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Abstract— Given a dynamic plant with parametric uncer-
tainty, we present a causal state feedback law, that minimizes
the worst case input-output ℓ2-gain. The control law is adaptive
in the sense the past data is used to estimate model parameters
for prediction of future dynamics. The given formula recovers
standard H∞ optimal state feedback when the parametric
uncertainty shrinks to zero.

I. INTRODUCTION

The history of adaptive control dates back at least to air-

craft autopilot development in the 1950s. Later on, computer

control and system identification lead to a surge of research

activity during the 1970s. Following the landmark paper [2],

a long sequence of contributions to adaptive control theory

derived conditions for convergence, stability, robustness and

performance under various assumptions. For example, [10]

analysed adaptive algorithms using averaging, [6] derived an

algorithm that gives mean square stability with probability

one, while [8] gave conditions for the optimal asymptotic

rate of convergence. On the other hand, conditions that may

cause instability were studied in [5], [9] and [13]. Altogether,

hundreds (maybe thousands) of papers have been written on

adaptive control, followed by numerous textbooks, such as

[3], [7], [12], [14] and [1]. In this presentation, we focus on

robustness to unmodelled dynamics in terms of the ℓ2-gain,

as discussed in [4], [15], [11].

For linear plants with known parameters, H∞ optimization

leads to linear feedback controllers. However, this is not the

case when the plant includes uncertain parameters. Instead,

minimization of the input-output ℓ2-gain tends to give con-

trollers that are nonlinear and adaptive: They first collect

information about the uncertain parameters, then exploit that

knowledge to determine the optimal feedback rule. Our op-

timal feedback law will be computed by “adaptive dynamic

programming”, a term that here denotes an extension of

standard dynamic programming to the case of parametric

uncertainty.

II. ADAPTIVE DYNAMIC PROGRAMMING

Consider the dynamical system

xt+1 = fθ(xt, ut) + wt (1)

with the uncertain parameter θ ∈ Θ. Given the sequences u

and w, define the cost function

Jθ(x0) =
T∑

t=0

ℓ(xt, ut, wt). (2)
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where ℓ is some step cost x is given by (1). Let µ specify

the control policies

ut = µt(x0, . . . , xt, u0, . . . , ut−1). (3)

for t = 1, . . . , T . Define

Vµ(x0) = sup
θ,w

Jθ(x0), (4)

Our first result is the following:

Theorem 1 (Adaptive Dynamic Programming): Assume
(1)-(3). Then

inf
µ

Vµ(x0) = inf
u0

sup
w0

inf
u1

. . . sup
wT

sup
θ

Jθ(x0).

Furthermore, suppose that all minima and maxima exist and
define

µ
∗

t (x0, . . . , xt, u1, . . . , ut−1)

= argmin
ut

(
max
wt

min
ut+1

. . .max
wT

max
θ

Jθ(x0)

)
.

Then infµ Vµ(x0) = Vµ∗(x0).
Theorem 1 gives an explicit formula for an optimal feed-

back policy µ∗, but several important questions remain. For

example: 1) Is it computable? 2) Is it adaptive?

Deferring the first question to section IV, let’s start with

the second one. The formula can be re-written as follows. To

compute ut from x0, . . . , xt, u0, . . . , ut−1, we need to find

the minimizing argument ut for

min
ut

max
wt

min
ut+1

. . .max
wT

max
θ∈Θ

T∑

k=t

ℓθ(xk, uk, wk)

}
worst case

future cost

+

t−1∑

k=0

ℓθ(xk, uk, wk)

}
past cost

For small values of t, the controller needs to guard against all

possible values of the paramater θ, but as t grows the terms

of the past will play a more and more important role and the

controller can focus on the θ-values that tend to maximize

the cost of the past. This makes the control law adaptive in

the sense that it learns from past data.

III. H∞ OPTIMAL ADAPTIVE CONTROL

Given a plant of the form

xt+1 = axt + ut + wt x0 = 0 (5)

we will study feedback laws of the form (3), such that the

closed loop system satisfies

T∑

t=0

(qx2
t + ru2

t ) ≤ γ2

T∑

t=0

w2
t . (6)
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The previous section can then be applied with θ = a,

fθ(x, u) = ax + u and ℓ(x, u, w) = qx2 + ru2 − γ2w2.

When the model parameter a is known, standard theory for

H∞ optimization shows existence of an optimal control law

that gives ut as a linear function of xt. This is no longer the

case when a is unknown. However, the following result can

be derived from Theorem 1:

Theorem 2: Given ā, γ > 0, the following are equivalent:

(i) There exists a feedback law of the form (3), such that

the closed loop system with (5) satisfies (6) whenever

a ∈ [−ā, ā].
(ii) The Riccati equation

p = q + ā2(p−1 + r−1 − γ−2)−1

has a solution p ∈ (0, γ2] with

γ2 ≥ q + ā2(p−1 − γ−2)−1.

Remark 1. Let γ∗ denote the minimal gain γ with q = r = 1.

It can be verified that ā2 + 0.5 ≤ γ∗ ≤ ā2 + 1.11. This can

be compared with the optimal gain
√
1 + ā2 for the case that

a is known to be ā and no adaptation is needed.

To explain the main idea behind Theorem 2, a slightly

modified problem will be discussed in the next section.

IV. A PRIORI INFORMATION

A priori estimates of the unknown system parameters can
often be used to get a better gain bound. Such situations
motivate the following modified problem statement where â

and b̂ denote nominal values for the unknown parameters a
and b: Find a feedback law of the form (3), such that

T∑

k=0

(x2
k + u

2
k) ≤ γ

2
T∑

k=0

w
2
k +

[
γ
2 + C(a− â)2 + C(b− b̂)2

]
x
2
0

for all solutions to xt+1 = axt + but + wt with a ∈ [a, ā],
b ∈ [b, b̄]. Using the same approach as in section II, we find
that an optimal feedback law can be defined as

min
ut

. . .max
xT+1

max
(a,b)

T∑

k=t

[
x
2
k + u

2
k − γ

2(axk + buk − xk+1)
2
] }

worst case
future cost

+

t−1∑

k=0

[
x
2
k + u

2
k − γ

2(axk + buk − xk+1)
2
] }

past cost

− γ
2
x
2
0 − C(a− â)2x2

0 − C(b− b̂)2x2
0

}

a priori info

However, defining is one thing, computing is another. To

simplify the formula, the last terms are very helpful, since a

large enough C makes the total expression concave in (a, b)
even after the maximizations over xk. This makes it possible

to switch the order of maximizations and minimizations and

handle the quadratic expressions first, using standard theory

for H∞ optimization. The resulting controller is adaptive of

certainty equivalence type, computing control actions based

on the worst possible parameter values with respect to the

sum of future and past costs.
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Fig. 1. The circles show how the estimates of a and b propagate from

nominal values â = 0 and b̂ = 1 towards the correct values a = 0.7 and
b = −0.4. In fact, they never really get there, since worst case disturbances
create a bias in the estimates. The crosses show how the state xt tends
towards zero.
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