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Abstract— The focus of this paper is on the finite or infinite
dimensional class of spatially distributed linear systems with
Hermitian and sparse state matrices. We show that exponential
stability of this class of systems can be inferred in a decentral-
ized and spatially localized manner, which is practically relevant
to many real-world applications (e.g., systems with spatially
discredited PDE models). Then, we obtain several sufficient con-
ditions that allow us to adjust strength of existing couplings in a
network in order to sparsify or grow a network, while ensuring
global stability. Our proposed necessary and sufficient stability
certificates are independent of the dimension of the entire
system. Moreover, they only require localized knowledge about
the state matrix of the system, which makes these verifiable
conditions desirable for design of robust spatially distributed
linear systems against subsystem failure and replacement.

I. INTRODUCTION

The interest in stability verification of infinite-dimensional
linear systems and distributed parameter systems dates back
to couple of decades ago [4], [5], [9], where the focus
has been on characterization of stability conditions in a
centralized setting. Some recent studies show that for a class
of spatially distributed systems, so called spatially decaying
systems, stability verification can be potentially localized
using spatial truncation techniques [15]–[17]. The goal of
this paper is to propose spatially localized and decentralized
conditions for exponential stability of finite- or infinite-
dimensional spatially distributed systems. Our main focus
is on the class of systems with band (sparse) and Hermitian
state matrices, i.e., matrices whose rows and columns contain
only a few nonzero entries and they are Hermitian.

Our Contributions: First, we provide centralized quanti-
tative characterizations of exponential stability property of
spatially distributed linear systems with finite bandwidth
(i.e., sparse) and Hermitian state matrices. We show that
some of these characterizations are more amenable to lo-
calized and decentralized verification schemes. Next, we
derive a necessary condition for exponential stability that
can be implemented locally at subsystem level using only
local information. Our main contribution is introduction of
some locally verifiable sufficient conditions for exponential
stability. It is proven that these sufficient conditions are also
necessary and almost optimal. The significant feature of our
localized verifiable conditions is that they depend only on
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the spatially localized portions of the state matrix of the
system and they are independent of the dimension of the
entire system. Our results are novel with respect to our
earlier work [18] as in this manuscript our focus is solely
on symmetric systems and propose new design rules (in the
form of several sufficient conditions) for network synthesis
through sparsification (eliminating a coupling by reducing its
coupling strength to zero) or growing (by strengthening the
existing couplings).

Notations: The set C+ contains all complex numbers z ∈
C with nonnegative real-part, i.e., <(z) ≥ 0. The Hermitian
of a matrix B is shown by B∗. The index function on a set
F is denoted by χF and its cardinality by #F . Let `2(V)
(or simply `2) contain all vectors c = [ci]i∈V with bounded
norms

‖c‖2 :=
(∑
i∈V
|ci|2

)1/2
.

The set B2 contains all matrices B on `2 with bounded
induced norm

‖B‖B2 := sup
‖c‖2=1

‖Bc‖2.

II. PRELIMINARY NOTIONS ON SPATIAL GRAPHS

In this section, we recall some preliminary results on
geodesic metric ρ on connected simple graphs, and we
present several equivalent conditions to characterize matrices
whose spectra are contained in the open left-half complex
plane.

The r-neighborhood of agent i ∈ V over graph G = (V, E)
is defined by B(i, r) = {j ∈ V | ρ(i, j) ≤ r}. To
study localization features of spatially distributed systems,
we presume that:

Assumption 2.1: The counting measure µG on the graph
G is a doubling measure, i.e., there exists a positive number
D0(G) such that

µG(B(i, 2r)) ≤ D0(G)µG(B(i, r)) (1)

hold for all i ∈ V and r ≥ 0.
The doubling property of the counting measure µG im-

plies that numbers of agents in r-neighborhood and (2r)-
neighborhood of any agent are comparable.

The maximal number of direct communication links for
every agent in a spatially distributed system with underlying
graph G can be measured by the maximal vertex degree,
which is represented by deg(G). We observe that the dou-
bling constant of the counting measure µG on graph G, i.e.,
the minimal constant D0(G) ≥ 1 for which inequality (1)
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holds, dominates the maximal vertex degree of the graph G,
i.e., deg(G) ≤ D0(G).

Definition 2.2: A counting measure µG on graph G =
(V, E) is said to have polynomial growth if there exist
positive constants D1(G) and d such that

µG(B(i, r)) ≤ D1(G)(1 + r)d (2)

for all i ∈ V and r ≥ 0.
For a graph G associated with a spatially distributed sys-

tem, the minimal constants d and D1(G) for which inequality
(2) hold are so called Beurling dimension and density of that
spatially distributed system, respectively. It is shown in [6]
that the doubling measure µG has polynomial degree with
D1(G) = D0(G) and d = log2D0(G).

Remark 2.3: For the class of spatially distributed systems
whose subsystems (nodes) are located on a d-dimensional
manifold and direct communication link between two nodes
exists only if their spatial distance is less than a certain range,
one can prove that the Beurling dimension of this class of
systems is d and density is related to Ricci curvature of the
underlying manifold.

III. PROBLEM STATEMENT

The interconnection topology of a spatially distributed
system can be described by an (in)finite graph G := (V, E),
where V is the index set of all nodes and E is the set of
all interconnection links in the system. A vertex represents a
subsystem (also referred to as node) and an edge between two
nodes means that a direct communication link exists between
them. Throughout the paper, it is assumed that G is un-
weighted, undirected, connected, and simple, i.e., there is no
graph loops nor multiple edges, which can be interpreted as
follows: (i) subsystems in a spatially distributed system can
communicate across the entire network, but they have direct
communication links only with neighboring subsystems, (ii)
direct communication links between agents are bidirectional,
(iii) subsystems have identical communication capabilities,
(iv) the communication component in each subsystem is
not used for data transmission within that subsystem, (v)
there is no multiple direct communication links between two
subsystems.

Since the underlying graph G is connected and undirected,
we can define the geodesic distance ρ on G such that:
• ρG(i, i) = 0 for all i ∈ G; and
• ρG(i, j) is the number of edges in a shortest path

connecting two distinct vertices i, j ∈ G [8].
In many applications, communication between two distinct

subsystems happens by transmitting information through
the chain of intermediate subsystems connecting the two
subsystems using their shortest path. In such cases, the
communication cost between those two subsystems, say
i, j ∈ V , is usually proportional to their geodesic distance
ρG(i, j).

Definition 3.1: Matrix B = [b(i, j)]i,j∈V is called σ-band
for some σ ≥ 0 if

b(i, j) = 0 if ρ(i, j) > σ. (3)

We consider the class of linear time-invariant systems with
finite or infinite dimensions whose dynamics are governed by
the following differential equation

d

dt
ψ(t) = Bψ(t), (4)

where state matrix B is a σ-band matrix and initial condition
ψ(0) = ψ0 ∈ `2 are known. The exponential stability of
this class of linear systems is one of fundamental problems
in distributed control systems (see [3] and references in
there). The exponential stability of (4) can be guaranteed
by requiring the spectrum of matrix B to lie strictly in the
left-half complex plane, i.e.,

σ(B) ⊂
{
z ∈ C | <(z) ≤ −δ

}
(5)

for some δ > 0.

The localized and decentralized stability verification prob-
lem is practically relevant to several real-world applications.
For instance, it is often the case in a spatially distributed
system that the state matrix B with finite bandwidth is
stored by subsystems in a distributed manner. Since there
are local storage limitations, each subsystem in the network
should only store its own corresponding row (and perhaps
its neighboring rows) in the state matrix. However, each
subsystem have only partial access to information of the
entire state matrix, perhaps due to privacy or security issues
in the network. These limitations encourages us to utilize
localized and decentralized verification tools to check the
spectral set property (5). One of the important features of
our results is that our localized conditions are independent
of the system size.

In this paper, we consider exponential stability of a linear
system (4) on a spatially distributed network with a Her-
mitian state matrix B. First, we present several equivalent
statements on the exponential stability of the linear system
(4) on a spatially distributed network.

Theorem 3.2: Suppose that B is a Hermitian matrix in B2.
Then the following statements are equivalent to each other:

(i) B is strictly negative definite.
(ii) There exists a positive constant A0 such that

‖(zI−B)c‖2 ≥ A0‖c‖2 (6)

for all z ∈ C+ and c ∈ `2.
(iii) There exists a positive constant A0 such that

c∗Bc ≤ 0 (7)

and
‖Bc‖2 ≥ A0‖c‖2 (8)

hold for all c ∈ `2.

Condition (8) implies that constant A0 is equal to the
absolute value of the maximal eigenvalue of of negative def-
inite matrix B. For a spatially invariant linear system whose
Toeplitz state matrix A0 =

[
p(i−j)

]
i,j∈Z is Hermitian, p̂(ξ)

is real-valued and takes negative values. Hence it follows that
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its stability threshold is equal to the lower bound of p̂(ξ),

A0 = inf
ξ∈R
|p̂(ξ)|.

Derived from Theorem 3.2, we have the following neces-
sary conditions, which can be verified by evaluating maximal
or minimal eigenvalues of some localized matrices.

Theorem 3.3: Let G := (V, E) be the communication
graph of a spatially distributed network. Suppose that the
linear system (4) is exponentially stable with stability thresh-
old A0 and that the state matrix B is Hermitian and belongs
to Bτ ∩ B2 for some τ ≥ 0. Then the following localized
inequalities

c∗χNi BχNi c ≤ 0 (9)

and
c∗χNi B2χNi c ≥ A2

0‖χNi c‖22 (10)

hold for all N ≥ τ , i ∈ V and c ∈ `2.

For the linear system (4) with a Hermitian state matrix,
sufficient conditions for stability take simple forms.

Theorem 3.4: Let the communication graph G = (V, E) of
a spatially distributed network be undirected and unweighted
and its counting measure µG : 2V → Z+ have the polynomial
growth (2). Suppose that state matrix B ∈ Bτ ∩ B2 is
Hermitian for some τ ≥ 0. Then the linear system (4) with
the state matrix B is exponentially stable if there exist a
positive integer N0 and a positive number BN0

satisfying

B0 ≥ 4

√
C1

C0
D1(G)(σ + 1)d+1‖B‖∞N−10 , (11)

where
‖B‖∞ = sup

i,j∈V
|a(i, j)| <∞,

such that
c∗χN0

im
BχN0

im
c ≤ 0 (12)

and
c∗χN0

im
B2χN0

im
c ≥ B2

N0
‖χN0

im
c‖22 (13)

hold for all im ∈ VN0
and c ∈ `2.

For a given Hermitian matrix B = [b(i, j)]i,j∈V in
Bτ ∩ B2, the sufficent conditions (12) and (13) in Theorem
3.4 are spatially localized in neighborhood of each leading
subsystem im ∈ VN0 , where each subsystems only need to
have access to portion of state matrices B that is determined
by truncation operator χN0

im
. In particular, the requirement

(12) holds if the largest eigenvalue of the spatially localized
principal submatrix [b(j, j′)]j,j′∈B(im,N) is nonpositive for
every im ∈ VN0

.

For a Hermitian matrix B, define

B̃N (i) = inf
‖χNi c‖2=1

‖BχNi c‖2, (14)

where N ≥ 1 and i ∈ V . The quantity BN (i) is the same
as square root of the smallest eigenvalue of the spatially

localized matrix

χNi B2χNi =

 ∑
k∈B(j,τ)∩B(j′,τ)

b(j, k)b(k, j′)


j,j′∈B(i,N)

,

(15)
and it can be evaluated in a distributed manner. Then the
constant B̃N0 in (13) can be thought of as the uniform
stability threshold for small-scale systems with state matrices
χN0
im

B2χN0
im
, im ∈ VN0

.
We can prove that {B̃N (i)}∞N=τ is a decreasing sequence

that converges to A0 for every i ∈ V ,

lim
N→∞

B̃N (i) = A0. (16)

Therefore one can conclude that a symmetric large-scale
linear system on a spatially distributed graph can achieve
higher levels of performance whenever the stability threshold
of its properly-localized small-scale systems are improved.

IV. DESIGN OF SPATIALLY DISTRIBUTED NETWORKS

Given an exponentially stable linear dynamical system (4),
we consider a specific class of state feedback control laws
that alters its dynamics in the following manner

d

dt
ψ(t) = Bψ(t) + u(t), (17)

with
u(t) = wEklψ(t), (18)

where w is a scalar feedback gain and Ekl, k, l ∈ V , are
matrices whose have zero entries except (k, l)-th and (l, k)-th
entries taking value one. Our design goal is to apply Theorem
3.4 to compute an interval for the scalar feedback gain such
that the resulting closed-loop network

d

dt
ψ(t) = (B+ wEkl)ψ(t) (19)

remains exponentially stable with guaranteed stability thresh-
olds and the stability margin being at the same or higher
level as the system (4). This application can be interpreted
as weight adjustment problem in general symmetric linear
dynamical networks in order to enhance stability threshold
via local adjustments and it can be particularly utilized to
strengthen existing couplings (e.g., when b(k, l), w > 0)
or sparsify (e.g., when b(k, l) > 0 and w < 0) coupling
structure of a linear dynamical network. For τ,M ≥ 0, let
Bτ (M) denote the set of all band matrices B ∈ Bτ with
bounded entries ‖B‖∞ < M .

Theorem 4.1: Let the communication graph G = (V, E)
of the linear system (17) be undirected and unweighted and
its counting measure µG : 2V → Z+ have the polynomial
growth property (2). Assume that the linear system (17) is
exponentiable stable and its state matrix B = [b(i, j)]i,j∈V
is a Hermitian matrix in Bτ (M) ∩ B2 for some τ ≥ 0 and
M > 0. Take an integer N0 such that

B̃N0
:= inf

im∈VN0

B̃N0
(im) ≥ 4M

√
α2

α1
D1(G)τ(τ+1)dN−10 .

(20)
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For k, l ∈ V with ρ(k, l) ≤ τ define

ηkl = inf
ρ(k,im)≤N0
ρ(l,im)≤N0

inf
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)

(21)

and

βkl = sup
ρ(k,im)≤N0
ρ(l,im)≤N0

sup
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)
,

(22)
where B̃N (i) is given by (14), PN0

im
is the projection matrix

onto the eigenspace of the localized matrix χN0
im

B2χN0
im

corresponding to its smallest eigenvalue (B̃N0
(im))2. Then

the following statements hold:

(i) If ηkl > 0, then there exists ε0 > 0 such that for every
weight w ∈ (0, ε0) such that the modified network (19)
is exponentially stable and the state matrix B + wEkl still
belongs to Bτ (M).
(ii) If βkl < 0, then there exists ε1 > 0 such that for every
weight w ∈ (−ε1, 0) such that the modified network (19) is
exponentially stable and B+ wEkl still belongs to Bτ (M).

The proof of Theorem 4.1 is technical and eliminated due
to space limitations. Suppose that

{
eN0
im1

, . . . , eN0
imk

}
is an

orthonormal basis of the eigenspace corresponding to the
smallest eigenvalue (B̃N0

(im))2 of the matrix in (15). Then,
the projection matrix in Theorem 4.1 can be represented by

PN0
im

=

k∑
s=1

eN0
ims

(eN0
ims

)T .

When the smallest eigenvalue is simple with normalized
eigenvector qN0

im
, the project matrix is given by

PN0
im

= qN0
im

(qN0
im

)∗,

where constraint ‖PN0
im

c‖2 = 1 implies that

PN0
im

c = qN0
im
.

This results in the following closed-form solutions

inf
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)
= <

(
(qN0
im

)∗EklBqN0
im

)
and

sup
‖PN0

im
c‖2=1

<
(
(PN0

im
c)∗EklBPN0

im
c
)
= <

(
(qN0
im

)∗EklBqN0
im

)
that can be useful to evaluate ηkl and βkl in (21) and (22).

The quantities ηkl in (21) and βkl in (22) can be evaluated
by using entries b(i, j) of the matrix B with

i, j ∈ B(k, 2N0 + τ) ∩B(l, 2N0 + τ).

Therefore, the requirements ηkl > 0 and βkl < 0 in Theorem
4.1 can be verified by applying local information of the
matrix B in a localized neighborhood of nodes k, l ∈ V .
Given k, l ∈ V , we should select positive weight w if ηkl > 0
and negative weight if βkl < 0.

The results of Theorem 4.1 will remain true if matrix Ekl
is replaced by Rkl(θ) whose (k, l)’th and (l, k)’th entries

are sin θ, (k, k)’th entry is cos θ, and (l, l)’th entry is − cos θ
for some 0 ≤ θ ≤ π. We can establish similar result when
the matrix Ekl in Theorem 4.1 is replaced by Lij in which
Lij = eie

∗
i + eje

∗
j −Eij and ei’s are the standard basis for

`2.
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[1] A. Aldroubi and K. Gröchenig, Nonuniform sampling and reconstruc-
tion in shift-invariant spaces, SIAM Review, vol. 43, pp. 585–620,
2001.

[2] M. S. Andersen, S. K. Pakazad, A. Hansson, and A. Rantzer, “Robust
stability analysis of sparsely interconnected uncertain systems,” IEEE
Trans. Autom. Control, vol. 59, no. 8, pp. 2151–2156, 2014.

[3] B. Bamieh, F. Paganini, and M. A. Dahleh. “Distributed control of
spatially-invariant systems,” IEEE Trans. Autom. Control, vol. 47, no.
7, pp. 1091–1107, July 2002.

[4] A. Bensoussan, G. Da Prato, M. C. Delfour, and S.K. Mitter, Represen-
tation and control of infinite dimensional systems, Birkhäuser Boston,
vol. 2, 1993.

[5] J. W. Bunce, “Stabilizability of linear systems defined over C∗-
algebras,” Math. Systems Theory, vol. 18, no. 1, pp. 237–250, 1985.

[6] C. Cheng, Y. Jiang and Q. Sun, Spatially distributed sampling and
reconstruction, arXiv:1511.08541

[7] O. Christensen, An Introduction to Frames and Riesz Bases, Applied
and Numerical Harmonic Analysis, Birkhuser Boston Inc., Boston,
MA, 2003.

[8] F. R. K. Chung, Spectral Graph Theory, American Mathematical
Society, 1997.

[9] R. F. Curtain and H. J. Zwart, An Introduction to Infinite-Dimensional
Linear Systems Theory, Springer, 1995.

[10] R. D’Andrea and G. E. Dullerud, “Distributed control design for
spatially interconnected systems,” IEEE Trans. Autom. Control, vol.
48, no. 9, pp. 1478–1495, 2003.

[11] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of
Scientific Computing, Brooks/Cole, Third edition, 2002.

[12] C. Langbort, R. S. Chandra, and R. D’Andrea, “Distributed control
design for systems interconnected over an arbitrary graph,” IEEE
Trans. Autom. Control, vol. 49, no. 9, pp. 1502–1519, 2004.

[13] N. Motee and A. Jadbabaie, “Approximation methods and spatial in-
terpolation in distributed control systems,” in Proc. American Control
Conference, pp. 860–865, 2009.

[14] N. Motee and A. Jadbabaie, “Distributed multi-parametric quadratic
programming,” IEEE Trans. Autom. Control, vol. 54, no. 10, pp. 2279–
2289, Oct. 2009.

[15] N. Motee and A. Jadbabaie, “Optimal control of spatially distributed
systems,” IEEE Trans. Autom. Control, vol. 53, no. 7, pp. 1616–1629,
Aug. 2008.

[16] N. Motee and Q. Sun, “Measuring sparsity in spatially interconnected
systems,” in Proc. IEEE 52nd Conference Decision and Control, Dec.
2013.

[17] N. Motee and Q. Sun, “Sparsity measures for spatially decaying
systems,” in Proc. American Control Conference, pp. 5459–5464, June
2014.

[18] N. Motee and Q. Sun, “Localized Stability Certificates for Spatially
Distributed Systems with Sparse Graph Topologies,” The 55th IEEE
Conference on Decision and Control, Las Vegas, NV, December 2016.

[19] J. Ploeg, N. Van De Wouw, and H. Nijmeijer, “Lp string stability
of cascaded systems: Application to vehicle platooning,” IEEE Trans-
actions on Control Systems Technology, vol. 22, no. 2, pp. 786–793,
2014.

[20] C. E. Shin and Q. Sun, “Stability of localized operators,” J. Funct.
Anal., vol. 256, pp. 2417–2439, 2009.

[21] Q. Sun, “Nonuniform average sampling and reconstruction of signals
with finite rate of innovation,” SIAM J. Math. Anal., vol. 38, pp. 1389–
1422, 2006.

[22] Q. Sun and J. Xian, Rate of innovation for (non-)periodic signals and
optimal lower stability bound for filtering, J. Fourier Anal. Appl., vol.
20, pp. 119–134, 2014.

[23] Q. Sun, Stability criterion for convolution-dominated infinite matrices,
Proc. Amer. Math. Soc., vol. 138, pp. 3933–3943, 2010.

[24] M. Unser, Sampling–50 years after Shannon, Proc. IEEE, vol. 88, no.
4, pp. 569–587, 2000.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

188


