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Abstract— In this paper we study convolutional codes in
the context of multi-shot network coding. Within this context,
several classes of rank metric convolutional codes have been
recently proposed in the literature. The metric considered so
far in this context is the so-called sum rank distance, which
makes the unnecessary assumption that the natural delay in
the transmission (due, for instance, to the delay of the nodes)
is so small that can be disregarded. In this work we introduce
a new metric that overcomes this restriction and therefore is
suitable to handle networks with delays. We shall call it the
column rank distance.

Index Terms— Network coding, convolutional codes, rank
metric, column distance, rank deficiency.

AMS subject classifications — 68P30, 11T71.

I. INTRODUCTION

In many packet communications applications a transmitter
sends packets through a network and the intermediate nodes
perform a random linear combination of the packets received
and forward this random combination to adjacent nodes.
Mathematically, we can consider the transmitted packet as
columns of a matrix with entries in a finite field Fq , and
the linear combinations performed in the nodes correspond
to columns operations on this matrix. If no errors occur
during the transmission over such a network, the column
space of the transmitted matrix remains invariant. To achieve
a reliable communication over this channel, matrix codes are
employed forming the so-called rank metric codes [1]. Rank
metric codes such as Gabidulin codes are known to be able
to protect packets in such a scenario. We call these codes
one-shot codes, as they use the (network) channel only once.
The theory of random linear network coding developed so far
is concerned to large extent with one-shot network coding.
However, coding can also be performed over multiple uses
of the network as it has been recently shown by several
authors, see for instance [2], [3], [4], [5], [6]. The general
idea stems from the fact that creating dependencies among
the transmitted codewords (subspaces) of different shots can
improve the error-correction capabilities of the code. Thus,
multi-shot codes constitute an attractive class of codes for
such situations.

In [5] a first attempt to explain the context of multi-shot
network coding was presented and a type of concatenated
n-shot codes (n ≥ 1) was proposed based on a multilevel
code. In [7], a concatenation scheme was presented using a
Hamming metric convolutional code as an outer code and a
rank metric code as an inner code. Apart from concatenated
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codes, another very natural way to spread redundancy across
codewords is by means of convolutional codes [8], [9], [10],
[11], [12]. Adapting this class of codes to the context of
networks gave rise to rank metric convolutional codes and
interestingly there have been little research on these codes,
see [2], [13], [3], [6]. The work in [6] was pioneer in this
direction by presenting the first class of rank metric con-
volutional codes together with a decoding algorithm able to
deal with errors, erasures and deviations. However, the results
were only valid for unit memory convolutional codes and in
[2], [13], [3] (see also the references therein) an interesting
and more general class of rank metric convolutional codes
was introduced to cope with network streaming applications.
For a more general theoretical framework to rank metric
convolutional codes, see [4].

In this muti-shot setting a new distance, called sum rank
distance, was introduced as a generalization of the rank
distance used for one-shot network coding. This new distance
has proven to be the proper notion in order to deal with delay-
free networks, i.e., assuming that the natural delay in the
transmission (due, for instance, to the delay of the nodes) is
so small that can be disregarded. In this work we show that in
order to handle networks with delays, a new metric needs to
be introduced. In this work, we propose such a (rank) metric
and called it column rank distance. This new metric can be
considered as an analog of the column distance of Hamming
convolutional codes and extends the already existing notion
of column sum rank distance.

Finally, we note that in the last years others papers have
also appeared dealing with convolutional network coding
using very different approaches [14], [15]. These codes do
not transmit over the operator channel and therefore are not
equipped with the rank metric.

II. PRELIMINARIES

In order to state more precisely the results to be pre-
sented we introduce in this section the necessary material
and notation on standard theory of rank metric codes and
convolutional codes.

A. Rank Metric

A rank metric code C is defined as any nonempty subset
of FM×n

q . A natural metric for matrix codes is induced by
the distance measure drank(V,W ) = rank(V − W ), where
V,W ∈ FM×n

q [16]. In the context of the rank metric, a
matrix code is called rank metric code. Rank metric codes
in FM×n

q are usually constructed as block codes of length
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n over the extension field FqM [16], however more general
possibilities have been considered in [4].

The rank distance of a code C ⊂ Fn×m
q is defined as

drank(C) = min
V,W∈C, V 6=W

drank(V,W ).

Obviously FqM ∼ FM
q and let φ : Fn

qM → FM×n
q an

isomorphism that converts vectors v ∈ Fn
qM into matrices

φ(v) = V ∈ FM×n
q . We abuse notation by writing rank(v)

for rank(φ(v)) = rank(V ). In this paper we will consider
linear codes over FqM and we use k for the dimension of
the linear code over FqM . To simplify presentation we will
assume that M � n.

B. Convolutional codes

A convolutional code C of rate k/n is an FqM [D]-
submodule of FqM [D]n of rank k. A full row rank matrix
G(D) ∈ FqM [D]k×n with the property that

C = imFqM [D]G(D) =
{
u(D)G(D) | u(D) ∈ Fk

qM [D]
}
,

is called a generator matrix. The degree δ of a convolutional
code C is the maximum of the degrees of the determinants
of the k × k sub-matrices of one, and hence any, generator
matrix of C. Note that an block code is a convolutional code
with δ = 0.

If G(D) is a basic (meaning right invertible) generator
matrix, then the code C can be equivalently described using
an (n − k) × n full rank polynomial parity-check matrix
H(D), defined by

C = kerF[D]H(D)

= =
{
v(D) ∈ F[D]n | H(D)v(D) = 0 ∈ F[D]n−k

}
.

and the associated sliding matrix of H(D) =
∑m

i=0HiD
i

is

Hc
j =


H0 · · ·
H1 H0

...
...

. . .
...

Hj Hj−1 · · · H0


with Hj = 0 when j > m, j ∈ N.

III. FROM ONE-SHOT TO MULTI-SHOT NETWORK
CODING

In this section we explain how to extend the classical
theory of (one-shot) network conding to the context of multi-
shot network coding. In fact, this is possible as each packet
carries a label identifying the shot (or generation) to which
it corresponds. Despite the little research in the area, this
possibility was already observed in the seminal papers [16],
[1].

Let v ∈ Fn
qM (or equivalently V ∈ FM×n

q ) represents the
n packets of length M to be sent through the network at
one time instance. We shall follow the approach proposed
in [16], [1] and consider the operator channel for one shot
given by

x = vA+ z, (1)

where x ∈ Fn
qM represents the received packets, A ∈ Fn×n

q

is the rank deficiency channel matrix and z ∈ Fn
qM is the

additive error. The adversaries of the matrix channel (1) come
as rank deficiency of the channel matrix and as the additive
error matrix. The channel matrix A corresponds to the overall
linear transformations applied by the network over the base
field Fq and it is known by the receiver (as the combinations
are carried over in the header bits of the packets). For perfect
communications we have that z = 0 and rank(A) = n. We
call n− rank(A) the rank deficiency of the channel.

The transmitter receives at each time instance t a source
packet ut ∈ Fk

qM (constituted by a set of k packets) and a
channel packet vt ∈ Fn

qM (constituted by a set of n packets)
is constructed using not only ut but also previous source
packets u0, . . . , ut−1.

The multi-shot setting can be described as follows: A
channel packet vt is sent through the network at each shot
(time instance) t. The receiver collects the packets xt as they
arrive causally and tries to infer vt from (x0, . . . , xt).

Following the operator channel in (1) at each shot t the
received packets xt ∈ Fn

qM are constituted by corrupted
packets z and linear combinations of the packets of vt and,
if there is delay in the transmission, also of combinations of
the previous packets v0, . . . , vt−1. Hence, we have

x[0,j] = v[0,j]A[0,j] + z (2)

where x[0,j] = (x1, x2, . . . , xj), v[0,j] = (v0, v1, . . . vj) ∈
Fn(j+1)

qM
, A[0,j] ∈ Fn(j+1)×n(j+1)

q is a block upper triangular

truncated channel matrix and z ∈ Fn(j+1)

qM
the additive

error. So far this channel model has not been proposed nor
addressed in the literature in this generality and only the
delay-free case has been considered, see [13] and reference
therein. In the delay-free case only combinations of packets
of vt arrive at time instance t and not of packets of vi, i < t
and therefore in this case the rank deficiency matrix A[0,j]

is a block diagonal matrix.

IV. A NEW METRIC

The sum rank distance is the distance that has been widely
considered for multi-shot network coding and can be seen as
the analog of the rank distance for one-shot network coding.
This distance was first introduced in [5] under the name of
extended rank distance and is define as follows.

Let v = (v0, . . . , vt) and w = (w0, . . . , wt) be two (t +
1)-tuples of vectors in Fn

qM . The sum rank distance (SRD)
between them is

dSR(v, w) =

t∑
i=0

rank(vi − wi).

For an (n, k, δ)-convolutional code C and v(D) = v0 +
v1D+ v2D

2 + · · · ∈ C we define its free sum rank distance
as

dSR(C) = min

∑
i≥0

rank(vi) | v(D) ∈ C and v(D) 6= 0

 ,
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and its column sum rank distance as

djSR(C) = min

{
j∑

i=0

rank(vi) | v(D) ∈ C and v0 6= 0

}
.

As we will see below, the SRD is a metric that can be
used to fully characterize the error-correcting capabilities of
multi-shot codes in the context of delay-free networks. For
the general case we propose the following distance, called
Column Rank Distance (CRD),

dCR(v, w)=rank(v−w)=rank((v0, . . . , vt)−(w0, . . . , wt)).

Moreover, based on the CRD we introduce the Column Rank
Distance for convolutional codes as follows:

djCR(C) = min {rank(v0, . . . , vj) | v(D) ∈ C and v0 6= 0} .

This is a straightforward generalization of the rank distance
for one-shot network codes but it is new in the context of
multi-shot network codes. In the next section we will show
that it is the proper metric to deal with network that allows
delays.

In [6], concrete decoding algorithms for unit memory rank
metric convolutional codes were presented using another
distance, namely the active rank distance. However, in [17],
it was shown that this metric fails to determine the error-
correcting capabilities of rank metric convolutional codes
with arbitrary memory and the column SRD needs to be
considered. In fact, necessary and sufficient conditions were
inferred to recover rank deficiencies within a given time
interval in delay-free networks when no errors occur (i.e.,
when z = 0 in (2)).

Theorem 1: [17, Theorem 2] Let C be a rank metric
convolutional code and v(D) = v0 + v1D + · · · ∈ C with
v0 6= 0. Assume a delay-free transmission and let A[0,T ] =
diag(A0, . . . , AT ) represent the block diagonal truncated
channel matrix with Ai ∈ Fn×n

q , i.e., x[0,T ] = v[0,T ]A[0,T ] is
the received set of packets with xi = viAi, i = 0, 1, . . . , T .
Note that in this case rank(A[0,T ]) =

∑T
j=0 rank(Aj). Then,

we can recover v0 if

dTSR(C) > n(T + 1)− rank(A[0,T ]). (3)

Theorem 1 illustrates how the column SRD can charac-
terize the rank deficiency correcting capabilities of a rank
metric convolutional code in delay-free networks within a
time interval. The more column SRD a convolutional codes
has the better is its rank deficiencies correcting capabilities.
Constructive constructions of convolutional codes having
maximum column SRD profile were also presented in [17]
using a superregular matrix derived in [18]. These construc-
tions are not optimal as they require very large finite fields.
The problem of deriving optimal constructions remains an in-
teresting open problem for research. Motivated by streaming
applications, rank metric convolutional codes tailor-made to
cope with burst of rank deficiency networks where studied in
[3]. This can be considered a generalization of the theory of
burst erasure convolutional codes, from a Hamming context

to a network context. Concrete constructions of optimal rank
metric convolutional codes in this setting are not known yet.

The following example illustrates that, in the case the
network has delays in the transmission of packets, the
previous theorem fails to characterize the rank deficiency
correcting capability of C.

Example 1: Let G(D) = G0 + G1D ∈ F26 [D]2×3 be a
generator matrix of the convolutional code C ⊂ F26 [D]3, α
a primitive element of F26 such that α6 = α+ 1 and

G0 =

(
1 0 0
1 α α2

)
, G1 =

(
0 1 0
α3 α4 α5

)
.

It is easy to see that d1SR(C) = 2 and that there exists a
v(D) ∈ C such that v[0,1] = (1, 0, 0 | 0, 1, 0) ∈ F6

26 . Theorem
1 says that we can recover v0 if the 1-th column SRD of C
is larger than the rank deficiency of a delay-free channel
in the window [0, 1], i.e., if n(T + 1) − rank(A[0,T ]) =
6 − rank(A[0,T ]) ≤ 1 or equivalently, if rank(A[0,1]) ≥ 5.
However, in presence of delays in the network this does not
necessarily hold. Take

A =


0 0 0 0 −1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ∈ F6×6
2

that has rank equal to 5 and yields v[0,1]A[0,1] = 0, i.e., v[0,1]
is indistinguishable from the zero sequence and therefore
cannot be corrected.

The next result can be considered the analog of Theorem
1 for the general case in which the network admits delay in
the transmission.

Theorem 2: Let C ⊂ Fn
qM be a (n, k, δ) rank metric

convolutional code, v(D) ∈ C and A[0,T ] be the truncated
channel matrix. Then, we can recover v[0,T ] if

dTCR(C) > n(T + 1)− rank(A[0,T ]). (4)

Proof: Let x[0,T ] = v[0,T ]A[0,T ]. Due to the linearity of
the code it is enough to show that all output channel sequence
are distinguishable from the zero sequence, i.e., we need to
prove that v[0,T ]A[0,T ] = 0 is impossible if rank(A[0,T ])
satisfies (4). It is easy to see that rank(v[0,T ]) ≤ n(T +
1)− rank(A[0,T ]). Using this, together with assumption (4),
it follows that rank(v[0,T ]) < dTCR(C) which is impossible by
definition of dTCR(C).

Note that in the previous example d1CR(C) = 1 but d1SR(C) =
2.

V. CHARACTERIZATIONS IN TERMS OF THE
PARITY-CHECK MATRICES

In this section we investigate how to build convolutional
codes with design column rank distance. To this end we first
consider the block case and characterize the rank distance in
terms of the properties of the corresponding parity-checks.
Finally, we shall address the convolutional case.
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Theorem 3: Let C = kerH ⊂ Fn
qM be a block code and H

a parity-check of C. Then, drank(C) = d if and only if every
set of d−1 columns of HA, for all A ∈ Fn×n

q invertible, are
linearly independent (over FqM ) and moreover there exists d
columns of HA linearly dependent (over FqM ) for an A ∈
Fn×n
q .

Proof: The proof can be deduced from [19, Theorem
1].

Next we state a similar result for convolutional codes as
follows.

Theorem 4: Let C = kerH(D) ⊂ FqM [D]n has djCR(C) =
d if and only if none of the first n columns of Hc

j is contained
in the span of any other d − 2 columns of Hc

jA[0,j] for all
A[0,j] ∈ F

n(j+1)×n(j+1)
q and moreover one of the first n

columns of Hc
jA[0,j] is in the span of other d − 1 columns

of Hc
jA[0,j] for a A[0,j] ∈ F

n(j+1)×n(j+1)
q .

Proof: We sketch the proof as follows. Suppose that
one of the first n columns of Hc

jA[0,j] is in the span of other
d − 1 columns of Hc

jA[0,j] for a A[0,j] ∈ F
n(j+1)×n(j+1)
q .

Thus, Hc
jA[0,j] has d columns linearly dependent, say

{ci1 , ci2 , . . . , cid} and ∑
j∈S

αjcj = 0

where S = {i1, i2, . . . , id} and at least one element in S, say
i1, belongs to {1, . . . , n}. Take x = (x1, x2, . . . , xn(j+1)) ∈
Fn(j+1)

qM
with xi = 0 if i /∈ S, xi = αi if i ∈ S. Then,

A[0,j]x is a truncated codeword with at least one of the first n
coordinates nonzero and has rank equal to d. Thus, djCR(C) ≤
d.

To show that djCR(C) ≥ d we do it by contradiction.
Assume djCR(C) < d. Then, there exists x ∈ Fn(j+1)

qM
with at

least one of the first n coordinates nonzero and rank(x) =
d− 1 such that Hc

jx = 0. Take A−1[0,j] such that A−1[0,j]x has
only ≤ d − 1 nonzero coordinates and with at least one of
the first n coordinates nonzero. Then, Hc

jA[0,j](A
−1
[0,j]x) = 0

which implies that one of the first n columns of Hc
j is

contained in the span of other d− 2 columns of Hc
jA[0,j].

The converse follows the same reasoning.

VI. CONCLUSIONS

We have studied rank metric convolutional codes and
propose a novel metric suitable for networks with delay.
We have characterized such distance in terms of the cor-
responding parity-check matrix. It is left for future research
the concrete constructions of rank convolutional codes with
design column rank distance.
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