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Abstract— Recent results on maximal multiplicity induced-
dominancy for spectral values in reduced-order Time-Delay
Systems naturally apply in controllers design. As a matter of
fact, the approach is merely a delayed-output-feedback where
the candidates’ delays and gains result from the manifold
defining the maximal multiplicity of a real spectral value, then,
the dominancy is shown using the argument principle. Various
reduced order examples illustrate the applicative perspectives
of the approach.

I. INTRODUCTION

The present study centers on stabilizing-controllers design
for linear time-invariant retarded time-delay systems. The
investigation of conditions on the equation parameters that
guarantee the exponential stability of solutions is a question
of ongoing interest. In particular, an efficient way to study a
solution’s stability is the frequency domain approach since
in the Laplace domain, where a number of effective methods
have been proposed, the stability analysis amounts to study-
ing the distribution of the characteristic quasipolynomial
function’s roots, see for instance [1], [2], [3], [4], [8], [5],
[6], [7]. The idea of exploiting the delay effect in controllers
design was first introduced in [9] where it is shown that the
conventional proportional controller equipped with an ap-
propriate time-delay performs an averaged derivative action
and thus can replace the proportional-derivative controller,
see also [10]. Furthermore, it was stressed in [11] that time-
delay has a stabilizing effect in the control design. Indeed, the
closed-loop stability is guaranteed precisely by the existence
of the delay. In the context of mechanical engineering
problems, the effect of time-delay was emphasized in [4]
where concrete applications are studied, such as the machine
tool vibrations and robotic systems.

In recent works, the characterization of multiple spec-
tral values for time-delay systems of retarded type were
established using a Birkhoff/Vandermonde-based approach;
see for instance [12], [13], [14], [15]. In particular, in
[13], it is shown that the admissible multiplicity of the
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zero spectral value is bounded by the generic Polya and
Szegö bound denoted PSB , which is merely the degree of
the corresponding quasipolynomial 1, see for instance [16].
In [12], it is shown that a given crossing imaginary root with
a non vanishing frequency never reaches PSB and a sharper
bound for its admissible multiplicities is established.

Moreover, in [15], the manifold corresponding to a mul-
tiple root for scalar time-delay equations defines a stable
manifold for the steady state. An example of a scalar retarded
equation with two delays is studied in [12] where it is
shown that the multiplicity of real spectral values may reach
the PSB . In addition, the corresponding system has some
further interesting properties: (i) it is asymptotically stable,
(ii) its spectral abscissa (rightmost root) corresponds to this
maximal allowable multiple root located on the imaginary
axis. Such observations enhance the outlook of further ex-
hibiting the existing links between the maximal allowable
multiplicity of some negative spectral value reaching the
quasipolynomial degree and the stability of the trivial solu-
tion of the corresponding dynamical system. This interesting
property induced by multiplicity appears also in optimization
problems since such a multiple spectral value is indeed the
rightmost root, see also [17]. Also notice that the property
was already observed in [18], where a tuning strategy is
proposed for the design of a delayed Proportional-Integral
controller by placing a triple real dominant root for the
closed-loop system. However, the dominancy is only checked
using a Mikhailov curve and QPmR toolbox, see for instance
[19].

It is worth noting that the rightmost root for quasipoly-
nomial function corresponding to stable time-delay systems
is actually the exponential decay rate of its time-domain
solution, see for instance [20] for an estimate of the decay
rate for stable linear delay systems. To the best of our knowl-
edge, the first time an analytical proof of the dominancy of
a spectral value for the scalar equation with a single delay
was presented in [21]. The dominancy property is further
explored and analytically shown in scalar delay equations in
[15], then in second-order systems controlled by a delayed
proportional is proposed in [22], [23] where its applicability
in damping active vibrations for a piezo-actuated beam is
proved. An extension to the delayed proportional-derivative
controller case is studied in [24] where the dominancy
property is parametrically characterized. We emphasize that
the idea of using roots assignment for controller-design

1The quasipolynomial degree is exactly the number of the involved
polynomials plus their degree minus one
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for time-delay system is not new. As a matter of fact, an
analytical/numerical stabilization method for retarded time-
delay systems related to the classical pole-placement method
for ordinary differential equations is proposed in [25], see
also [26] for further insights on pole-placement methods
for retarded time-delays systems with proportional-integral-
derivative controller-design.

This work provides an overview of those recent results
on the dominancy criterion for scalar and second-order
systems and it further explores the applicability of such a
criterion in a third-order model describing the Mach number
regulation in a wind tunnel. Roughly speaking, the Mach
number regulation in a wind tunnel is based on Navier-
Stokes equations for unsteady flow and contains control laws
for temperature and pressure regulation. Here, the model we
consider consists of a system of three state equations with a
delay in one of the state variables.

II. PREREQUISITES

Consider the generic second-order system with a single
time delay:

χ̇ = A0χ(t) +A1χ(t− τ), (1)

where χ = (χ1, . . . , χn) ∈ Rn is the state-vector, under
appropriate initial conditions belonging to the Banach space
of continuous functions C([−τN , 0],Rn). Here τ is a positive
constant delay and Aj ∈ Mn(R) for j = 0 . . . 1 are
real valued matrices. It is well known that the asymptotic
behavior of the solutions of (1) is determined from the
spectrum ℵ designating the set of the roots of the associ-
ated characteristic function (denoted ∆(s, τ) in the sequel).
Namely, the characteristic function corresponding to system
(1) is a quasipolynomial ∆ : C× R+ → C of the form:

∆(s, τ) = det
(
s I −A0 −A1 e

−τs) . (2)

To start with, let us recall a generic result on the location
of spectral values corresponding to (2). The proof of the
proposition below can be found in [5].

Proposition 1. If s is a characteristic root of system (1),
then it satisfies

|s| ≤ ||A0 +A1 e
−τs||2. (3)

The above proposition combined with the triangular in-
equality provides a generic envelope curve around the char-
acteristic roots corresponding to system (1).

In particular, the present work is focused on time-delay
systems characterized by the quasipolynomial function of the
form

∆(s, τ) = P0(s) + P1(s) e−τs, (4)

where deg(P0) > deg(P1). We shall consider the problem
of the analytical characterization of its rightmost root.

Fig. 1. The distribution of the spectrum corresponding to equation (7)
and system (6) for a0 = τ = 1. The roots’ distribution is illustrated using
QPmR toolbox from [19]

III. EXPONENTIAL DECAY RATE FOR A SCALAR
EQUATION WITH A SINGLE DELAY

The starting point of this work in progress and the first
analytical proof of the multiplicity-induced dominancy was
proposed in [15]. Indeed, a simple scalar differential equation
with one delay representing a biological model describing
the dynamics of a vector disease model was considered. In
its linearized version, the infected host population ξ(t) is
governed by:

ξ̇(t) + a0 ξ(t) + a1 ξ(t− τ) = 0, (5)

where a1 > 0 designates the contact rate between infected
and uninfected populations assuming that the infection of
the host recovery proceeds exponentially at a rate −a0 > 0.
It was shown that for a given positive delay, equation (5)
admits a double spectral value at s = s0 if, and only if,

s0 = −a0τ + 1

τ
and a1 =

e−a0τ−1

τ
. (6)

Furthermore, it was stressed that s0 is the corresponding
rightmost root and if s0 < 0 then the zero solution of system
(5) is asymptotically stable.

One knows that s = s0 is a spectral value of (5) if, and
only if, s0 is a root of the characteristic equation

∆(z, τ) = s+ a0 + a1 e
−sτ = 0. (7)

The main ingredient of the dominancy proof of s0 is an
integral equation which cannot be satisfied for any spectral
value s with <(s) > s0. Namely, it was shown that if a1
satisfies (6), then the characteristic function reads:

∆(s, τ) = (s− s0)

(
1−

∫ 1

0

e−τ(s−s0) t dt

)
. (8)

As a matter of fact, if s1 = ζ+ j η 6= s0 is a root of (8) then
s1 is a root of its second factor. Hence, we obtain

1 =

∫ 1

0

e−τ(ζ−s0) tdt. (9)

But, e−τ(ζ−s0) t < 1 for ζ − s0 > 0 and 0 < t < 1, thereby
exhibiting the dominancy of s0.
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Fig. 2. The rightmost root corresponding to equation (7) and system (6)
as a function of the delay τ (red solid line) for a fixed value of a0 = 1.

Remark 1. The rightmost root s0 corresponding to equation
(7) where system (6) is satisfied varies in the interval s0 ∈
]−∞, −a0[. Figure 2 illustrates the behavior of the rightmost
root with respect to the time-delay variation.

IV. SECOND-ORDER SYSTEMS

Second-order linear systems capture the dynamic behavior
of many natural phenomena and have found wide applica-
tions in a variety of fields, such as vibration and structural
analysis. In the sequel, we recall some hints, recent results
and examples motivating the use of delay in controller-design
for stabilizing the steady state solution corresponding to such
a class of systems. In its generic form, equation (4) is written
as:

∆(s, τ) = s2 + c1s+ c0 + (β0 + sβ1) e−τ s. (10)

The case β1 = 0 yields a rightmost root with maximal
multiplicity as characterized in [22].

Consider the standard linear change of variables

s =
c1 λ

2
, (11)

leading to the normalized characteristic function
∆̃(λ, τ̃) = λ2 + 2λ+ a0 + α e−λτ̃ , where

α =
4

c21
β0, τ̃ =

c1
2
τ and a0 = 4

c0
c12

.
(12)

If α = 0, the spectral abscissa is minimized at a0 = 1
which corresponds to to the rightmost root located at λ0 =
−1, see for instance [27]. By exploiting the delay effect,
the following proposition proved in [22] asserts that the
solution’s decay rate can be further improved by decreasing
the corresponding rightmost root. Assume that a0 > 1, then
the following proposition holds.

Proposition 2.
i) The multiplicity of any given root of the quasipolyno-

mial function (12) is bounded by 3.
ii) The quasipolynomial (12) admits a real spectral value

at λ0 = −1 − 1
τ̃ with algebraic multiplicity 3 if, and

only if,

τ̃ =

√
1

a0 − 1
and α = −2 e−(1+τ̃)

τ̃2
. (13)

iii) If equations (13) are satisfied then λ = λ0 is the
rightmost root of function (12).

Remark 2. If equations (13) are satisfied then the trivial
solution of the second order equation ẍ(t)+2 ẋ(t)+a0 x(t)+
αx(t − τ̃) = 0 is asymptotically stable with λ0 as the
corresponding exponential decay.

A. Multiple spectral values for time-delay systems are not
necessarily dominant

The problem of stabilization of a chain of integrators is
considered in [28] where a single integrator can be stabilized
by a single delay state-feedback. Indeed, a positive gain
guarantees the closed-loop stability of the system free of
delay, and, by continuity, there exists a (sufficiently small)
delay in the output preserving the stability of the closed-
loop system. However, the situation is completely different
for a chain of integrators of order n when n > 1. For
instance, consider the time-delay system characterized by the
following quasipolynomial function:

∆(s, τ) = s2 + α e−τ s. (14)

It can be checked that the maximal admissible multiplicity
is 2 and it can be attained if, and only if,

α = −4
e−2

τ2
, s = −2

τ
. (15)

However, the main result from [28] asserts that either n
distinct delays or a proportional+delay compensator with n−
1 distinct delays are sufficient to stabilize a chain including
n integrators. In [29], a like assertion is shown to be also
necessary to stabilize the chain of n integrators. Hence, in
our case, either 2 distinct delays or a proportional+delay are
necessary and sufficient to stabilize the double integrator.
In conclusion, there exists at least a spectral value for (14)
with a positive real part. As a result, s0 = − 2

τ , while being a
multiple root cannot be dominant. Indeed, consider (14)-(15)
with τ = 1, that is

∆(s, 1) = s2 − 4e−(s+2). (16)

As illustrated in Figure 3, the dominancy property is lost
since s1 ≈ 0.557 is a root of function (16). This is justified
by the sparsity of (16).

B. Stabilizing a delayed proportional-derivative controller
for generic second order systems

Let us consider again the quasipolynomial function (10):

∆(s, τ) = s2 + c1s+ c0 + (β0 + sβ1) e−τ s.

The following result generalizes Proposition 2 which is
restricted to β1 = 0.

Proposition 3. Considering equation (10), the following
assertions hold:

i) The multiplicity of any given root of the quasipolyno-
mial function (10) is bounded by 4, it can be attained
only on the real axis.
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Fig. 3. Sparsity-induced loss of dominancy for the multiple spectral value.
Each intersection between the blue/red curves corresponds to a spectral
value of function (16).

ii) The quasipolynomial (10) admits a real spectral value
at s = s± with algebraic multiplicity 4 if, and only if,
either

s+ =
−2 +

√
−2 + c0τ2

τ
,

β0 = 2
e−2+

√
−2+c0τ2 (−5 +

√
−2 + c0τ2

)
τ2

,

β1 = −2
e−2+

√
−2+c0τ2

τ
, c1 = −2

√
−2 + c0τ2

τ
,

(17)

or

s− =
−2−

√
−2 + c0τ2

τ
,

β0 = 2
e−2−

√
−2+c0τ2 (−5−

√
−2 + c0τ2

)
τ2

,

β1 = −2
e−2−

√
−2+c0τ2

τ
, c1 = 2

√
−2 + c0τ2

τ
,

(18)

where τ is arbitrarily chosen satisfying c0τ2 ≥ 2.
iii) If either (17) or (18) is satisfied, then s = s± is the

rightmost root of (4).

A complete proof of the main result will be presented in
an extended version of the paper; its sketch is summarized
below.

Proof: The degree of the quasipolynomial function
is equal to 4 as defined above. First, the vanishing of the
quasipolynomial ∆ yields the elimination of the exponential
term as a rational function in s. The substitution of the
obtained equality in the first three derivatives gives a system
of algebraic equations. Solving them, one obtains the two
solutions (17) and (18). Next using the argument principle
one shows the dominancy of s±; see Figure 6. Further
explanation can be found in the next section. For an effective
implementation in complex integral computations we refer
the reader to [30].
Remark 3. It is worth noting that including information
on the acceleration in the control loop allows to a time-
delay system of neutral type characterized by the following
quasipolynomial function of degree 5:

∆(s, τ) = s2 + c1s+ c0 + (β0 + sβ1 + sβ2) e−τ s. (19)

Since we are dealing with the asymptotic stability analysis,
one assumes that |β2| 6= 1, see for instance [8]. More
precisely, if one assumes that −1 < β2 < 0 then function
(19) admits a negative root at s0 = ln(−β2)

τ with multiplicity
5 if, and only if, the function parameters satisfy:

β0 =
β2

(
12− 6 ln (−β2) + (ln (−β2))

2
)

τ2
,

β1 = 2
β2 (3− ln (−β2))

τ
,

c0 =
6 ln (−β2) + (ln (−β2))

2
+ 12

τ2
,

c1 = 2
−3− ln (−β2)

τ
.

Furthermore, the spectrum distribution of function (19) con-
sists of a chain of roots with real parts close to s0. However,
the dominancy of multiple spectral values for neutral type
remains an open question.

V. A PARAMETERIZED DOMINANCY ANALYSIS IN
DELAYED-FEEDBACK UNDAMPED OSCILLATORS

Roughly speaking, sparsity of a quasipolynomial may
preclude a given spectral value to attain the maximal ad-
missible multiplicity, which is indeed the degree of the
quasipolynomial. This section is devoted to the analysis of
the parameters’ effect on the admissible multiplicity as well
as the dominancy of spectral values.

Consider the undamped oscillator controlled by a delayed
proportional-derivative controller{

ξ̈(t) + γξ(t) = u(t),

u(t) = −β̃ξ(t− τ)− α̃ξ̇(t− τ),
(20)

where γ is a real parameter, α̃ and β̃ are the gains of the de-
layed proportional-derivative controller. The corresponding
quasipolynomial function is given by:

∆(s, τ) = s2 + γ + (β + α s) e−s τ . (21)

If γ = 0, then the control problem (20) reduces to
the stabilization of the double integrator using a delayed
proportional-derivative controller. Otherwise, using a linear
transformation, it is sufficient to study the two cases γ = 1
and γ = −1 to get a complete picture of the effect of the
parameter γ on the dominancy of admissible multiple roots.

A. The double integrator stabilized by a delayed
proportional-derivative controller

A result from [28] and [29], mentioned in Section IV-
A, asserts that a delayed proportional controller (with a
single delay) is not able to stabilize a double integrator. In
[24] investigate the effect of the additional derivative term
equipped with the same delay is investigated its stabilizing
effect through the multiplicity induced-dominancy property
is emphasized. Consider the quasipolynomial function

∆(s, τ) = s2 + (β + α s) e−s τ , (22)

where α 6= 0.
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Fig. 4. (Up) Spectrum distribution corresponding to function (22) for
τ = 1/3 with system (24) is satisfied. (Down) Spectrum distribution
corresponding to function (22) for τ = 1/3 with system (23) is satisfied,
the dominancy property is lost.

Proposition 4. The following assertions hold for function
(22):

i) The multiplicity of any given root of the quasipolyno-
mial function (22) is bounded by 3, it can be attained
only on the real axis.

ii) The quasipolynomial (22) admits a real spectral value
at s = s± with algebraic multiplicity 3 if, and only if,

α = 2

(
−1−

√
2
)

e−2−
√
2

τ
,

β = 2
e−2−

√
2
(
−7− 5

√
2
)

τ2
,

s− =
−2−

√
2

τ
,

(23)

or 

α = 2

(√
2− 1

)
e−2+

√
2

τ
,

β = 2
e−2+

√
2
(
−7 + 5

√
2
)

τ2
,

s+ =
−2 +

√
2

τ
,

(24)

iii) A spectral value of function (22) with maximal multi-
plicity (equal to 3) is dominant if, and only if, s = s+.

Proof: The degree of the quasipolynomial function is
equal to 4 as defined in Section 2. First, the vanishing of the
quasipolynomial ∆ yields the elimination of the exponential
term as a rational function in s. The substitution of the
obtained equality in the first three derivatives gives a system

of algebraic equations. Solving them, one shows that the
solutions set is empty. Thus, the maximal multiplicity is less
than or equal to 3. Solving the two first derivatives yields
solutions (23) and (24).

The dominancy of s+ proof follows the same steps as that
of Proposition 3. First, using Proposition 1, one establishes
a generic supremum bound for the real and imaginary parts
of roots of function (22) such that system (24) is satisfied.
Then define an integration contour γ = ∪6k=1Ck which is
taken as a counterclockwise closed curve, hence an integral
over γ is defined as the sum of the integrals over the directed
smooth curves that make γ up, as illustrated in Figures 6.
Elementary calculations give a parametrization of γ on each
Ck. Since ∆ is analytic then the argument principle asserts:

1

2iπ

∮
γ

∂s∆(s, τ)

∆(s, τ)
ds = Z, (25)

where Z designates the number of the quasipolynomial roots
enclosed by γ. Furthermore, the left-hand side of (31) gives:∮

γ

∂s∆(s, τ)

∆(s, τ)
ds = lim

ε→0

6∑
k=1,k 6=4

∫ 1

0

ṡk(t)
∂s∆(sk(t), τ)

∆(sk(t), τ)
dt

+ lim
ε→0

∫ π
2

−π
2

ṡ4(t)
∂s∆(s4(t), τ)

∆(s4(t), τ)
dt.

(26)
where sk(t) designates the parametrization of s along Ck for
k ∈ {1, . . . , 6}. Some tedious but elementary computations
lead to Z = 0 in case (24), but Z = 1 in case (23). Finally,
Figure 4 illustrates the result.

B. Harmonic Oscillator stabilized by a delayed
proportional-derivative controller

Consider the problem of stabilization of a classical har-
monic oscillator using proportional-derivative controller:

∆(s, τ) = s2 + 1 + (β + α s) e−s τ . (27)

Proposition 5. Consider the quasipolynomial function (27)
for which the following assertions hold:

i) The multiplicity of any given root of the quasipolyno-
mial function (10) is bounded by 4, it can be attained
only on the real axis.

ii) The quasipolynomial (10) admits a real spectral value
at s = −

√
2 with algebraic multiplicity 4 if, and only

if,
α = −

√
2e−2, β = −5 e−2, τ =

√
2. (28)

iii) If (28) is satisfied then s = −
√

2 is the rightmost root
of (4).

Proof: Following Proposition 3, s0 = −
√

2 is a root
of the quasipolynomial function (27) of multiplicity 4 with
parameters values:

α0 = −
√

2e−2, β0 = −5 e−2, τ0 =
√

2 (29)

Furthermore, s0 is the rightmost root of (27)-(29). The dom-
inancy proof follows the same steps as that of Proposition 3.
First, using Proposition 1, one establish a generic supremum
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Fig. 5. Zoom on the dominant non resonant spectral value corresponding
to (27)-(29) located at λ = −

√
2. The solid blue line is the zero modulus

manifold and the solid red line is the zero imaginary-part manifold of (27)-
(29).

bound for the real part as well as the imaginary part of roots
of (27)-(29). Then define an integration contour γ = ∪6k=1Ck
which is taken as a counterclockwise closed curve, then an
integral over γ is defined as the sum of the integrals over
the directed smooth curves that make γ up, as illustrated in
Figure 6. Elementary calculations leads to a parametrization
of γ on each Ck:

C1 : s1(t) =
(

2 +
√

2
)
t−
√

2− 7 i where 0 ≤ t ≤ 1

C2 : s2(t) = 2 + 7 i(2t− 1) where 0 ≤ t ≤ 1

C3 : s3(t) =
(
−2−

√
2
)
t+ 2 + 7 i where 0 ≤ t ≤ 1

C4 : s4(t) = −
√

2 + ε eit where − π

2
≤ t ≤ π

2

C5 : s5(t) = −
√

2 + i ((ε− 7) t+ 7) where 0 ≤ t ≤ 1

C6 : s6(t) = −
√

2 + i ((ε− 7) t− ε) where 0 ≤ t ≤ 1
(30)

Since ∆ is an analytic function then argument principle
asserts:

1

2iπ

∮
γ

∂s∆(s, τ)

∆(s, τ)
ds = Z, (31)

where Z designates the number of the quasipolynomial roots
enclosed by γ. Furthermore, the left-hand side of (31) gives:∮

γ

∂s∆(s, τ)

∆(s, τ)
ds = lim

ε→0

6∑
k=1,k 6=4

∫ 1

0

ṡk(t)
∂s∆(sk(t), τ)

∆(sk(t), τ)
dt

+ lim
ε→0

∫ π
2

−π
2

ṡ4(t)
∂s∆(s4(t), τ)

∆(s4(t), τ)
dt.

(32)
Some tedious but elementary computations lead to Z = 0.
Figures 5 and 6 illustrate the distribution of the spectrum of
function (27)-(29).

C. Controlling an unstable second-order system via a de-
layed PD Controller

Consider the problem of stabilization of the second-order
sparse polynomial (having two real roots with different

Fig. 6. The simplified contour used for applying the argument principle to
investigate the dominancy of the multiple root in blue solid line. The dashed
red line gives the generic spectrum envelope established in Proposition 1.

signs):
∆(s, τ) = s2 − 1 + (β + α s) e−s τ . (33)

Proposition 6. Consider the quasipolynomial function (33)
for which the following assertions hold:

i) The multiplicity of any given root of the quasipolyno-
mial function (33) is bounded by 3, it can be attained
only on the real axis.

ii) The quasipolynomial (33) admits a real spectral value
at s = s± with algebraic multiplicity 3 if and only if
either

s+ =
−2 +

√
τ2 + 2

τ
,

β = 2
e−2+

√
τ2+2

(
−7 + 5

√
τ2 + 2− τ2

)
τ2

,

α = 2

(
−1 +

√
τ2 + 2

)
e−2+

√
τ2+2

τ
,

(34)

or

s− =
−2−

√
τ2 + 2

τ
,

α = 2

(
−1−

√
τ2 + 2

)
e−2−

√
τ2+2

τ
,

β = 2
e−2−

√
τ2+2

(
−7− 5

√
τ2 + 2− τ2

)
τ2

,

(35)

Throughout the above result, one can illustrate various
scenarios. In the first one, the multiple root is dominant
and stable, for instance when condition (34) is satisfied and
τ = 1, see Figure 7 (Up). In the second, the multiple root
is dominant and unstable which occurs when condition (34)
is satisfied and τ = 2, see Figure 7 (Down). In the last, the
multiple spectral value is not dominant as exposed in Figure
8. Finally, Figure 9 illustrates the behavior of the rightmost
root corresponding to function (33) with respect to the delay
value in both cases (34) and (35).

VI. A THIRD-ORDER MACH NUMBER REGULATION IN A
WIND TUNNEL MODEL

Transonic flows analysis is still a challenging problem
in compressible fluid dynamic. In a stationary transonic
flow, subsonic and supersonic regions live at the same time

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

869



Fig. 7. (Up) The spectral distribution of function (33) under the conditions
(34) with τ = 1. The multiple spectral value is dominant and stable. (Down)
The spectral distribution of function (33) under the conditions (34) with
τ = 2. The multiple spectral value is dominant but unstable.

Fig. 8. The spectral distribution of the quasipolynomial function (33) under
conditions (35) with τ = 1. The multiple spectral value is not dominant.

Fig. 9. The dominant root corresponding to equation (33) and system (35)
as a function of the delay τ (red solid line). The dominant root corresponding
to equation (33) and system (34) as a function of the delay τ (blue dashed
line).

and are respectively governed by elliptical and hyperbolic
equations. Furthermore, these two types of partial differential
equations require completely different approaches, which
often preclude solutions that are valid in the entire region.

In particular, the Mach number regulation in a wind
tunnel is based on the Navier-Stokes equations for unsteady
flow and contains control laws for temperature and pressure
regulation. The following simplified model of Mach number
regulation described in [31] consists of a system of three
state equations with a delay in one of the state variables.
It is stressed that in steady-state operating conditions, the
dynamic response of the Mach number perturbations ξ1 to
small perturbations in the guide vane angle actuator ξ2 are
governed by:

ξ̇1(t) = −aξ1(t) + k a ξ2(t− τ)

ξ̇2(t) = ξ3(t)

ξ̇3(t) = −ω2 ξ2(t)− 2ζωξ3(t) + ω2u(t)

(36)

where a, ω, ζ, k and τ are parameters depending on the op-
erating point and presumed constant when the perturbations
ξi are small. Moreover, following the experimental parameter
values of the wind tunnel developed at NASA Langley
Research Center, the parameters a, ω, ζ, τ are positive.

In [31], a feedback consisting of a linear combination of
state variables and weighted integrals of some of the state
variables over a period equal to the time delay, where the
spectrum of the closed-loop system is finite (consists of
three eigenvalues). However, our method does not render
the closed-loop system finite dimensional but only involves
controlling its rightmost root. Consider the control law:
u(t) = − α

ω2 ξ2(t)− β0

ω2 ξ2(t− τ)− β1

ω2 ξ3(t− τ). In our case,
the corresponding quasipolynomial function is given by:

∆(s, τ)=(s+a)
(
(sβ1+β0)e

−sτ+s2+2 s ζ ω+ω2+α
)
. (37)

Since a is a positive parameter, our aim is to establish
conditions on parameters such that the rightmost root of the
second factor of (37) has a negative real part. Interestingly,
the analysis of the second factor can be deduced directly from
the result in Section IV-B. As a matter of fact, by denoting

ω2 + α = c0 and 2 ζ ω = c1, (38)

one may directly exploit condition (18) from Proposition 3
to guarantee the exponential stability of the trivial solution
by assigning its rightmost root as a stable root. Note that
condition (17) is not convenient as it imposes that c1 < 0
which it cannot be applied here. Since the delay is intrinsic
to the model, then the first step consists in finding the gain
α such that

c1 = 2

√
−2 + c0τ2

τ
which gives:

α =
2 + ζ2ω2τ2 − ω2τ2

τ2
.

Substituting this last equality in (38) one obtains{
c0 =

2 + ζ2ω2τ2

τ2
and c1 = 2 ζ ω, (39)
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which satisfies the condition c0τ2 ≥ 2. The gains β0 and β1
are easily computed from system (18) and owing to the first
equality from (39). Finally,

s− =
−2− ζ ω τ

τ

is the rightmost root of the second factor of function (37),
which insures the stability of the steady state solution.

VII. CONCLUDING REMARKS

Recent results by the authors on maximal multiplicity
induced-dominancy for spectral value of time-delay systems
of retarded type are overviewed. This note emphasizes a
delayed controller-design based on the trivial solution’s de-
cay rate assignment. To illustrate the corresponding steps,
a parameterized analysis of the dominancy property validity
is established for generic second order oscillators. Finally,
to demonstrate its concrete applicability, the regulation of
the Mach number in a wind tunnel is considered. In future
works, a generalization of the approach to arbitrary order
dynamical systems will be studied and further applications
treated.
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