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Abstract— In this work we study the problem of list decoding
of block codes over finite rings over the erasure channel. We
provide explicit formulas for the list decoding size of a linear
code over Zpr and show that this number is determined by the
number of independent columns of a series of matrices obtained
from the p-adic decomposition of a parity-check matrix of the
code. The result is constructive in the sense that it can lead to
an algorithm for list decoding of these codes. This work can be
considered as a first step toward the study of list decoding over
more difficult channels and codes, e.g., convolutional codes.

Index Terms— linear codes over finite rings, erasure channel,
list decoding.
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I. INTRODUCTION

After a paper by Hammons et al. [1], where it was shown
that certain binary nonlinear codes can be viewed, via a
Gray mapping, as linear codes over the ring Z4, a great
interest raised in linear codes over rings. This line of research
continue to attract a great deal of attention for their new role
in algebraic coding theory and for their successful application
in combined coding and modulation, see [2], [3], [4], [5] for
some interesting constructions.

In this paper we address the problem of list decoding of
linear block codes over the finite ring Zpr [6], [7], [8]. In
particular, in this preliminary work we focus on decoding
over the erasure channel, i.e., we assume to know the location
of the errors in the received corrupted codeword. We provide
a result that can be straightward made into an algorithm to
solve this problem and formulas for the number of possible
outputs of the algorithm. The results will be given in terms
of the integers of the p-adic expansion of a parity-check
matrix H (the expansion performed componentwise) of the
code. The number of independent columns of the matrix
obtained by stacking the matrices of the p-adic expansion
of H will determine the size of the list in our algorithm for
list decoding.

II. PRELIMINARIES RESULTS

Definition 1: A (linear) block code C of length n over
Zpr is a Zpr -submodule of Zn

pr and the elements of C are
called codewords. A generator matrix G ∈ Zk×n

pr of C is
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a matrix whose rows form a minimal set of generators of C
over Zpr and therefore

C = Im Zpr
G

= {v = uG ∈ Zn
pr : u ∈ Zk

pr}.

A matrix H ∈ Z(n−k)×n
pr is a parity-check matrix of a

block code C if, for every v ∈ Zn
pr ,

v ∈ C ⇔ Hv = 0,

and then
C = ker Zpr

HT .

The ring Zpr is a local ring [9], i.e., its elements which are
zero divisors form an additive Abelian group and using the
p-standard form of H , as described in [10] (see also [11] for
details), we can write H uniquely as

H =


H0

pH1

...
pr−1Hr−1

 , (1)

where Hi ∈ Zhi×n
pr ,

∑r−1
i=0 hi = n− k.

Definition 2: The free distance d(C) of a linear block
code C over Zpr is given by

d(C) = min{wt(v), v ∈ C, v 6= 0}

where wt(v) is the Hamming weight of v, i.e., the number
of nonzero entries of v.

The following result characterizes the erasure-correction
capability of a code C in terms of its parity-check matrices.
Its easy proof is omitted.

Theorem 1: Let C = ker Zpr
H , be a block code of length

n and free distance d(C) = d where the parity-check matrix
can be written as in (1) Then, the following are equivalent

1) d(C) = d;
2) we can correct d− 1 erasures;
3) Any d − 1 columns of H are linearly independents

and there exists d columns of H that are linearly
dependent;

4) Any d − 1 columns of H0 are linearly independents
and there exists d columns of H0 that are linearly
dependent.
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Suppose that we receive v ∈ Zn
pr with e erasures and ṽ ∈

Ze
pr is the subvector of v that corresponds to the positions

of the erasures. Then, we can rewrite Hv = 0 as

H̃ṽ = b, (2)

where the matrix H̃ ∈ Z(n−k)×e
pr is built according to ṽ and

the vector b can be computed from the correct coordinates
of v. Obviously, if we regard ṽ as a vector of to-be-
determined variables, the problem of decoding v is equivalent
to solving the system of linear equation described in (2). The
unique solution of this system is given by the number of
linearly independent (over Zpr ) equations (see [9]) which,
by Theorem 1, is determined by the number of linearly
independent columns of H̃0.

If exact decoding is not possible, one may want to
perform list decoding and next we will show how this
is possible for block codes over Zpr . In contrast with
unique decoding, the list decoding will depend not only
on H0 but also on the remaining H̃i, as well i = 1, . . . , r−1.

We divide H̃ according to the decomposition in (1) as

H̃ =


H̃0

pH̃1

...
pr−1H̃r−1

 ,

where H̃i ∈ Zh̃i×n
pr ,

∑r−1
i=0 h̃i = n − k. Let us define ci as

the number of linearly independent columns of
H̃0

H̃1

...
H̃i

 ,

for i = 0, 1, . . . , r − 1. Next, we present a result that
provides an explicit formula for the number of possible
values of the erasures and therefore the size of the list
obtained after list decoding.

Theorem 2: Let C be a block code defined as above. Then,
the number of solutions ṽ in (2) is given by

s = per−(c0r+
∑r−1

i=1 (ci−ci−1)(r−i)).

Sketch of the proof: We uniquely decompose the vector
of unknowns ṽ in its p-adic extension as

ṽ =


ṽ01
ṽ02

...
ṽ0e

+ p


ṽ11
ṽ12

...
ṽ1e

+ · · ·+ pr−1


ṽ(r−1)1

ṽ(r−1)2

...
ṽ(r−1)e


and therefore we have er unknowns to determine.

Decomposing b according to the decomposition of H and
H̃ , as in (1), we write

b =


b0
pb1

...
pr−1br−1

 ,

it follows that

piH̃iṽ = pibi, (3)

for i = 0, 1, . . . , r − 1. Note that each equation in (3)
determines r − i unknowns.

Hence, the number of unknowns determined by equations
of (3) are (ci−ci−1)(r−i) with c−1 = 0, i = 0, 1, . . . , r−1.

Obviously if c0 = e the systems is uniquely determine
and the decoding is finished.

If not, we next impose more equations to ṽ from

pH̃1ṽ = pb1. (4)

Hence, the total number of new linearly independent equa-
tions that we add is equal to the number of linearly inde-
pendent columns of H̃1 taking out the equations that already
appeared in for H̃0, i.e., it holds that the total number of
new equations of (4) that are not in (3) is (c1 − c0)(r − 1).
If we continue the same reasoning up to (r − 1), the result
follows. �

Note that the proof of the theorem can be easily made into
an algorithm for list decoding.

Example 1: Let us consider the block code C = kerH ,
where

H =

 H0

3H1

9H2

 ∈ Z27,

with H0 =
[
1 3 0 2 10

]
, H1 =[

0 4 1 5 7
0 0 0 0 3

]
and H2 =

[
1 0 0 0 2

]
and v =

[
v1 1 v2 v3 3

]
∈ C with erasures

v1, v2, v3.
To compute the erasures of v, let us represent vi = vi0 +

3vi1 + 9vi2, with vij ∈ {0, 1, 2}, i = 1, 2, 3, j = 0, 1, 2.
Then, since HvT = 0, we obtain H̃0

3H̃1

9H̃2

 ṽT =

 b0
3b1
9b2

 ,

where H̃0 =
[
1 0 2

]
, H̃1 =

[
0 1 5
0 0 0

]
, H̃2 =[

1 0 0
]
, ṽ =

[
v1 v2 v3

]
, b0 = 21, b1 =

[
2
0

]
and b0 = 0.

Then, H̃0ṽ = b0 means that

v10 + 3v11 + 9v12 = 21 + 25v30 + 21v31 + 9v32, (5)
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i.e., c0r = 3 unknowns, v10, v11 and v12 are functions of
v30, v31 and v32.

Therefore,

3H̃1ṽ = 3b1

⇔ 3

[
0 1 5
0 0 0

] 21 + 25v30 + 21v31 + 9v32
v20 + 3v21 + 9v22
v30 + 3v31 + 9v32

 = 3

[
2
0

]
⇔ 3(v20 + 3v21) = 3(2 + 4v30 + 3v31), (6)

i.e., v20+3v21 = 2+4v30+3v31. That is, (c1−c0)(r−1) = 2
unknowns, v20, v21 are obtained as a function of v30 and v31.
The variable v22 is free.

Finally,

9H̃2ṽ = 9b2

⇔ 9 [ 1 0 0 ]

[
21 + 25v30 + 21v31 + 9v32
2 + 4v30 + 3v31 + 9v22

v30 + 3v31 + 9v32

]
= 0

⇔ 9 · v30 = 0, (7)

i.e., v30 = 0 and v31, v32 ∈ {0, 1, 2}.
The unknowns v31, v32 and v22 can take any value in
{0, 1, 2} and the values of the other c0 · r+ (c1 − c0) · (r−
1)+ (c2− c1) · (r− 2) = 6 depend on the values of v31, v32
and v22 by equations (5), (6) and (7). Then the number of
solution is

33·3−6 = 27.

III. CONCLUSIONS AND FUTURE WORK

In this work we have presented preliminary results on list
decoding of linear codes over the ring Zpr . We have shown
how one should proceed in order to determine all the possible
outputs of a list decoding algorithm. Not surprisingly, the
number of these possible codewords is determine by the
matrices obtained in the p-adic decomposition of a parity-
check matrix of the code. The development of these results
for block codes will allow us to address the more involved
problem of list decoding for convolutional codes over Zpr .
The study of different types of channels is also an interesting
line for future work.
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