)
.

Lemma 2: J̄(θ) ≥ J(θ).

We consider to find the schedules which minimizes the upper
bound J̄(θ).

Lemma 3: For 0 ≤ i ≤ j, the following inequality holds:

hi(M) ≤ hj(M).

In addition, if i < j, then

Tr
(
hi(M)

)
< Tr

(
hj(M)

)
.

Define

ξ(x) =

l∑
i=0

Tr
(
hi(M)

)
+ (x− l)hl+1(M), x > 0,

where l = bxc. Lemma 2 secures the convexity of ξ(x). Since

J̄(θ) =
d+1∑
j=0

ξ(ω) satisfies the condition of Theorem 1, the following

results holds.

Theorem 3: For two schedules θ and θ′ with ω =
(ω1, ω2, . . . , ωd+1) and ω′ = (ω′1, ω

′
2, . . . , ω

′
d+1) respectively,

ω ≺ ω′ if and only if

J̄(θ) ≤ J̄(θ′).

The schedule θ minimizes J̄(θ) if and only if

ωi = m or m+ 1, i = 1, 2, 3, . . . , d+ 1,

where m = bT+1
d+1
c.
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