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Abstract— We study performance limitations of distributed
feedback control in large-scale networked dynamical systems.
Specifically, we address the question of how the performance of
distributed integral control is affected by measurement noise.
We consider second-order consensus-like problems modeled
over a toric lattice network, and study asymptotic scalings (in
network size) of H2 performance metrics that quantify the
variance of nodal state fluctuations. While previous studies
have shown that distributed integral control fundamentally
improves these performance scalings compared to distributed
proportional feedback control, our results show that an explicit
inclusion of measurement noise leads to the opposite conclusion.
The noise’s impact on performance is shown to decrease with
an increased inter-nodal alignment of the local integral states.
However, even though the controller can be tuned for acceptable
performance for any given network size, performance will
degrade as the network grows, limiting the scalability of any
such controller tuning. In particular, the requirement for inter-
nodal alignment increases with network size. We show that this
in practice implies that large and sparse networks will require
any integral control to be centralized, rather than distributed.
In this case, the best-achievable performance scaling, which is
shown to be that of proportional feedback control, is retrieved.
Keywords: Networked Control Systems, Large Scale Systems,
Fundamental Limitations.
AMS subject classification: 93A14, 93A15, 93C05.

I. PROBLEM FORMULATION

A. System dynamics

Consider a networked dynamical system modeled over the
discrete toric lattice Zd

L, with a total of N = Ld nodes. The
local dynamics are of second order, meaning that there are
two states xk and vk, at each network site k ∈ Zd

L. These
states can be thought of as, respectively, the position and
velocity deviations of the kth agent in a formation control
problem, but may also capture, for example, phase and
angular frequency in coupled oscillator networks. The system
dynamics are modeled as follows:[

ẋ
v̇

]
=

[
0 I
F G

] [
x
v

]
+

[
0
I

]
u+

[
0
I

]
w, (1)

where u is a control input and w is a disturbance. The
linear feedback operators F and G define convolutions of
the states x and v with the function arrays f = {fk}
and g = {gk} over Zd

L, i.e., (Fx)k =
∑

l∈Zd
L
fk−lxl. This

structure implies that the state feedback is spatially invariant
with respect to Zd

L. The feedback in (1) is referred to as
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Fig. 1: Example structure of the distributed integral controller.
The inter-nodal alignment of integral states zk takes place over a
communication network (dashed lines), while the state feedback
interactions take place over the physical network (solid lines).
We show that if the controller is subject to noise, the inter-nodal
alignment through A becomes increasingly important. For large and
sparse physical networks all-to-all communication or centralized
integral control will be necessary.

static if the control input u = 0, in which case the feedback
is simply proportional to state deviations.

An example of the dynamics in (1) is nearest-neighbor
consensus for d = 1:

ẍk = v̇k =f+(xk+1−xk) + f−(xk−1−xk) + g+(vk+1−vk)

+ g−(vk−1−vk)− foxk − govk + uk + wk, (2)

where f+, f−, fo, g+, g−, go ≥ 0 are fixed gains. We refer
to terms like (xk+1−xk) as relative feedback and to terms
like −foxk as absolute feedback. Absolute feedback is well-
known to be beneficial for control performance in networked
dynamical systems, but the corresponding measurements
are often not available, see e.g. [1], [2]. Here, we will
assume that only relative measurements of the (generalized)
position state x are available, i.e., fo = 0 in (2). Absolute
measurements of the (generalized) velocity are, however,
available to each controller.

We remark that the analysis here is not limited to nearest-
neighbor feedback, but we assume that measurements are
available from a neighborhood of width 2q, with q fixed.
We further assume that feedback interactions are symmetric
around each site k.

B. Distributed integral control

Distributed integral control in networked dynamical sys-
tems is motivated by a desire to eliminate stationary con-
troller errors which arise through the standard static feedback
(as this is essentially just proportional control). We consider
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TABLE I: Asymptotic performance scalings for the system (1) with (i) u = 0 (static feedback), (ii). u as in (3) with vm = v (distributed
integral control, noiseless) and (iii) u as in (3) with vm = v + εη (noisy distributed integral control). The notation ∼ defines scalings as
follows: u(N) ∼ v(N) ⇔ cv(N) ≤ u(N) ≤ c̄v(N), for any N > N̄ , with N̄ fixed and the constants c, c̄ > 0 independent of N ,
algorithm parameter β = max{||f ||∞, ||g||∞} and relative noise intensity ε.

Local error Global error

(i) Static feedback VN ∼ 1
β

for any d VN ∼ 1
β


N d = 1

logN d = 2

1 d ≥ 3

(ii) Distributed integral control (noiseless) VN ∼ 1
β

for any d VN ∼ 1
β

for any d

(iii) Noisy distributed integral control VN ∼ ε2

β


N d = 1

logN d = 2

1 d ≥ 3

VN ∼ ε2

β



N3 d = 1

N d = 2

N1/3 d = 3

logN d = 4

1 d ≥ 5

the control input u to be a distributed integral controller on
the form:

u = z

ż = −covm +Az,
(3)

where vm is the velocity measured by the controller, co > 0
is a fixed (integral) gain and A is a feedback operator subject
to the same assumptions as F in (1). An example of the
control law (3) is:

u̇k = żk = a+(zk+1 − zk) + a−(zk−1 − zk)− covmk , (4)

where a+, a− > 0 are fixed gains. This controller integrates
the absolute velocity measurements, but also aligns the
integral state z over the network through the consensus or
distributed averaging filter represented by the operator A. It
is useful to think of the information exchange through A as
taking place over a communication network layer, separate
from the physical network as in Fig. 1.

The controller (3) have been proposed in the context
of frequency control in power networks [3], [4]. Its main
advantage is that it can be implemented in a distributed
fashion.

C. Performance evaluation

We are concerned with the performance of the system (1),
and in particular, with how well the performance of the
control laws scale as the network size N → ∞. In line
with related work [2], [5]–[9], we characterize performance
through the steady state variance of nodal state fluctuations,
when the system is driven by a white noise disturbance
input w. This variance is measured through the squared H2

norm from w to a performance output y:

VN :=
∑
k∈Zd

L

lim
t→∞

E{y∗k(t)yk(t)}. (5)

We consider the following performance measurements:
Definition 1 (Global error):

yk = xk −
1

N

∑
l∈Zd

L

xl (6)

Definition 2 (Local error):

yk = xk − xk−1 (7)
Throughout, we consider the per-site variance, which due to
the system’s spatial invariance is independent of the site k:

Definition 3 (Per-site variance):

VN = E{y∗k(t)yk(t)} =
VN

N
. (8)

It is the scaling of VN with the system size N as it grows
asymptotically that is of interest. A fast scaling in N implies
a lack of network coherence and a limited scalability of the
control law.

The following results, of which (i) appeared in [2, Corol-
lary 3.2] and (ii) follows from [9, Corollary 1] are the main
motivation for this work.

Result 1 (Performance scalings): Consider the system (1)
and assume that the velocity measurements are noiseless, that
is, vm = v. Then, Table I lists the asymptotic scaling of the
per-site variance VN with

(i) Static feedback, i.e., where the secondary control input
u = 0, and

(ii) Distributed integral control with u as in (3).

D. Objectives

Result 1 implies that distributed integral control on the
form (3) fundamentally improves performance in terms of
global error compared to static feedback, if the velocity
measurements are noiseless. In terms of local error, the
variance is bounded in N for both controllers, but can be
shown to decrease in absolute terms through integral control.
The objective of the present work is to determine to which
extent this result is robust to measurement noise in the
controller.

The apparent reason for the performance improvement
through integral control is namely that integration of the
absolute velocity measurements emulates absolute position
feedback [9]. Any noise and bias in the velocity measure-
ments is prevented from causing destabilizing drifts in this
position feedback by the distributed averaging filter A in (3).
Yet, we show here that noise in the velocity measurements
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may still have a significant effect on performance. We also
demonstrate how the performance under noisy measurements
depends on the design of the distributed averaging filter A.

II. LIMITATIONS OF DISTRIBUTED INTEGRAL CONTROL
UNDER NOISY MEASUREMENTS

Result 1 is indeed sensitive to the accuracy of the absolute
velocity measurements, and may change radically if they are
subject to noise. Here, we model additive measurement noise
and let the velocity measurement in (3) be

vm = v + εη,

where the vector η contains uncorrelated white noise
and ε is a scaling factor defined through E{η(τ)ηT (t)} =
εE{w(τ)wT (t)}.

The technical framework presented in [10] allows us to
analyze how the measurement noise affects the scaling of
local and global performance. It uses a block-diagonalization
of the system through discrete Fourier transforms of the func-
tion arays associated with the feedback operators. This allows
a derivation of closed-form expressions of the systems’ H2

norms, whose scalings in N can then be analyzed.
This paper’s main result is presented in the following

proposition.
Proposition 2: Consider the system (1) with control in-

put (3) and assume that the velocity measurements are noisy,
that is, vm = v + εη. Then, row (iii) of Table I lists the
asymptotic scaling of the per site variance VN .

Table 1 reveals that the measurement noise η leads to an
unfavorable scaling of both local and global error variance –
even worse than for distributed static feedback. This may not
be an issue for small networks, as the variance is proportional
to the factor ε2, which can be very small. However, it limits
the overall scalability of distributed integral control to large
networks.

A. Achieving scalable integral control

The error variance of the system under noisy integral
control can be partitioned into two terms; one due to the
process disturbances w and one due to measurement noise η.
It is the scaling of the latter term that causes the unfavorable
performance scaling reported in Proposition 2.

For any given system with a fixed network size, it is
possible to trade off these terms by tuning the controller and
optimize the overall performance. This can, for example, be
done by tuning the distributed averaging filter A. However,
no such tuning will be scalable to large networks. The
situation is illustrated in Fig. 2. In fact, we show that the best-
achievable performance scaling is that of distributed static
feedback:

Proposition 3: The best-achievable performance scaling
for the system (1) under noisy integral control (3) is that
of distributed static feedback in Table I.

To retrieve the best-achievable performance scaling ac-
cording to Proposition 3, the impact of the measurement
noise η must be limited. We show that this can only be done
in the following ways:

1) Reducing the integral gain co: Reducing the gain co
in (3) reduces (or eliminates) the impact of the measurement
noise η. In this case, co must be decreased as 1/L2 (i.e.
1/N2/d). In practice, this implies co → 0 and the integral
action is eliminated. In this case, the control input u is
meaningless.

2) Increasing the distributed averaging gain – centralized
averaging: The distributed averaging gain ā can be defined
as ā = ||a||∞, where a = {ak} is the function array
associated with the operator A in (3). In the example (4)
ā = a+ = a−.

To prevent the unfavorable performance scaling due to the
noise η, the gain ā must be increased as L2 (i.e. N2/d). In
practice, this means that ā → ∞ when the lattice size L
grows.

While an infinite gain in distributed averaging is not feasi-
ble, the same result can be realized as centralized averaging
integral control, where a central controller has instantaneous
access to the integral states at all nodes. The control signal uk
is then the same for all k ∈ Zd

L:

uk = z;

z =
1

N

∑
k∈Zd

L

vmk .
(9)

It is not difficult to show that this controller has the same
performance with respect to the errors (6) and (7) as static
feedback.

3) Increasing communication network connectivity: Let
qA be the “communication window” for the operator A, i.e.
the size of the neighborhood in each coordinate direction
within which each controller aligns the state z. That is, each
node is allowed to communicate with its (2qA)d nearest
neighbors. Formally, we can define qA := maxak 6=0 |k|.

To prevent the unfavorable performance scaling due to the
noise η, we must require qA ∼ L = N1/d. This implies
that the communication window must scale with the lattice
size. For large networks, this in principle leads to all-to-all
communication. This can be practically challenging and a
centralized approach as in (9) is likely preferable.

III. CONCLUSIONS

We have characterized limitations of distributed integral
control in terms of the scaling of H2 performance to large
networks. We showed that such limitations arise due to noisy
measurements, and can only be alleviated by increasing the
amount of inter-nodal alignment between controllers (either
through the number of connections, or their weights).

This is in contrast to previous results reported in [9],
[11], [12] which showed that “little” inter-nodal alignment of
integral states (i.e., small gains ā and few interconnections
in communication network) is optimal for performance in
the absence of measurement noise. It is intuitively clear that
the inter-nodal alignment becomes increasingly important
if noise is considered explicitly. Our results are, however,
surprising in that it is not enough to increase this alignment in
proportion to the noise intensity. Instead, the weights must be
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Fig. 2: Scaling of local error variance with static feedback vs.
noisy distributed integral control in 1D lattice. For a given network
size N , it is possible to set the gain ā in the distributed averaging
filter A so that the integral controller performs better than the static
controller. Yet, no such controller scales well to larger networks.
A centralized integral controller on the form (9), corresponding
to ā → ∞, will however have the same performance as static
feedback.

increased as ā ∼ L2 = N2/d or the communication window
qA ∼ L = N1/d.

Naturally, any real-world application will have a finite
number of nodes. The distributed integral controller can
therefore always be tuned for acceptable performance. Our
results imply, however, that such a tuning cannot be done
independently of the network size. Therefore, even though
the controller is implemented in a distributed fashion, its
tuning requires global knowledge.

The results presented in this paper have been derived
for a particular distributed integral controller and under the
assumption of a spatially invariant. It is fairly straightforward
to show that the key results hold also for more general
integral controllers on the form u = z, ż = Az+Bx+Cvm.
Under more general assumptions on the network topology,
it is possible to derive certain bounds on the forms of the
expressions in Table 1. However, it is an open and interesting
research question whether network heterogeneities, which are

present in any real-world application, can be exploited to
improve system performance.
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[2] B. Bamieh, M. R. Jovanović, P. Mitra, and S. Patterson, “Coherence
in large-scale networks: Dimension-dependent limitations of local
feedback,” IEEE Trans. Autom. Control, vol. 57, no. 9, pp. 2235 –
2249, Sept. 2012.

[3] M. Andreasson, D. Dimarogonas, H. Sandberg, and K. Johansson,
“Distributed PI-control with applications to power systems frequency
control,” in American Control Conf., June 2014, pp. 3183–3188.

[4] J. W. Simpson-Porco, F. Dörfler, and F. Bullo, “Synchronization and
power sharing for droop-controlled inverters in islanded microgrids,”
Automatica, vol. 49, no. 9, pp. 2603 – 2611, 2013.

[5] F. Lin, M. Fardad, and M. Jovanović, “Optimal control of vehicular
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