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Abstract— In this preliminary work we investigate the burst
erasure-correction capabilities of convolutional codes. In par-
ticular, we focus on the class of encoders that admit the shortest
possible decoding delay to recover all bursts of erasures of a
given length for a given rate. This class of codes are simple and
required only binary fields as opposed to previous constructions
where non-binary fields were used.

I. INTRODUCTION

Many packet streaming communications applications, like
video conferencing in the internet, suffer from congestion
as routers fail to cope with sudden increases in buffering
requirements. This results in losses of clusters of packets.
As the packets typically include a sequence number we
can regard such losses as erasures and thus the channel
considered in here is a bursty erasure channel.

Although burst erasure-correction codes have been studied
for many years, there has been a recent interest in streaming
applications where the data is transmitted sequentially in
real-time under strict delay constraints [1], [2], [3], [4], [5],
[6], [7]. This is due to the fact that in many multimedia
applications long delays are usually unacceptable and so
transmissions must be reproduced sequentially and with
minimal delay at the destination. These constrains led to
new problems in coding theory and classical error correction
codes, such as Maximum Distance Separable (MDS) and
rateless codes, are far from ideal in such situations.

Martinian et al. studied in [3] the construction of convolu-
tional encoders suited for streaming applications. They estab-
lished a fundamental tradeoff bound between the decoding
delay and the burst erasure length, for a given rate. A class
of encoders, called Short codes, that attained such a bound
with equality were presented. Recently, another construction,
called Midas codes, was presented in [2]. Midas codes are
also burst erasure-correction codes with low decoding delay
but a layer was added in order to deal also with isolated
erasures.

We continue this line of research and present a simple
class of encoders that are optimal with respect to the rate,
decoding delay and burst length, i.e., they admit the shortest
possible decoding delay to correct bursts of erasures of a
given length. Previous constructions were based on MDS
Reed-Solomon block codes and m-MDS convolutional
codes and therefore the underlying field sizes are required
to be relatively large. Our codes are defined over the binary
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field and therefore are also optimal with respect to the field
size. Moreover, the decoding turns out to be straightforward.

II. BURSTY ERASURE CHANNELS AND CONVOLUTIONAL
CODES

Let F = Fq be a finite field of size q and F[D] be the ring
of polynomials with coefficients in F. As opposed to block
codes, convolutional encoders take a stream of information
bits and converts it into a stream of transmitted bits (by
means of shift registers) and therefore they are very suitable
for streaming applications. If we introduce a variable D,
usually called the delay operator, to indicate the time instant
in which each information arrived or each codeword was
transmitted, then we can represent the sequence message
(vvv0, vvv1, · · · , vvvµ) as a polynomial sequence v(D) = vvv0 +
vvv1D + · · ·+ vvvµD

µ.
A convolutional code C of rate k/n is an F[D]-module

of F[D]n of rank k of the form

C = imF[D]G(D) = {u(D)G(D) | u(D) ∈ Fk[D]}

where G(D) ∈ F[D]k×n is a right invertible matrix called an
encoder of C. The degree δ of C is defined as the maximum
degree of the full size minors of G(D).

If G(D) =
∑m
i=0GiD

i, then, m is called the memory of
G(D) and the associated sliding matrix of G(D) is

Gcj =


G0 G1 · · · Gj
0 G0 · · · Gj−1
...

...
. . .

...
0 0 · · · G0


with Gj = 0 when j > m, j ∈ N.

In burst erasure channels each symbol vvvi of the
codeword v(D) either arrives correctly or is completely
lost and moreover losses occur in bursts. Here, we are
primarily interested in building encoders that allow to
recover these type of losses as soon as possible. We
follow previous approaches and regard the symbols vvvi as
packets and consider that losses occur on a packet level.
Assume that we have been able to correctly decode up to
an instant i and a burst of length L is received at time
instant i, i.e., one or more packets are lost from the set
(vvvi, vvvi+1, . . . , vvvi+L−1). Then, we say that the decoding
delay is T if the decoder can reconstruct each source packet
with a delay of T source packets, i.e., we can recover uuui+j
(for j ∈ {0, 1, . . . , L − 1}) once vvvi+L, vvvi+L+1, . . . , vvvi+j+T
are received. In [3] the following result on the trade-off
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between delay and redundancy was derived.

Theorem 1: If a rate R encoder enables correction of all
erasure bursts of length L with decoding delay at most T ,
then,

T

L
≤ max

[
1,

R

1−R

]
. (1)

A generalization of this result was later presented in [2]
taking into account not only bursts of erasures but isolated
erasures as well.

Convolutional codes with large column distance are very
appealing for sequential decoding and have excellent error
correction capabilities, but they require, in general, large
finite fields [8] and long delays. Even though these type
of codes have been proposed for applications that consider
erasure channels, see [9], they do not generally achieve the
best trade-off between delay, redundancy, field size and burst
correction. The notion of column span was introduced in [3]
as an indicator of the error-burst-correction capabilities of an
encoder.

Definition 2: The column span of Gcj is defined as

CS(j) = min
uuu=(uuu0,uuu1,...,uuuj), u0 6=0

span (uuuGcj)

where the span of a vector equals j − i+ 1, where j is the
last index where the vector is nonzero and i is the first such
index.

It is not difficult to see that if a burst of maximum length
L occurs within a window of length W + 1, then, it can be
corrected if and only if CS(W ) > L, see also [5, Lemma
1.1] for a similar result. In this paper we are interested
in convolutional codes with high erasure-burst-correcting
capabilities but that also admit low latency decoding.

In addition to Theorem 1, it is also worth mentioning the
upperbounds given in [5], [6] on the maximum correctable
burst length in terms of the encoder parameters n, k and
m. In this preliminary work we shall focus on low delay
decoding under bursts of erasures, and so consider only the
bound given in (1) without taking into consideration the
memory of the encoder or isolated losses.

III. A SIMPLE SYSTEMATIC ENCODER FOR BURST
ERASURE CORRECTION WITH LOW DELAY

Suppose that in the channel only burst of erasures of length
L occur. We first consider the case k > (n − k), say, (n −
k)λ+γ = k for some integer λ and γ < n−k. Let G(D) =
[Ik Ĝ(D)] ∈ Fk×n, Ĝ(D) =

∑
j≥0 ĜjD

j be a systematic
encoder given by

ĜLi =

 O(i−1)(n−k)
I(n−k)

Ok−i(n−k)


for i = 1, . . . , λ where Is stands for the identity matrix of
size s and Os is the null matrix of size s × (n − k) and if

(n− k) - k, i.e., γ 6= 0, then, we also define

Ĝ(λ+1)L =

(
Ok−γ
Iγ | O

)
.

The remaining coefficients Ĝi of Ĝ(D) are null matrices.

Suppose that a burst of erasure of length L occurs at time
j. Then, one can verify that at time instant j + L + Li,
we recover n − k coordinates of uuuj for i = 1, . . . , λ − 1,
and wait until time j + (λ + 1)L to retrieve the remaining
part of uuuj , if necessary. Then, the delay to recover uuuj is
T = d k

n−k e. Furthermore, due to the Toeplitz structure of the
sliding matrix it follows that T is also the delay for decoding
all the remaining erasures of vvvs, s = j + 1, . . . , j + L − 1.
Assume now for simplicity that γ = 0 to show that the bound
in (1) is met with equality. First note that R

1−R = λ for the
selected parameters (n − k)λ = k and R = k/n . On the
other hand it is easy to verify that T = λL and therefore
T
L = λ = R

1−R .
Thus, the proposed construction admits an optimal delay

decoding when only bursts of erasures of length up to L
occur. Note that this construction requires only binary entries
whereas previous contributions require larger finite fields and
then the decoding is computationally more efficient. The case
k ≤ n− k readily follows by considering

ĜL =
(
O Ik

)
and the remaining coefficients of G(D), Gj , j /∈ {0, L} null
matrices.

IV. CONCLUSIONS
In this preliminary work we have investigated convolu-

tional encoders with a low delay decoding with optimal burst
erasure-correcting capabilities. We have introduced a class
of encoders which, to the best of our knowledge, is new in
this context. They have the singularity that its construction
and decoding is very simple. An interesting avenue for
further research is the construction of new classes of optimal
encoders suited for less restricted streaming channels, e.g.,
channels that allow isolated both errors and erasures. In
this direction, codes for bursty channels can be considered
as a first step towards developing more general classes of
convolutional codes, see [2] where a burst erasure-correcting
code is constructed and then an addition layer is added in
order to deal with more general errors. Some interesting
problems in this area remain open, e.g., the problem of
constructing optimal streaming codes when the source and
channel rates are unequal and the channel introduces both
burst and isolated erasures [2].
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