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Abstract— We study a platooning scheme where the commu-
nication between agents is made through lossy channels. Each
agent is modelled as a discrete-time LTI system controlled by
a discrete-time LTI controller. The lossy channels are modelled
using Bernoulli processes that represent random data dropouts.
We consider a scheme that forces inter-vehicle spacings that
increase with agents velocities. This is known as a constant time
headway spacing policy, which has been shown to provide string
stability for predecessor-following architectures. We analyse
how the lossy channels impact the platoon string stability.

I. INTRODUCTION

The study of interconnected agents has been an important

topic of research in the last couple of decades (see [1], [2],

[3], and the references therein). The main reasons behind it

are the benefits that automating can have in the performance

and safety of transportation systems and other applications

[4], [5], [6]. However, several theoretical and practical issues

arise if an increasing number of dynamical systems are con-

nected. For example, a one dimensional platooning problem

[7], where every agent of a string of vehicles is locally

controlled, may exhibit disturbance amplification along the

string when a vehicle only uses the relative distance to its

predecessor as the controller input. This is associated to the

string stability concept [5]. String instability is unavoidable

in some settings and it has been shown to be caused by a

Bode-type fundamental limitation [7].

Two common LTI solutions to achieve string stability

involve the use of either, the broadcast of the leader state

to every follower [7], [8], or forcing an inter-vehicle spacing

that increases with the speed of each agent. The latter is

commonly referred to as adding a constant time headway

to the desired inter-vehicle spacings [9], [10]. Moreover,

the interconnection of dynamical systems is subject to the

limitations imposed by communication channels. Even more

so when the systems correspond to moving vehicles, in which

wired communications are not feasible.

In particular, when random data loss affects the platoon

dynamics, a stochastic behaviour of the agents response

is unavoidable. To the best of our knowledge, only a few
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authors have focused their attention on string stability in a

stochastic framework [11], [12]. In [11], an extension of the

definition of string stability from [5] has been given for a

stochastic setting. However, this definition is in continuous-

time. An alternative definition was also introduced in [12],

where the system response to oscillations is bounded. How

these concepts apply for the random dropouts case remains

unclear. On the other hand, packet loss has been considered

for platooning problems in [13], [14], [15]. However, the

random nature of the dropouts is not covered and a stochastic

analysis for string stability is not fully included in these

works.

In this paper, our goal is to motivate the study of the

effect that unreliable communications have over discrete-

time multi-agent systems designed to behave properly in a

deterministic setting. Our main contributions include:

• The computation of the infimal value of a design

parameter in order to achieve a string stable platoon

of LTI agents described by discrete-time models. This

is an extension of the results presented in [10].

• A simulation-based study for the effect that lossy com-

munications have in the aforementioned control archi-

tecture. The study suggests that the design parameter

must increase (compromising performance) in order to

maintain a decent beahvior, as the probability of data-

loss in the channels increases.

II. PLATOON SETUP OVER LOSSY CHANNELS

We consider a collection of N ∈ N identical agents

(commonly vehicles), each modelled by a feedback system

composed by a discrete-time LTI plant G, and its local LTI

controller C. We assume that the corresponding transfer

function of the plant G has at least one integrator and is

strictly proper.

The i-th agent, 1 ≤ i ≤ N , has access to its own

position at the time instant k ∈ N, denoted by xi(k),
but also to the position of its predecessor xi−1(k), by

means of wireless communication channels connecting two

consecutive vehicles. Then, the inter-vehicle distance ℓi(k) ,
xi−1(k)− xi(k) is known by the i-th vehicle whenever the

wireless communication works properly (see Fig. 1).

i+1ii−1 ℓi ℓi+1

xi−1 xi xi+1

Fig. 1. One dimensional platooning configuration.
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The control objective is to maintain the inter-vehicle

distances ℓi(k) equal to a desire reference ri(k) whenever

possible. This would imply that the agents are either moving

together with a constant speed or are stationary, in a desired

formation. We will assume that the transfer function of the

controller is proper and has integral action.

The wireless communication channel of each vehicle is

assumed to be affected by random data-loss, modelled by

a Bernoulli process θi, such that θi(k) = 1 when the

predecessor position xi−1(k) is received successfully by the

i-th vehicle. If the data is lost, θi(k) = 0. We assume that

θi, i = 1, 2, . . .N , are mutually independent i.i.d. processes,

each with the same probabilities of successful transmission

p, and failure 1− p.

When xi−1(k) is lost, the i-th vehicle cannot determine

the current error ei(k) , ℓi(k)− ri(k). We consider a local

strategy that maintains the current speed whenever a data is

lost. This is equivalent to set the controller input ei(k) = 0.

Hence, the corresponding control scheme in each vehicle is

depicted in Fig. 2, where ui(k) is the control signal and

di(k) is an input disturbance.

In order to decrease the collision probability, we will

assume that as the i-th vehicle speed increases, so does ri(k).
We consider

ri(k) = εi + h(xi(k)− xi(k − 1)),

where εi > 0 is a constant value that represents a minimum

desired inter-vehicle spacing, the difference xi(k)−xi(k−1)
gives information about the vehicle speed,1 and h ≥ 0 is a

constant that weights the importance of vehicle speed.

Remark 1: The constant h is called time headway con-

stant. For h = 0 we have a constant spacing policy. The

control aims to maintain a fixed distance εi between the

agents. If h > 0, the control aims to maintain distances

between the vehicles that increase with the rate of change of

the agent positions, resembling a continuous-time constant

time-headway spacing policy [10]. �

For simplicity in the exposition we will assume that each

vehicle length is zero, εi = 0, and that h and the initial con-

ditions xi(0) and xi(−1) for i = 1, . . . , N are compatible,

that is, they are such that ei(0) = 0 for i = 1, . . . , N . In this

way, we only study the effect of the disturbances di(k) on

the separation errors ei(k).
Since ℓi(k) = xi−1(k)− xi(k), we can write

ei(k) = xi−1(k)− xi(k)− ri(k), (1)

and thus each local control loop can be viewed as the one in

Fig. 3, with W = (1+h)−hq−1, where q−1 is the backward

shift operator.

The main goal of this paper, is to study the effect of

the wireless channels on the platoon string stabilisability.

Before doing so, we first define the concept of string stability

assuming perfect communication, and then we study the

effect of random data loss in the channels.

1Since the framework is in discrete-time, this difference is not equivalent
to the speed of an agent that travels in continuous-time, but it resembles
such quantity.
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Fig. 2. Control scheme with data-loss.
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Fig. 3. Equivalent feedback control loop.

III. STRING STABILITY OVER LOSSLESS CHANNELS

We study string stability in the deterministic case. We use

capitals to denote the Z-transforms of corresponding time

variables. We omit the argument (z) if not needed.

If p = 1, θi(k) = 1 for all k, i. From Fig. 3, we have that

the vehicle dynamics are (with zero initial conditions)

X = (I −GCP )−1GD, (2)

where X = [X1 · · · XN ]
⊤

, I is the N×N identity matrix,

D = [D1 · · · DN ]⊤ and P ∈ CN×N is given by

P =











0
1 −W

. . .
. . .

1 −W











, (3)

with W = (1 + h)− hz−1.

It is straightforward to show that the effect on the n-th

inter-vehicle spacing of a disturbance at the j-th is given by

[7]

En = FnDj =

(

T

W

)n−2−j

FDj , (4)

where F is a transfer function that does not depend on N or

j, and T is the modified complementary sensitivity function

of the local closed loops

T =
GWC

1 +GWC
. (5)

Definition 1: Let {Fn} be a sequence of stable transfer

functions. The sequence will be called string stable if there

exists c ∈ R, independent of n ∈ N, such that ||Fn||∞ ≤ c
for all n. It will be called string unstable otherwise. �

Note that this definition of string stability, valid for this

setup, ensures that the errors due to disturbances do not

amplify when increasing the string size.

The following lemma, taken from [16], implies that the

strategy considered above is string unstable whenever h = 0.

Lemma 1: Let T be a real rational scalar function of z ∈
C. Suppose that T (1) = 1 and also that T is stable. Then

∫ π

0

ln
∣

∣T (ejθ)
∣

∣

dθ

1− cos(θ)
≥ πT ′(1). �

For T given in (5), it is straightforward to show that

T ′(1) = 0, due to the two integrators of the open loop.
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Fig. 4. Bode plots for |T (ejθ)/W (ejθ)| for varying h ∈ [2, 5]

Lemma 1 implies that ||T ||∞ > 1. If h = 0, we have

that Fn has an unbounded infinity norm that increases with

the number of agents N , and the sequence {Fn} is string

unstable according to Definition 1. A disturbance having

energy in the band where |T (ejω)| > 1, will be amplified

along the string.

In order to have string stability, W must be designed

accordingly. The work in [10] provides the minimum time

headway constant for string stability in continuous-time,

whenever the local closed loops are fixed with two integrators

in the open loop. We will first aim to recover a similar result

for discrete-time.

If we consider controllers that satisfy C = C̃/W , where

C̃ does not cancel the dynamics of W , we have that

T =
GC̃

1 +GC̃
. (6)

By noting that |W | =
∣

∣ejθ(1 + h)− h
∣

∣ =
√

1 + 2h(1 + h)(1− cos θ), we can conclude that the

condition for string stability is that, for all θ,
∣

∣

∣

∣

T

W

∣

∣

∣

∣

=
1

√

1 + 2h(1 + h)(1− cos θ)

∣

∣T (ejθ)
∣

∣ ≤ 1. (7)

Following the argument presented in [10] for the continuous-

time case, we have that the infimal value to obtain string

stability h0 is given as the positive root of 2h(1+h)−c = 0,

where c = supθ∈(0,π)

{(

∣

∣T (ejθ)
∣

∣

2
− 1

)

/ (1− cos θ)
}

.

Example 1: Consider

G(z) =
1

(z − 1)
, C̃(z) =

1.1548(z − 0.7832)

(z − 1)(z + 0.8306)
.

The corresponding complementary transfer function satis-

fies ||T ||∞ ≈ 1.856 and c ≈ 29.25. According to our

derivations, the infimal time headway for string stability is

h0 ≈ 3.6568. This coincides with Fig. 4, where Bode plots

for (|T (ejθ)/W (ejθ)| are given for some values of h. Time

responses are given in Fig. 5 for two values of h, above and

below the limit h0. For h = 4, a string stable behavior is

observed. When h = 2, the platoon becomes string unstable.

This bad behavior is extreme for a larger platoon size, as

illustrated in Fig. 5 (for N = 50).

IV. STRING STABILITY OVER LOSSY CHANNELS

When dropouts occur in the communication channels,

the smooth behaviour of Fig 5 cannot be expected. For

the same example given in the previous section, particular
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Fig. 5. Vehicle trajectories (left column) and tracking errors (right column)
when h = 4 and h = 2

realizations for the error signals are expected to be like

the ones given in Fig. 6, where different probabilities of

successful transmission p and constant time headway h are

considered. The deterministic string stability concept defined

in the previous section is not applicable. However, we can

observe similar patterns from the simulation results. For

example, Fig. 6-left seems to suggest that the error envelope

decreases. This could be considered a good behaviour. On

the other hand, Fig. 6-right, shows that the error envelope is

not decreasing, and exhibits higher magnitudes and erratic

behaviour, before dropping to zero. Recall that, even for

string unstable systems, every tracking error converges to

zero in this setup, since they follow a constant reference and

the controller has integral action. However, we focus on the

error magnitudes along the platoon. Fig. 6-centre shows cases

in which the behaviour is hard to determine by simple visual

inspection. Fig. 6 also suggest that there exists a compromise

between h and p, as expected.

If we analyse the mean and variance of the platoon errors,

we obtain Fig. 7 for h = 4.5. The left column (p = 0.9)

exhibits an acceptable performance, where no inter-vehicle

collisions were detected over 2× 104 realizations. The right

column (p = 0.6) shows poor performance, associated to

string instability. This suggest that string stability for a

stochastic scenario might depend on the mean and variance

of the tracking error.

Simulation results for the relation between p and h are

given in Fig 8. It can be seen that h must increase when
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using poorer quality channels to obtain a stochastic string

stable behaviour. The plot also suggest that there exists a

minimum value for p beyond which string stability is not

possible.

V. CONCLUSIONS

We have provided a method to obtain the infimal time-

headway constant for string stability of a discrete-time LTI

platoon with nearest-neighbour unidirectional topology. We

also performed a computational analysis of the impact that

data losses have in such architectures. It was noted that when

the probability of data loss increases, the behavior of the

platoon becomes unacceptable under a simple performance

criteria, unless the time headway constant is also increased.

We can conclude that data loss can compromise the safety

and performance of a platoon that was deemed string stable

in a deterministic setting with perfect communications. In

order to obtain a clear understanding of the relation between

data loss and string stability more work is needed.

We will aim to better understand the current setting, in

order to obtain compensation schemes in the communication

channels that guarantee minimal impact of data losses over

the desired properties of a platoon.
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