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Abstract— Environment perception is a crucial task for safe
navigation of robots. It relies on the robust interpretation
of noisy sensor measurements. To represent the state of the
surrounding environment, probabilistic Occupancy Grids are
commonly used. They are built using a Bayesian inference
procedure which estimates the occupancy probability of each
cell in the grid from sensor readings. However, the complexity
of such a procedure is exponentially increasing with the number
of cells, especially when sensor readings are caused by multiple
targets simultaneously. To overcome this difficulty, we propose
a novel approach to handle multi-target sensors. It is based
on a sectoral decomposition of their Field-Of-View under the
nearest-target hypothesis, which breaks down the complexity to
a linear one. Finally, a realistic implementation of the proposed
formulation is presented, and an experimental construction of
occupancy grids is discussed.

I. INTRODUCTION
Mobile robots require building a representation of their

environment to autonomously and safely navigate. Several
spatial representations have been used for this purpose [1],
[2], [3], [4]. Occupancy Grids (OGs) , originally introduced
in [1], seem to be the most commonly used representation
in this domain. OGs are composed of a finite number of
cells corresponding to a partition of the space that surrounds
the robot. Each cell is associated to a qualitative information
about its state which reflects the certainty of being occu-
pied given sensor measurements. Three types of OGs exist,
namely, probabilistic OGs [5], evidential OGs [6] and fuzzy
OGs [7]. The difference lies in the way this information
is computed. The model used to compute the qualitative
information is the so-called Inverse Sensor Model (ISM),
also known as the posterior model. It enables to estimate
occupied and empty regions, given sensor measurements.
Sensor uncertainty is captured by a probability density func-
tion, also known as the Sensor Model (SM). The SM can
be determined experimentally via several tests that permit to
model the behavior of the sensor in different situations and
conditions. It can also be determined theoretically from a
knowledge of the physics principles behind the sensor.

In this paper, multi-target sensors are considered, i.e. sen-
sors which have a large Field-Of-View (FOV) (see Fig. 1a)
and whose measurements vary depending on the number of
targets present in their FOV and the Cross Section (CS) of the
targets considered. Their behavior is different from narrow
FOV sensors, often called single-target sensors. For these
narrow FOV sensors, mostly the nearest target to the sensor
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is supposed to generate the measurement and its CS does not
have much influence since its FOV is considered infinitely
narrow (see Fig. 1b). Basically, in the case of multi-target
sensors, the problem is that the Bayesian inference procedure
requested for the ISM evaluation requires an enumeration of
all possible environment states. Therefore, the computational
complexity is exponential, becoming intractable in large
OGs. Several approaches have been proposed in order to
reduce the computational complexity of the ISM [8] [9]
[10] [11] [12]. However, these approaches introduced some
approximations in the ISM formulation or they gave a direct
formulation of the ISM without employing the SM, or
they reduced the complexity for single-target sensors and
therefore can’t be applied to multi-target sensors.
From a theoretical point of view, it is of great interest to keep
the link between the SM and the ISM [10]. Consequently, the
present paper proposes a linear-complexity implementation
of the ISM for multi-target sensors that keeps this link.
The implementation decomposes the FOV in sectors for
the ISM computation. It it is based on the nearest-target
hypothesis, i.e. the measurement provided by the sensor is
supposed to be caused by the closest obstacle to the sensor
(or several obstacles if they are at the same closest distance
to the sensor) and it is influenced by the obstacle CS and
its angular position (their equivalent CS and their angular
position, respectively).

The paper is organized as follows. Section II gives a brief
introduction to the basic terminologies and the mathematical
background, exposes the limitations encountered by previ-
ous approaches and discusses in details the nearest-target
hypothesis. The definition of the SM based on the nearest-
target hypothesis is then presented in section III while section
IV covers the direct formulation of the ISM. Section V
details the implementation of the sectoral decomposition.
Finally, results for this new formulation based on the sectoral
decomposition technique are presented in section VI.

(a) (b)

Fig. 1: Illustration of a multi-target FOV sensor (a) and of a
single-target FOV sensor (b).
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II. MOTIVATION

In this section, we first recall the mathematical definitions
of the SM and the ISM in II-A. Then, we expose the
computational burdens of the ISM evaluation for multi-
target sensors in II-B. Finally, subsection II-C shows that
the nearest-target hypothesis is already valid for some com-
mercial sensors.

A. Mathematical Formulation and Terminology

G is the OG partitioned into a finite number of N disjoint
cells ci , i = 0, . . . , N − 1. Each cell ci is associated to its
state si, where si = o(ci) if cell ci is occupied, and si =
e(ci) if ci is empty. z denotes the sensor response toward
a specific grid configuration G. The SM is the conditional
probability distribution p(z|G) that z occurs given a specific
configuration G of G. The parameters that appear in the SM
formulation may vary from one sensor to the other.

For a single-target sensor, a convenient representation of
the SM is given by p(z|x) where x is the distance from the
sensor to its closest obstacle. The single-target hypothesis
implies that p(z|G) can be expressed as p(z|x(G)), where
x(G) is the distance to the first occupied cell in G. Hence,
the distribution p(z|G) can be computed with a linear com-
plexity for single-target sensors [10]. However, for a multi-
target sensor, a similar simplification does not hold because
multiple objects at the same distance can be detected in a
single sensor reading. The sensor output therefore relates to
the combination of the occupancy state of the corresponding
cells. Both situations greatly differ and the construction of
the multi-target SM will be discussed in section III.

The ISM is represented by the conditional probability of
occupancy of each cell, given the measurement z. Assume
that the occupancy of different cells is conditionally indepen-
dent with respect to z. Then, the ISM is given by P (o(ci)|z),
i = 0, . . . , N − 1. The methodology proposed by Elfes [13]
to deduce the ISM from the SM is based on the Bayes’
theorem:

P (o(ci)|z) =
p(z|o(ci)) · P (o(ci))

p(z)
(1)

From the decomposition on the two complementary events
o(ci) and e(ci), (1) becomes:

P (o(ci)|z) =
p(z|o(ci)) · P (o(ci))

p(z|o(ci)) · P (o(ci)) + p(z|e(ci)) · P (e(ci))
(2)

P (o(ci)) and P (e(ci)) evaluate the prior information about
the occupancy of cell ci. Equation (2) requires the com-
putation of p(z|e(ci)) and p(z|o(ci)). It is then feasible to
compute p(z|si), si ∈ {o(ci), e(ci)} from the SM. From
the total probability law applied over all the possible grid
configurations, it comes:

p(z|si) =
∑
G
si
k

p(z|Gsik ∧ si) · P (Gsik |si) (3)

where Gsik refers to a grid that has no state information for
cell ci: Gsik = (s0, . . . , si−1, si+1, . . . , sN−1) and Gsik ∧si =
(s0, . . . , si−1, si, si+1, . . . , sN−1). Hence, Gsik ∧si represents

the configuration of a grid where the state of cell ci is set to
si and the state of the other cells are enforced in Gsik . Since
Gsik is independent of si, (3) can be written as:

p(z|si) =
∑
G
si
k

p(z|Gsik ∧ si) · P (Gsik ) (4)

Although p(z|Gsik ∧ si) can be derived from SM evalua-
tions, one can notice that the number of possible configura-
tions Gsik in (4) is 2N−1. In the case of a multi-target sensor,
this leads to an exponential computation.

B. Analysis of Previous Approaches

As described in II-A, the theoretical solution to the ISM
problem has an exponential complexity. To overcome the
implementation burden, several approaches were proposed in
the literature. They either introduced some approximations in
the formulation or they developed a different methodology
for building the ISM. For example, [10], [11], [12] apply the
single-target hypothesis to compute p(z|o(ci)) and p(z|e(ci))
in (2). However, this would result in incorrect occupancy
estimates for a multi-target sensor. Consider for instance
a radar with a large FOV, and two grid configurations G1

and G2, where G1 contains a unique occupied cell in the
sensor FOV at a known distance d, while in G2, all the
cells located at distance d are occupied. The single-target
hypothesis implies that p(z|G1) must be equal to p(z|G2),
which intuitively contradicts the specular behavior of a radar.
Moreover, the resulting ISM would reflect only the free
space, but not the occupancy.

Another approach consists in a direct formulation of the
ISM given a sensor measurement [8]. The occupancy of cells
located outside the measurement range of the sensor FOV or
behind a predefined distance are not updated: they are kept
equal to their prior value. Cells that are within a predefined
interval of the detected range are supposed occupied and
their occupancy probability is updated. Finally, cells located
in a shorter range than the sensor measurement are supposed
empty. Such a parametric approximation of the ISM cannot
be theoretically assessed, and the choice of its parameters
has to be verified experimentally. In addition, it breaks the
link between the SM and the ISM.

A third approach proposed in [9] supposes that the prob-
ability of occupancy P (o(ci)|z) is given by:

p(z|o(ci)) · P (o(ci))

p(z|o(ci)) · P (o(ci)) + [1− p(z|o(ci))] · P (e(ci))
(5)

However, p(z|o(ci)) is not equal to 1−p(z|e(ci)) in general.
Moreover, the SM in [9] does not take into account the effect
of other possibly occupied cells in the sensor FOV.

Finally, Thrun et al. [14] use a forward SM and apply the
Expectation Maximisation technique to find the adequate
map to a sensor measurement. Then, they compute the
occupancy probability in each cell. This approach suffers
from a complex computation and it does not always lead to
a unique optimum.
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To the best of our knowledge, there is no solution in the lit-
erature that explicitly keeps the link between the SM and the
ISM for multi-target sensors. This paper presents a general
formulation of the ISM under the nearest-target hypothesis
that guarantees this link and proposes a reasonable linear-
complexity implementation of the ISM by applying a sectoral
decomposition of the sensor FOV. Table I compares previous
approaches with our solution regarding the computational
complexity, the link between the SM and the ISM and the
application to multi-target sensors.

TABLE I: Comparison between existing approaches and the
proposed solution.

Approach Linear com-
plexity

Maintains
the link
between the
SM and ISM

Relevant to
multi-target
sensors

[12] Yes Yes No
[11] Yes Yes No
[10] Yes Yes No
[8] Yes No Yes
[9] No Yes No
[14] No No Yes
The present
approach

Yes Yes Yes

C. Nearest-target hypothesis
The solution proposed here is rooted in the nearest-target

hypothesis. This latter relies on the fact that the measurement
provided by the sensor is supposed to be caused by the
closest obstacle to the sensor (or by several obstacles if they
are at the same closest distance to the sensor). As it will
be shown in section III-B, this measurement is influenced
by the obstacle CS (their equivalent CS respectively) and its
(their) angular position.

The nearest-target behavior can be found in different range
sensors already on the market. Several commercial sensors
that embed Signal Processing (SP) to provide only one range
measurement corresponding to the distance to the nearest
obstacle(s) verify this hypothesis. For instance, each detector
of the Vu8/M16 from LeddarTech presents such a behavior
[15] [16]. In the same way, this hypothesis has been verified
for sensors VL53L0X from STM [17] and TeraRanger ONE
from Terabee [18]. Other range sensors provide raw data and
further SP is implemented (either provided by the manufac-
turer or developed by the user) to compute the distances to
the targets. Then, depending on the SP implemented, one can
extract the smallest distance for each scanning direction and
therefore the nearest-target hypothesis can be guaranteed. For
instance, the radar transceiver BGT24Axx [19] together with
the AURIX processor from Infineon [20] or the cocoon radar
from NXP (transceiver MR3003 with processor S32R27)
[21] can satisfy the nearest-target hypothesis, depending on
the SP techniques implemented in their respective processor.

III. PROBABILISTIC SENSOR MODEL

Under the nearest-target hypothesis, the sensor measure-
ment roots in 2 causes: either it is caused by the target(s)

located at the closest distance to the sensor or by a missed
detection. Both cases can be associated to a probability of
detection pD and of missed detection pMD, respectively.

Subsection III-A briefly explains how the angular position
of the target in the sensor FOV and its CS may influence
these probabilities. Subsection III-B shows how these factors
will interfere in the computation of these two probabilities.
The mathematical formulation of the SM used in the present
paper is also given. This model has been validated in [22].
Please note that the CS of a target is defined here as the
measure of a target ability to reflect the signal in the direction
of the sensor depending only on the relative area covered
by the target with respect to the sensor aperture and its
absolute size. Other factors that may impact the CS (such as
the material of which the target is made) are not considered.

A. Factors Impacting the SM

First, the angular position is expected to play a role in the
detection. A target located in the sensor FOV axis at distance
x (Fig. 4a) will more likely be detected in comparison to the
situation where it is located towards the side of the sensor
FOV at the same distance (Fig. 3a), generating then a higher
pD and a smaller pMD.

(a) (b) (c)

Fig. 2: (a): position of the target in the sensor FOV with
Cross Section in gray. (b): angular uncertainty function χ
where the gray shaded area corresponds to PD = 0.6. (c):
associated SM, x: distance from target to sensor.

(a) (b) (c)

Fig. 3: Same as Fig. 2 with PD = 0.05

A second impacting factor is the target CS, which seems
neglected in the literature. For example, the target in Fig.
2a has a larger CS than the one in Fig. 4a even if both
targets are identical in shape. The distances from the sensor
to these targets are indeed different, leading to a different
relative covered area for both targets with respect to the
sensor aperture. Hence, the target in Fig. 2a will more likely
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(a) (b) (c)

Fig. 4: Same as Fig. 2 with PD = 0.2

(a) (b) (c)

Fig. 5: Same as Fig. 2 with PD = 0.3

reflect the signal emitted by the sensor than the one in Fig.
4a, yielding a higher PD. A second example is illustrated in
Fig 5a and Fig. 3a. Targets in Fig. 5a have a larger combined
CS than the target in Fig. 3a. This time, the variation of the
CS is caused by the absolute size of these targets.

Finally, one should note that the angular position and the
CS have an interacting effect on the detection. For instance
targets in Fig. 5a have a larger combined CS than the target
in Fig. 4a. However, it cannot be directly stated that they
have a higher PD. In fact, targets in Fig. 5a are located
at a poor reflecting area (towards the side of the sensor
FOV). On the contrary, the target in Fig. 4a is located on the
sensor FOV axis. It will be shown hereafter how both, the CS
and the angular position, are considered in the mathematical
expressions of PD and PMD.

B. Formulation of the Sensor Model

Consider T = {ti; i = 1, ..., NT } the set of NT targets
located in the sensor FOV verifying r(t1) ≤ r(t2) ≤ ... ≤
r(tNT ), where r(.) is the distance to the sensor. Denote
Γ(T ) = {t1, ..., tM} the set of the M nearest targets located
at the same smallest distance r∗ with:

r∗ = r(t1) = r(t2) = ... = r(tM ) (6)

The SM is represented by the probability distribution func-
tion p(z|T ) where z is the sensor measurement. Since the
nearest-target hypothesis is applied, the SM is simplified to
p(z|Γ(T )). If the two probabilities PD and PMD associated
to Γ(T ) are known, and taking into account the discussion
above where the measurement is supposed to be caused by
either the nearest target(s) or a missed detection, a convenient
formulation of the SM is given by:

p(z|Γ(T )) =
PD

σr∗
√

2π
e
−(z−r∗)2

2σr∗
2 +

PMD

σ̂
√

2π
e
−(z−zmax)2

2σ̂2 (7)

(a) (b) (c)

Fig. 6: Same as Fig. 2 with PD = 0.95

where zmax is the maximum range returned by the sen-
sor when there is a missed detection. Here, the sensor is
supposed to have a Gaussian model and σr∗ and σ̂ are
the standard deviations in the case of detection and missed
detection respectively.

If PD is known, one can directly deduce PMD because
these probabilities are associated to two complementary
events and PMD = 1 − PD. Thus, only the formulation
of PD is now detailed, taking into account the discussion in
subsection III-A.

For i ∈ {1, ...,M}, denote Ω(ti) the CS of target ti within
the sensor FOV. From now on, and without lack of generality,
the study is restricted to the two dimensional space. Then,
the CS is restrained between two angular beams θmin(ti)
and θmax(ti). Thus Ω(ti) can be written as:

Ω(ti) = [θmin(ti), θmax(ti)] (8)

This interval accounts for the CS and the angular position
of the target at the same time. We also define Ω(Γ(T )) as:

Ω(Γ(T )) =
⋃

t∈Γ(T )

Ω(t) (9)

Notice that if Ω(Γ(T )) = [−α/2, α/2], where α is the
width of the sensor FOV, then PD takes its maximum value,
denoted by PmaxD (Fig. 6). In fact, in this case the nearest
target(s) has (have) the maximum possible CS within the
sensor FOV. Therefore, it has (they have) the maximum
reflection rate.

In order to determine the general formulation of PD,
and taking into account the value of PmaxD , we proceed as
follows. First, we define σ∗ as the solution over all σ ∈ R∗+
verifying the following equation:∫ α/2

−α/2

1

σ
√

2π
e
−θ2

2σ2 dθ = PmaxD (10)

σ∗ can be found by noticing that (10) is equivalent to:

P (|θ| < α

2
) = PmaxD (11)

where θ follows a normal distribution N (0, σ2). However,
it is known that there exists k∗ in R∗+ verifying:

α

2
= k∗σ (12)

and that from [23]:
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P (|θ| < k∗σ) = 2φ(k∗)− 1 (13)

where φ(.) is the cumulative distribution function of the
standard normal law. Thus, the problem of finding σ∗ is
equivalent to finding k∗ ∈ R∗+ verifying:

2φ(k∗)− 1 = PmaxD (14)

Then, the value of σ verifying eq. (12) for the deduced
value of k∗ will be the solution σ∗. Note that the solution
k∗ ∈ R∗+ for (14) can be easily found numerically using
the quantile function of the standard normal distribution.
Therefore, σ∗ is deduced.

Now that σ∗ is computed, for θ ∈ [−α/2, α/2], define the
distribution:

χ(θ) =
1

σ∗
√

2π
e
−θ2

2σ∗2 (15)

which reflects the angular uncertainty of the sensor.
Finally, one can compute the probability of detection PD:

PD =
∑

t∈Γ(T )

∫
Ω(t)

χ(θ) dθ (16)

In fact, (16) sums up the areas between the x-axis and the
function χ over all the intervals Ω(t) for t ∈ Γ(T ). Thus,
the methodology presented here involves not only the angular
uncertainty but also the CS of the nearest target(s) as pointed
out in subsection III-A. Illustrations of the methodology
proposed for the computation of PD associated to Fig. 2a-
6a are given in Fig. 2b-6b respectively. In addition, the
respective SM are illustrated in Fig. 2c-6c.

The modeling choice presented here follows the intuition
from subsection III-A and has been validated in real experi-
ments [22]. Note that other factors (e.g. further types of sen-
sor noise, specular reflection, cross-talk) can be considered
in the formulation of the SM but they are not treated in this
section. In addition, for the sake of simplicity, the present
formulation supposes that PmaxD does not depend on the
distance to the detected obstacle. Without difficulty, a more
realistic formulation would take into account the attenuation
of PmaxD when the distance to the targets increases.

IV. INVERSE SENSOR MODEL FORMULATION

The ISM formulation for multi-target sensors based on the
nearest-target hypothesis is now presented. The objective is
to compute the probability of occupancy of each cell in the
two-Dimensional (2D) grid G based on equations (2) and (4)
and given measurement z.

To compute p(z|si) for i ∈ {0, ..., N − 1} based on
(4), one has to sum up p(z|Gsik ∧ si) over all possible
grid configurations Gsik , k = 1, ..., 2N−1. However, using
the nearest-target hypothesis, it can be noticed that different
configurations might share the same value of p(z|Gsik ) for a
certain value k ∈ {1, ..., 2N−1}. In fact, two grids having the
same set Γ will have the same SM. Thus, the sum in (4) can
be reduced by “factorizing” these grid configurations. This
is shown in the rest of this section.

Let us now introduce some notations used in the compu-
tation of p(z|s(ci)). For i ∈ {0, ..., N − 1}, denote r(ci)
and Ω(ci) the distance from cell ci to the sensor and its
CS, respectively. In the present study, the sensor is located
at the origin of the grid and its principal axis corresponds
to the y axis. Denote rmin the minimum of {r(ci)}N−1

i=0

and rmax its maximum. For r ∈ [rmin, rmax], define the
set C(r) = {c ; c ∈ G and r(c) = r} representing the
cells at distance r. Finally, for a set of cells A verifying
the following criteria: ”all the cells in A are at the same
distance to the sensor denoted by r(A) ∈ N∗”, define G(A)
as a configuration grid where Γ(G(A)) = A. In other terms,
all the cells which have a smaller range than r(A) in G(A)
are empty, those having a range r(A) are occupied if and
only if they are in A, and the cells having a higher range
than r(A) cells can have any state (occupied or empty).

A. Computation of p(z|o(ci))
Now, suppose that si = o(ci). One wants to compute

p(z|o(ci)) by applying (4). From the nearest-target hypothe-
sis and because two grids that share the same set Γ have the
same SM, one can proceed as follows. First, all the possible
non empty sets composed of cells with the same distance
to the sensor that is smaller or equal to r(ci) should be
identified. Then, only the configuration grids having a set
Γ that is equal to one of the identified sets are taken into
account in the sum (4):

p(z|o(ci)) =
∑

rmin≤r≤r(ci)

∑
A∈Pcir

p(z|G(A)∧o(ci))·P (G(A))

(17)
where Pcir is the set of all the possible combinations of cells
in C(r) excluding cell ci from these combinations and the
empty selection if r < r(ci).

For a fixed distance R ∈ [rmin, r(ci)] and for A ∈ PciR ,
the term p(z|G(A) ∧ o(ci)) in (17) can be directly deduced
from the SM. In fact, once Γ(G(A) ∧ o(ci)) is known, one
can proceed as in (7) and (16) to compute p(z|G(A)∧o(ci)).
However, Γ(G(A) ∧ o(ci)) is equal to A if r(A) < r(ci),
and it is equal to A ∪ ci if r = r(ci). Therefore:

p(z|G(A) ∧ o(ci)) = κ (18)

where

κ =
PD

σr(A)

√
2π
e
−(z−r(A))2

2σr(A)
2

+
PMD

σ̂
√

2π
e
−(z−zmax)2

2σ̂2 (19)

with

PD =


∑
c∈A

∫
Ω(c)

χ(θ) dθ if r(A) < r(ci)

∑
c∈A∪ci

∫
Ω(c)

χ(θ) dθ if r(A) = r(ci)

(20)

Note that the size of each cell c in Γ(G(A) ∧ o(ci)), its
angular position and its distance to the sensor will play an
interacting role in determining Ω(c) and then PD.

Besides, P (G(A)) in (17) is equal to the probability of
intersection of the following events:
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1) all the cells at a distance smaller than R are empty.
The probability of this event is denoted by PR,A1 . It is
equal to:

PR,A1 =
∏

c∈
⋃
r<R C(r)

P (e(c)) (21)

2) cells in A are occupied. The probability of this event
is denoted by PR,A2 . It is equal to:

PR,A2 =
∏
c∈A

P (o(c)) (22)

3) cells in C(R) \ (A∪ ci) are empty. The probability of
this event is denoted by PR,A3 . It is equal to:

PR,A3 =
∏

c∈C(R)\(A∪ci)

P (e(c)) (23)

Thus, in this case P (G(A)) = PR,A1 ·PR,A2 ·PR,A3 . Finally:

p(z|o(ci)) =∑
rmin≤r≤r(ci)

∑
A∈Pcir

P r,A1 · P r,A2 · P r,A3 · p(z|G(A) ∧ o(ci))

(24)

B. Computation of p(z|e(ci))
Suppose now that si = e(ci). Following the same reason-

ing as above, p(z|e(ci)) is given by:

p(z|e(ci)) =
∑

rmin≤r≤rmax

∑
A∈P̂cir

p(z|G(A)∧e(ci))·P (G(A))

(25)
where P̂cir in this case is the set of all the possible combi-
nations of cells in C(r) excluding cells ci and the empty set
for r ≤ rmax. Since ci is empty this time, the first occupied
cell in the grid configurations used in (4) can be greater than
r(ci). Note that this was not the case when ci was occupied.
This explains why the sum over r can reach rmax in (25).
However, it should be smaller or equal to r(ci) in (17).

Similarly, for a fixed R ∈ [rmin, rmax] and for A ∈ P̂ciR ,
the term p(z|G(A)∧ e(ci)) in (25) can be deduced from the
SM. This time, Γ(G(A) ∧ e(ci))) = A ∀r ∈ [rmin, rmax]
and

p(z|G(A) ∧ e(ci)) = κ (26)

with κ in (19), and

PD =
∑
c∈A

∫
Ω(c)

χ(θ) dθ (27)

In addition, P (G(A)) is computed as above. However, cell
ci must be excluded when computing the probability P1

R,A.
Thus, a modified P̂1

R,A
is defined as follows:

P̂1
R,A

=
∏

c∈∪r<R C(r)\{ci}

P (e(c)) (28)

In this case, P (G(A)) = P̂1
R,A
· PR,A2 · PR,A3 . Hence:

p(z|e(ci)) =

∑
rmin≤r≤rmax

∑
A∈P̂ciR

P̂1
r,A
· P r,A2 · P r,A3 · p(z|G(A) ∧ e(ci))

(29)

C. Final Formulation of the ISM

By substituting equations (24) and (29) in (2), the Inverse
Sensor Model is obtained.

In this paper, only probabilistic OGs are considered as
a representation of the environment [13]. However, since
a probablistic ISM for nearest-target sensors is given, the
approach proposed is not restricted to OGs but can be useful
in other representations where a probabilistic ISM is required
such as the octomap representation [24].

V. IMPLEMENTATION OF THE SECTORAL
DECOMPOSITION

For a realistic implementation of the ISM, a uniform
sectoral decomposition of the sensor FOV into B sections
wm, m = 1, ..., B for B ∈ N∗ is now considered. The new
formulation of the ISM based on the sectoral decomposition
is first detailed in subsection V-A. Then, the computational
complexity is discussed in subsection V-B.

A. Formulation of the ISM based on the Sectoral Decompo-
sition

The main motto is that, instead of taking into account
all the possible cell state combinations at each distance
r ∈ [rmin, rmax] when (24) and (29) are computed, only
the state combinations of wrm,m = 1, ..., B are considered.
Here, wrm represents the set of cells at distance r in sector
wm, i.e. wrm = {c ; c ∈ wm and r(c) = r}. wrm is
considered occupied if there exists at least one occupied
cell that belongs to it. Hereafter, the sectoral decomposition
technique is detailed. The new expression of (24) derived
from this technique is given. A similar approach can be
applied to (29). However, due to space limitation, it is not
reported in the paper.

For m ∈ {1, ..., B} and r ∈ [rmin, rmax], denote o(wrm)
the event that wrm is occupied and e(wrm) if it is not.
For a given set Tr = {s(wr1), ..., s(wrB)} where s(wrm) ∈
{o(wrm), e(wrm)} for m ∈ {1, ..., B}, define G(Tr) as a
configuration grid where Γ(G(Tr)) = {c ; c ∈ wrm m ∈
{1, ..., B} and s(wrm) = o(wrm)}. Using the sectoral decom-
position, p(z|o(ci)) in (24) becomes:

p(z|o(ci)) =∑
rmin≤r≤r(ci)

∑
T∈T w(ci)

r

p(z|G(T )∧w((ci))) · P (G(T )) (30)

where T w(ci)
r is the set containing all the possible state

combinations of wrm,m ∈ {1, ..., B} excluding w(ci), and
w(ci) denotes the sector which contains cell ci in the
following set {wr(ci)m ,m ∈ {1, ..., B}}.

For a fixed distance R ∈ [rmin, r(ci)] and for T ∈ T w(ci)
R ,

the term p(z|G(T )∧w((ci))) in (30) can be directly deduced
from the SM:

p(z|G(T ) ∧ w((ci))) = κ (31)
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where

κ =
PT,iD

σR
√

2π
e
−(z−R)2

2σR
2 +

PT,iMD

σ̂
√

2π
e
−(z−zmax)2

2σ̂2 (32)

In this case, PT,iD is computed as before. The main difference
is that the combined CS takes into account all cells in each
occupied sector in T if R < r(ci) and all cells of T ∪w(ci)
if R = r(ci).

Besides, P (G(T )) in (30) is equal to the probability of
intersection of the following events:

1) all the cells at a distance smaller than R are empty.
The probability of this event is denoted by PR,T1 and
is equal to:

PR,T1 =
∏

c∈∪r<R C(r)

P (e(c)) (33)

2) at least one cell is occupied in each occupied sector of
T . The probability of this event is denoted by PR,T2

and is equal to:

PR,T2 =
∏

w; o(w)∈T

(1−
∏
c∈w

p(e(c))) (34)

3) all cells in the empty sectors of T are empty. The
probability of this event is denoted by PR,T3 and is
equal to:

PR,T3 =
∏

c∈w; e(w)∈T

P (e(c)) (35)

Thus, in this case P (G(T )) = PT,A1 · PT,A2 · PT,A3 . Finally,

p(z|o(ci)) =

∑
rmin≤r≤r(ci)

∑
T∈Tw(ci)

r
P r,T1 ·P r,T2 ·P r,T3 ·p(z|G(T∧o(w((ci))))

(36)
B. Computational Complexity

Applying the sectoral decomposition, the computation of
P (oi|z), i ∈ 0, ..., N −1 (respectively, P (ei|z)) requires less
than N

B 2B operations because only the combination of B
sectors is considered at each range. Therefore, the complexity
is linear with respect to N .

The sectoral decomposition technique supposes that the
Sensor Model generated by only one nearest occupied cell
in a sector is identical if all the nearest cells in the sector
are occupied. Note that when B increases, in a way that
only one nearest occupied cell is located in each sector, the
sectoral decomposition is equivalent to the exact formulation
presented in sections III and IV and the complexity increases
to reach the exponential one.
The interest in the sectoral decomposition lies in the fact that
depending on the degree of detection required, one can tune
the number of sectors in order to avoid unnecessary complex
computations. This kind of trade-off can be useful when
free space detection is considered. In that case, detection
of occupied regions with a high precision is not crucial. As
a consequence, one can choose small values of B, leading
to a low-complexity computation. This approach also helps
keeping the link between the SM and the ISM for multi-
target sensors as discussed in section II-B (See table I).

VI. TEST AND VALIDATION OF THE SECTORAL
DECOMPOSITION

The objective of this experiment is to demonstrate that
the proposed ISM together with sectoral decomposition can
be used in conjunction with scanning to precisely localize
obstacles in the environment and assess free space.

A 2D uniform square grid of length 5m composed of cells
of length 2cm is considered. The scene setup consists of two
objects t1 and t2 placed in front of the sensor at different
positions with distances r1 = 5m and r2 = 8m, see Fig. 7a
for the experiment setup. The sensor FOV is equal to 15◦.

Sixteen acquisitions have been performed with a clockwise
shift of 1◦ of the sensor FOV (referred as to “scanning
technique”), starting from the position where the principal
axis of the sensor FOV is aligned with the y0 axis of the
grid, see Fig. 7a. Fig. 7b shows the occupancy grid obtained
after the first, 6th and last scans, when B = 3 sectors are
considered. The right down picture of Fig. 7b is obtained
by computing the Bayesian Fusion of all the 16 occupancy
grids [25]. Note that both obstacles can be precisely localized
thanks to the scanning even if only the nearest target is
considered for each scan.

VII. CONCLUSION

In this paper, a new definition of the Sensor Model
under the nearest-target hypothesis for multi-target sensors
is proposed. The model takes into account the probability of
detection of the nearest target(s) with respect to its (their)
angular position in the sensor Field-Of-View, its (their)
distance to the sensor and its (their) Cross Section.

In addition, the formulation of the Inverse Sensor Model
directly derived from the proposed Sensor Model is given.
This formulation keeps the link between the Sensor Model
and its Inverse Sensor Model. Moreover, the Inverse Sensor
Model formulation can be easily adapted to various types of
sensors with different uncertainties in the Sensor Model.

Finally, an implementation of the Inverse Sensor Model
developed in the present paper together with a sectoral
decomposition of the sensor Field-Of-View is proposed.
Using this technique, the computational complexity breaks
down to a linear one, leading to a tractable computational
implementation even for highly dense grids. The number of
sectors has a direct influence on the computational load and
on the capability to highlight the occupied space.

The proposed models are tested in a realistic simulation
setup, showing the effectiveness of our solution.
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