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Abstract— We consider variational problems with path-
dependent terminal costs. Motivated from Mogulskii’s theorem
in large deviation theory and dynamic importance sampling
for path-dependent rare events, we focus on particular forms
of Lagrangians with superlinear growth. By reformulating the
variational problem to a value function of a path-dependent
deterministic control, we study it by path-dependent dynamic
programming methods. Under co-invariant derivative notion on
path spaces, the value function is related to a Hamilton-Jacobi
partial differential equation (PDE) with a path-dependent
terminal condition. Using a viscosity type solution proposed
by Lukoyanov for a weak notion, we show that the value
function can be characterized as a unique viscosity solution
of the Hamilton-Jacobi PDE.

I. INTRODUCTION

Recently there is great attention to problem classes of
control theory which cannot be directly treated in a classical
framework based on Markovian structures of systems and
costs. Systems with delays and pricing of path-dependent
options are typical examples. Problems are not limited such
ones and the ranges of problem classes are quite large. To
investigate non-Markovian systems, mathematical theories
of path-space analysis are crucial. Although one might be
able to adopt the existing infinite-dimensional analysis theory
such as Fréchet derivatives on Banach spaces, it is important
for control theory to develop path-space analysis adapted to
non-anticipativeness of systems. i-smooth calculus for deter-
ministic systems and functional Itô calculus for stochastic
systems are such attempts (see [14] for i-smooth calculus
and its applications to functional differential equations and
[5] for theory of functional Itô calculus at the early stage).
Once theories of non-anticipative path-space analysis are
established, one might be able to discuss dynamic program-
ming methods based on those theories. For instance, [14]
considers dynamic programming methods for deterministic
systems with delays using i-smooth calculus and [10] and
[12] develop weak solution notions for hereditary systems.
For non-Markovian stochastic systems, the study of dynamic
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programming by Dupire’s derivative and its modifications
are quite intense by using techniques of backward stochastic
differential equations (cf. [15] and [16] for literature and
recent developments).

In this paper, we consider dynamic programming methods
on deterministic variational problems with path-dependent
terminal costs which typically appear in Mogulskii’s theorem
in large deviation theory (cf. [4], [6]). Also, such variational
problems are asymptotic lower bounds of second moments
of unbiased estimators in importance samplings for path-
dependent rare events (cf. [7]. See also [2]). The Lagrangians
there can have particular forms depending only on a velocity
of a trajectory. However they can be superlinearly growing
at infinity under mild conditions where Mogulskii’s theorem
holds. In most of the literature on path-dependent controls,
they usually suppose that control spaces and/or running
costs are bounded so Lagrangians with superlinear growth
cannot be covered. Our goal is to remove the restrictive
conditions on running costs and control spaces and lay the
groundwork for potential applications to dynamic importance
sampling for path-dependent rare events (cf. [7], [8] for
dynamic importance sampling for events given by terminal
states).

This paper is a part of our project on research of dynamic
importance sampling for path-dependent rare events. Using
the weak convergence methods of [7], asymptotic optimality
of unbiased estimators given by dynamic measure changes
is under investigation. Hamilton-Jacobi partial differential
equations (PDEs) discussed in this paper may be useful
to design optimal dynamic measure changes achieving the
asymptotic lower bounds of second moments of unbiased
estimators (see [7] and [8] for use of Hamilton-Jacobi and
Isaacs PDEs for importance sampling).

The paper is organized as follows. In Section II, we first
give a variational problem with a path-dependent cost to be
considered. To use a path-dependent dynamic programming
method, we reformulate the variational problem to a value
function of a path-dependent deterministic control problem.
The value function is a function of a pair of a current time
and a past history of a state trajectory. We discuss the path-
dependent dynamic programming principle and optimality
principle. In Section III, we study regularity of value func-
tions and optimal controls which are crucial in the subsequent
sections. We show that the value function is Lipschitz
continuous. Using optimality principle with the regularity of
the value function, we have a bound for optimal controls.
In Section IV, we consider a Hamilton-Jacobi PDE, an
infinitesimal version of the dynamic programming principle.
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We use co-invariant derivative notion for non-anticipative
path-space analysis. By the dynamic programming principle,
we formally derive a Hamilton-Jacobi PDE with the path-
dependent terminal cost. We introduce verification theorem
without proofs. Since the value function is not necessarily
differentiable, we need a weak solution notion. In Section
V, using the viscosity type weak solution proposed by [12],
we characterize the value function as a unique viscosity so-
lution of the Hamilton-Jacobi PDE with the path-dependent
terminal cost.

II. VARIATIONAL PROBLEMS WITH PATH-DEPENDENT
TERMINAL COSTS AND DYNAMIC PROGRAMMING

PRINCIPLE

Let T > 0 be a time horizon. Given an initial state x0 ∈
Rd, consider the following variational problem:

inf
φ∈Ax0 (0,T )

{∫ T

0

L(φ̇(s))ds+ F (φ)

}
, (1)

where L : Rd → R is a Lagrangian and F : C([0, T ];Rd)→
R is a path-dependent terminal cost. Here C([0, T ];Rd) is the
set of Rd-valued continuous functions on [0, T ]. We denote
by Ax0

(0, T ) the set of Rd-valued absolutely continuous
functions on [0, T ] starting at x0. The variational problem (1)
appears in Mogulskii’s theorem in large deviations (cf. [4],
[6]). (1) is also the asymptotic lower bound of second mo-
ments of unbiased estimators of path-dependent rare events
related to Mogulskii’s theorem (cf. [7]. See also [2]). It is
fundamental in control theory to characterize (1) and find
optimal trajectories. For those purposes, we reformulate (1)
by a path-dependent deterministic control and use dynamic
programming methods.

We prepare some notations which will be needed later.
Given t ∈ [0, T ], we set Xt = C([0, t];Rd) and denote by
xt an element of Xt where the subscript of xt indicates
its domain. xt(r) denotes the value of xt at r ∈ [0, t].
We understand X0 = Rd. Consider X0,T = {(t, xt); t ∈
[0, T ], xt ∈ Xt} and suppose X0,T is endowed with metric
ρ given by ρ((t, xt), (s, ys)) = |t− s|+ max0≤r≤T |xt(r ∧
t) − ys(r ∧ s)|. Here a ∧ b = min{a, b} for a, b ∈ R. We
suppose that C([0, T ];Rd) is equipped with the sup norm
‖ · ‖∞.

Given (t, xt) ∈ X0,T , consider a controlled ordinary
differential equation (ODE) for ξ : [0, T ]→ Rd:

ξ̇(s) = β(s) (t ≤ s ≤ T ),

ξt = xt,
(2)

where ξt is the restriction of ξ to [0, t]. β : [t, T ] → Rd
is a control which is a measurable function on [t, T ] with∫ T
t
|β(s)|ds <∞. Bt,T denotes the set of controls on [t, T ].

Note that (2) is equivalently written by

ξ(s) = xt(t) +

∫ s

t

β(r)dr (t ≤ s ≤ T ),

ξ(s) = xt(s) (0 ≤ s ≤ t).

We introduce a criterion J(t, xt;β) given by

J(t, xt;β) =

∫ T

t

L(β(s))ds+ F (ξ)

and then define a value function by

V (t, xt) = inf
β∈Bt,T

J(t, xt, β). (3)

We note that (1) coincides with V (0, x0).
We always assume that the following conditions hold:

(A1) L is a convex function.
(A2) There exist p > 1 and ν, C > 0 such that

L(β) ≥ ν|β|p − C, ∀β ∈ Rd.

(A3) F : C([0, T ];Rd) → R is bounded Lipschitz continu-
ous with Lipschitz constant LF , i.e.

‖F‖∞ := sup
φ∈C([0,T ];Rd)

|F (φ)| <∞,

|F (φ)− F (ψ)| ≤ LF ‖φ− ψ‖∞, ∀φ, ψ ∈ C([0, T ];Rd).

Remark 2.1: We give comments on (A1) and (A2). Let
µ be a probability measure on Rd satisfying H(α) :=
log
∫
Rd e

〈α,y〉µ(dy) < ∞ for any α ∈ Rd where 〈·, ·〉 is
Euclidean inner product in Rd. In Mogulskii’s theorem, L is
given by the Legendre transform of H(α):

L(β) = sup
α∈Rd
{〈α, β〉 −H(α)}, β ∈ Rd.

Since L is a supremum of affine functions, L is convex,
which corresponds to (A1). We suppose that µ satisfies the
following stronger condition:∫

Rd
eδ|y|

q

µ(dy) <∞ for some q > 1 and δ > 0. (4)

Under (4), it can be seen that L satisfies (A2) for some
p > 1 and ν, C > 0. Note that (4) holds if the support of µ
is compact. For cases of unbounded supports, suppose that
µ is absolutely continuous with respect to Lebesgue measure
and has density cep(y) with normalizing constant c. If p(y) ≤
−c1|y|q + c2 (y ∈ Rd) for some q > 1, c1 > 0 and c2 ≥ 0,
µ(dy) = cep(y)dy satisfies (4). In particular, (4) holds if µ
is a normal distribution.

We can have a dynamic programming principle for
V (t, xt). The proof is a straightforward application of ar-
guments of classical deterministic controls. Thus we omit
the proof.

Proposition 2.2: For (t, xt) ∈ X0,T and t ≤ t + h ≤ T ,
the following holds:

V (t, xt) = inf
β∈Bt,t+h

{∫ t+h

t

L(β(s))ds+ V (t+ h, ξt+h)

}
,

(5)
where ξt+h : [0, t+ h]→ Rd is the solution of (2).
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Remark 2.3: By (A2) and (A3), we can take the infimum
in (5) on a smaller class:

V (t, xt) = inf
β∈B̃t,t+h

{∫ t+h

t

L(β(s))ds+ V (t+ h, ξt+h)

}
,

(6)

B̃t,t+h =

{
β : [t, t+ h]→ Rd;

∫ t+h

t

|β(s)|pds ≤M
}
,

where M is a constant depending on ν, C, T and ‖F‖∞.
The value function V (t, xt) is attained at an optimal

control.
Proposition 2.4: Let (t, xt) ∈ X0,T be given. Then there

exists β∗ ∈ B̃t,T such that

V (t, xt) =

∫ T

t

L(β∗(s))ds+ F (ξ∗),

where ξ∗ is the solution of (2) with β = β∗.
Proof. By Remark 2.3, we can find an approximating se-

quence {βn}∞n=1 ⊂ B̃t,T satisfying J(t, xt;β
n) → V (t, xt)

as n→∞. Letting ξn be the solution of (2) with β = βn, we
see that {ξn}∞n=1 is bounded in H1,p(t, T ). Here H1,p(t, T )
is the Sobolev space of functions η : [t, T ] → Rd with
norm ‖η‖H1,p = (

∫ T
t
|η(s)|pds +

∫ T
t
|η̇(s)|pds)1/p. Note

that η ∈ H1,p(t, T ) if and only if η is absolutely continuous
on [t, T ] and

∫ T
t
|η̇(s)|pds < ∞ (cf. [3] for details about

H1,p(t, T )). By the weak compactness of bounded sets in
Banach spaces, ξn converges to some ξ∗ ∈ H1,p(t, T )
as n → ∞ H1,p(t, T )-weakly via a subsequence. We
still denote by {ξn}∞n=1 the subsequence for simplicity of
notations. We extend ξ∗ to a function on [0, T ] by ξ∗(r) =
xt(r) (0 ≤ r ≤ t). Set β∗(s) = ξ̇∗(s) (s ∈ [t, T ]). By [3,
Thm 3.5] with (A1), we can have∫ T

t

L(β∗(s))ds ≤ lim inf
n→∞

∫ T

t

L(βn(s))ds. (7)

Note that ξn(s) converges to ξ∗(s) pointwise as n → ∞
by the H1,p(t, T )-weak convergence. On the other hand, by
using βn ∈ B̃t,T , we can show that {ξn}∞n=1 is uniformly
bounded and equi-continuous on [t, T ]. By Ascoli-Arzelà
theorem, ξn converges to ξ∗ uniformly on [t, T ], thus uni-
formly on [0, T ]. By the Lipschitz continuity of F , we have
F (ξn) → F (ξ∗) as n → ∞. Combining this with (7), we
can have

J(t, xt;β
∗) ≤ lim inf

n→∞
J(t, xt;β

n).

Hence β∗ is an optimal control of V (t, xt). �
The following is an extension of the optimality principle

along optimal trajectories known in classical deterministic
control.

Proposition 2.5: Given (t, xt) ∈ X0,T , let β∗ ∈ Bt,T be
an optimal control of V (t, xt) and ξ∗ be the solution of (2)
with β = β∗. For t ≤ s ≤ T , let ξ∗s is the restriction of ξ∗

to [0, s]. Then the following holds: For s ≤ s+ h ≤ T ,

V (s, ξ∗s ) =

∫ s+h

s

L(β∗(s))ds+ V (s+ h, ξ∗s+h), (8)

where ξ∗s+h is the restriction of ξ∗ to [0, s+ h].
Proof. By Proposition 2.2, we can immediately have

V (s, ξ∗s ) ≤
∫ s+h

s

L(β∗(r))dr + V (s+ h, ξ∗s+h). (9)

Since β∗ is an optimal control for V (t, xt), we have

V (t, xt) =

∫ T

t

L(β∗(r))dr + F (ξ∗)

=

∫ s

t

L(β∗(r))dr +

∫ T

s

L(β∗(r))dr + F (ξ∗).

By Proposition 2.2, we see that

V (t, xt) ≤
∫ s

t

L(β∗(r))dr + V (s, ξ∗s ).

Thus we can have∫ T

s

L(β∗(r))dr + F (ξ∗) ≤ V (s, ξ∗s ),

which implies that

V (s, ξ∗s ) ≥
∫ s+h

s

L(β∗(r))dr +

∫ T

s+h

L(β∗(r))dr + F (ξ∗)

≥
∫ s+h

s

L(β∗(r))dr + V (s+ h, ξ∗s+h). (10)

Note that the second inequality is implied by the definition
of V (s+h, ξ∗t+h). Hence, by (9) and (10), we obtain (8). �

III. REGULARITY OF VALUE FUNCTIONS AND OPTIMAL
CONTROLS

We investigate regularity of V (t, xt) and the optimal
controls which will be need to discuss dynamic programming
equations for V (t, xt).

Proposition 3.1: V is Lipschitz continuous in the fol-
lowing sense: There exist C1, C2 > 0 such that for any
(t, xt), (t, yt) ∈ X0,T and t ≤ t+ h ≤ T ,

|V (t, xt)− V (t, yt)| ≤ C1‖xt − yt‖∞, (11)
|V (t+ h, xt+h(· ∧ t))− V (t, xt)| ≤ C2h, (12)

where xt+h(r ∧ t) := xt(r ∧ t) (0 ≤ r ≤ t+ h).
Proof. Let (t, xt), (t, yt) ∈ X0,T . We may suppose that

V (t, xt) ≤ V (t, yt) without loss of generalities. Letting β∗ ∈
B̃t,T be an optimal control of V (t, xt), we have

V (t, yt)− V (t, xt) ≤ J(t, yt;β
∗)− J(t, xt;β

∗)

≤ F (η∗)− F (ξ∗),

where ξ∗ (resp. η∗) is the solution of (2) with ξ∗t = xt
(resp. η∗t = yt) and β = β∗. Since η∗(s)− ξ∗(s) = yt(s)−
xt(s) (0 ≤ s ≤ t) and η∗(s) − ξ∗(s) = yt(t) − xt(t) (t ≤
s ≤ T ), we have

F (η∗)− F (ξ∗) ≤ LF ‖xt − yt‖∞.

Thus we can obtain (11).
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Let (t, xt) ∈ X0,T and t ≤ t+ h ≤ T . By (6), we have

V (t, xt)− V (t+ h, xt+h(· ∧ t))

= inf
β∈B̃t,t+h

{∫ t+h

t

L(β(s))ds

+ V (t+ h, ξt+h)− V (t+ h, xt+h(· ∧ t))
}
. (13)

Taking β(s) ≡ 0 in the right hand side of (13), we have

V (t, xt)− V (t+ h, xt+h(· ∧ t)) ≤ L(0)h ≤ |L(0)|h.

Take an optimal β∗ of V (t, xt). Then we have by Proposition
2.5 and (A2)

V (t, xt)− V (t+ h, xt+h(· ∧ t))

=

∫ t+h

t

L(β∗(s))ds+ V (t+ h, ξ∗t+h)− V (t+ h, xt+h(· ∧ t))

≥ ν
∫ t+h

t

|β∗(s)|pds− Ch

+ V (t+ h, ξ∗t+h)− V (t+ h, xt+h(· ∧ t)),

where ξ∗t+h is the solution of (2) with β = β∗. By (11), we
have

|V (t+ h, ξ∗t+h)− V (t+ h, xt+h(· ∧ t))|

≤ C1‖ξ∗t+h − xt+h(· ∧ t)‖∞ ≤ C1

∫ t+h

t

|β∗(s)|ds.

Thus we have

V (t, xt)− V (t+ h, xt+h(· ∧ t))

≥
∫ t+h

t

{ν|β∗(s)|p − C1|β∗(s)|}ds− Ch.

Since |β|p − C1|β| → ∞ as |β| → ∞, there exists Ĉ > 0
such that |β|p − C1|β| ≥ −Ĉ (β ∈ Rd). Thus we can have

V (t, xt)− V (t+ h, xt+h(· ∧ t)) ≥ −Ĉh− Ch. �

The following estimate for optimal controls is crucial for
the later arguments.

Proposition 3.2: Let (t, xt) ∈ X0,T and β∗ ∈ Bt,T be an
optimal control of V (t, xt). Then there exists a constant K
depending on ν, C, p, C1 and C2 such that

|β∗(s)| ≤ K, a.e. s ∈ [t, T ].
Proof. Let t ≤ s ≤ s + h ≤ T . By Proposition 2.5, we

have

V (s, ξ∗s ) =

∫ s+h

s

L(β∗(s))ds+ V (s+ h, ξ∗s+h),

where ξ∗ is the solution of (2) with β = β∗ and ξ∗s+h is the
restriction of ξ∗ to [0, s + h]. This equation can be written
by ∫ s+h

s

L(β∗(s))ds = V (s, ξ∗s )− V (s+ h, ξ∗s+h).

Note that

|V (s+ h, ξ∗s+h)− V (s, ξ∗s )|
≤ |V (s+ h, ξ∗s+h)− V (s+ h, ξ∗s+h(· ∧ s)|

+ |V (s+ h, ξ∗s+h(· ∧ s)− V (s, ξ∗s )|,

where ξ∗s+h(r ∧ s) = ξ∗s (r ∧ s) (0 ≤ r ≤ s + h). By
Proposition 3.1, we have

|V (s+ h, ξ∗s+h)− V (s+ h, ξ∗s+h(· ∧ s)|
+ |V (s+ h, ξ∗s+h(· ∧ s)− V (s, ξ∗s )|

≤ C1

∫ s+h

s

|β∗(r)|dr + C2h.

Recalling (A2), we have∫ s+h

s

L(β∗(r))dr ≥ ν
∫ s+h

s

|β∗(r)|p − Ch.

Thus we obtain

ν

∫ s+h

s

|β∗(r)|pdr − Ch ≤ C1

∫ s+h

s

|β∗(r)|dr + C2h.

Dividing the above inequality by h and sending h → 0+,
we have

ν|β∗(s)|p − C1|β∗(s)| ≤ C + C2.

Since ν|β|p − C1|β| → ∞ (|β| → ∞), there exist K
depending on ν, p, C1, C2 and C such that

|β∗(s)| ≤ K. �

Remark 3.3: By Proposition 2.5 with Proposition 3.2, (5)
can be reduced to

V (t, xt) = inf
β∈BKt,t+h

{∫ t+h

t

L(β(s))ds+ V (t+ h, ξt+h)

}
,

(14)
where

BKt,t+h = {β ∈ Bt,t+h; |β(s)| ≤ K, a.e. s ∈ [t, t+ h]}.
IV. HAMILTON-JACOBI PDES WITH PATH-DEPENDENT

TERMINAL COSTS

To derive a dynamic programming PDE from (5), we use
co-invariant derivatives for a notion of derivatives on path
spaces (cf. [14]). To introduce the derivative notion, we need
some function spaces. Let Lip(t, xt) be the set of continuous
functions y : [0, T ]→ Rd such that y is Lipschitz continuous
on [t, T ] and yt = xt where yt is the restriction of y to [0, t].
For κ > 0, let Lip(κ)(t, xt) be the set of y ∈ Lip(t, xt)
whose Lipschitz constant on [t, T ] is κ.

Definition 4.1 (cf. [14]): Let ϕ : X0,T → R and (t, xt) ∈
X0,T− := {(t, xt) ∈ X0,T ; 0 ≤ t < T}. ϕ is co-invariant
differentiable at (t, xt) if there exist a ∈ R and p ∈ Rd such
that for any y ∈ Lip(t, xt),

ϕ(t+ h, yt+h) = ϕ(t, xt) + ah+ 〈p, y(t+ h)− xt(t)〉
+ hω(h; (t, xt), y), (15)

where ω(·; (t, xt), y) : (0, T − t]→ R is a continuous func-
tion depending on (t, xt) and y such that ω(h; (t, xt), y)→
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0 (h → 0). a and p are called co-invariant derivatives and
denoted by ∂tϕ(t, xt) and ∇xtϕ(t, xt), respectively.
ϕ : X0,T → R is in C1(X0,T ) if ϕ is co-invariant differ-
entiable on X0,T−, and ϕ, ∂tϕ and ∇xtϕ are continuous.
For the later arguments, we define C1u(X0,T ) by the set of
ϕ ∈ C1(X0,T ) satisfying for each (t, xt) ∈ X0,T− and
κ > 0,

sup
y∈Lip(κ)(t,xt)

|ω(h; (t, xt), y)| → 0 (h→ 0+),

where ω(h, (t, xt), y) is from (15).
Remark 4.2: Let ψ : [0, T ]×Rd → R be a C1-function in

the conventional sense with partial derivatives (∂ψ/∂t)(t, x)
and Dxψ(t, x) = ((∂ψ/∂x1)(t, x), . . . , (∂ψ/∂xd)(t, x))
((t, x) = (t, x1, . . . , xd) ∈ [0, T ] × Rd). Setting ϕ(t, xt) =
ψ(t, xt(t)) ((t, xt) ∈ X0,T ), it is not difficult to see that
ϕ ∈ C1u(X0,T ) and ∂tϕ(t, xt) = (∂ψ/∂t)(t, xt(t)) and
∇xtϕ(t, xt) = Dxψ(t, xt(t)).

Using (5) with the co-invariant derivative notion, we
can formally derive a Hamilton-Jacobi PDE with a path-
dependent terminal cost:

∂tV (t, xt) + inf
β∈Rd
{〈β,∇xtV (t, xt)〉+ L(β)} = 0,

(t, xt) ∈ X0,T−,
(16)

V (T, xT ) = F (xT ), xT ∈ XT . (17)

A verification theorem holds under the existence of
C1(X0,1)-solutions. The proof is similar to that of classical
deterministic control (cf. [11]).

Theorem 4.3: Suppose w : X0,T → R is in C1(X0,T ) and
satisfies (16) and (17). Then the followings hold:
(i) w(t, xt) ≤ J(t, xt;β) for any β ∈ Bt,T .
(ii) Let β∗(s, ys) ∈ arg minβ∈Rd{〈β,∇xtw(s, ys)〉+ L(β)}
for (s, ys) ∈ X0,T−. Suppose (2) has a solution ξ = ξ∗ with
the choice β(s) = β∗(s) = β∗(s, ξ∗s ) and ξ∗ is Lipschitz on
[t, T ]. Then w(t, xt) = J(t, x;β∗).

V. VISCOSITY CHARACTERIZATION OF VALUE
FUNCTIONS

Since the value function given by (3) is not necessarily co-
invariant differentiable, (16) has to be understood by a weak
solution. Here we adopt a viscosity solution notion proposed
in [12] and extend it to unbounded control spaces.

To define a path-dependent viscosity notion following the
idea of [12], we need function spaces given below. Let a ≥ 1
be given. Let Dk (k = 1, 2, . . .) and D be defined by

Dk ={(t, xt) ∈ X0,T ; xt is absolutely continuous on [0, t],
|xt(0)| ≤ k, |ẋt(r)| ≤ ka(1 + ‖xr‖∞) a.e. r ∈ [0, t]},

D =

∞⋃
k=1

Dk.

Remark 5.1: Note that closed balls in X0,T are not com-
pact. On the other hand, it can be seen that Dk is compact
in X0,T and D is dense in X0,T . Dk is used for local
maximum/minimum arguments in viscosity theory of [12]
(cf. [1] for the conventional viscosity theory).

Definition 5.2 (cf.[12]): Suppose that w : X0,T → R
satisfies (11) and (12). w is a viscosity subsolution of (16) if
the following condition holds: Let ϕ ∈ C1u(X0,T ) and k ∈ N.
If (t̂, x̂t̂) ∈ X0,T− is a maximum point of w−ϕ on Dk and

|∇xtϕ(t̂, x̂t̂)| ≤ C1 + 2C2, (18)

then

∂tϕ(t̂, x̂t̂) + inf
β∈Rd
{〈β,∇xtϕ(t̂, x̂t̂)〉+ L(β)} ≥ 0. (19)

w is a viscosity supersolution if the above condition holds
when replacing “maximum” with “minimum” and “≥” with
“≤” in (19). w is a viscosity solution if w is a viscosity sub
and supersolution.

Remark 5.3: In the conventional viscosity theory, inher-
itances of Lipschitz constants of value functions to test
functions are useful to treat unbounded control spaces (cf. [9,
Chap. VII]). However Dk is too small to obtain such inher-
itances for general test functions. We note that a particular
test function is used in the proof of our comparison theorem
and we will see that it inherits the Lipschitz constant in the
sense of (18) (see (30) in the proof of Theorem 5.6). Thus it
suffices to consider a class of test functions with (18) which
makes the proof of the existence of viscosity solutions easier
(see the proof of Theorem 5.5).

Classical subsolutions and supersolutions under co-
invariant derivative notions are viscosity subsolutions and
supersolutions, respectively.

Proposition 5.4: Let w ∈ C1(X0,T ) be a classical subso-
lution (resp. supersolution) of (16) satisfying (11) and (12).
If we take a in the definition of D sufficiently large, then w
is a viscosity subsolution (resp. supersolution) of (16).

Proof. Since the proof similar to the current case was
already given in [13], we give an outline of the proof.
We only prove the subsolution part since the proof for
supersolutions can be obtained in a way similar to that of
subsolutions.

Let w ∈ C1(X0,T ) be a subsolution of (16), i.e.

∂tw(t, xt) +G(∇xtw(t, xt)) ≥ 0, (t, xt) ∈ X0,T−,

where G(p) = infβ∈Rd{〈β, p〉 + L(β)}. Let ϕ ∈ C1u(X0,T )
and k ∈ N. Let (t̂, x̂t̂) be a maximum point of w−ϕ on Dk

and |∇xtϕ(t̂, x̂t̂)| ≤ C1 + 2C2. We note that

∂tw(t̂, x̂t̂) +G(∇xtw(t̂, x̂t̂)) ≥ 0. (20)

We consider the case where ∇xtw(t̂, x̂t̂) = ∇xtϕ(t̂, x̂t̂)
Noting that

w(t, xt)−w(t̂, x̂t̂) ≤ ϕ(t, xt)−ϕ(t̂, x̂t̂), (t, xt) ∈ Dk (21)

and taking y = x̂t̂(· ∧ t̂) ∈ Lip(t̂, x̂t̂) for the co-invariant
differentiability, we can have

∂tw(t̂, x̂t̂) ≤ ∂tϕ(t̂, x̂t̂).

Thus, by (20), we obtain

∂tϕ(t̂, x̂t̂) +G(∇xtϕ(t̂, x̂t̂)) ≥ 0.
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We next consider the case where ∇xtw(t̂, x̂t̂) 6=
∇xtϕ(t̂, x̂t̂). Set pw = ∇xtw(t̂, x̂t̂) and pϕ = ∇xtϕ(t̂, x̂t̂)
for simplifications of notations. We define z ∈ Lip(t̂, x̂t̂) by

z(r) =

{
x̂t̂(r) (0 ≤ r ≤ t̂),
x̂t̂(t̂) + α(r − t̂) (t̂ ≤ r ≤ T ),

where

α =
G(pw)−G(pϕ)

|pw − pϕ|2
(pw − pϕ).

Using (11) and (12) for the co-invariant differentiability of
w at (t̂, x̂t̂) with the choice y ∈ Lip(t̂, x̂t̂) where y is any
straight line on [t̂, T ], we can have |pw| ≤ C1. Using this
estimate of |pw| and |pϕ| ≤ C1 + 2C2 and (A2), we can see
that there exist a constant M depending on C1, C2, ν, p, C
such that

|α| = |G(pw)−G(pϕ)|
|pw − pϕ|

≤M

Thus, if we take a ≥ M , we can see (t̂ + h, zt̂+h) ∈ Dk.
Then, using (21) with co-invariant differentiability of w and
ϕ, we have

∂tw(t̂, x̂t̂)h+ 〈pw, z(t̂+ h)− x̂t̂(t̂)〉+ o(h)

≤ ∂tϕ(t̂, x̂t̂)h+ 〈pϕ, z(t̂+ h)− x̂t̂(t̂)〉+ o(h),

which implies

∂tw(t̂, x̂t̂) + 〈pw, α〉 ≤ ∂tϕ(t̂, x̂t̂) + 〈pϕ, α〉.

Recalling (20) and using the above inequality, we can have

0 ≤ ∂tw(t̂, x̂t̂) +G(pw)

≤ ∂tϕ(t̂, x̂t̂) + 〈pϕ − pw, α〉+G(pw)

= ∂tϕ(t̂, x̂t̂) +G(pϕ). �

The value function can be characterized as a unique
viscosity solution of the Hamilton-Jacobi PDE with the path-
dependent terminal cost.

Theorem 5.5: Suppose (A1)–(A3) hold. Take a in the
definition of D sufficiently large. Then V (t, xt) is a unique
viscosity solution of (16) with (17) satisfying (11) and (12).

Proof. We will show that V (t, xt) is a viscosity sub-
solution of (16). Let ϕ ∈ C1u(X0,T ) and k ∈ N. Let
(t̂, x̂t̂) ∈ X0,T− be a maximum point of V − ϕ on
Dk and suppose |∇xtϕ(t̂, x̂t̂)| ≤ C1 + 2C2. Take β̃ ∈
arg minβ∈Rd{〈β,∇xtϕ(t̂, x̂t̂)〉 + L(β)}. By (A2), note that
there exists M > 0 depending on ν, C, L(0) such that

|β̃|p ≤M(1 + |∇xtϕ(t̂, x̂t̂)|
q), (22)

where q > 1 is the conjugate of p, i.e. 1/p + 1/q =
1. Since |∇xtϕ(t̂, x̂t̂)| ≤ C1 + 2C2, there exists M̄ =
M̄(p,M,C1, C2) such that

|β̃| ≤ M̄.

If we take β(s) ≡ β̃ at (5) with (t, xt) = (t̂, x̂t̂), we have

V (t̂, x̂t̂) ≤ L(β̃)h+ V (t̂+ h, ξ̃t̂+h),

where ξ̃ is the solution of (2) with (t, xt) = (t̂, x̂t̂) and
β(s) ≡ β̃. This can be

0 ≤ L(β̃)h+ V (t̂+ h, ξ̃t̂+h)− V (t̂, x̂t̂). (23)

Take a such that a ≥ M̄ . Then we can see that (t̂+h, ξ̃t̂+h) ∈
Dk. Recalling (t̂, x̂t̂) is a maximum point of V − ϕ on Dk,
we have from (23)

0 ≤ L(β̃)h+ V (t̂+ h, ξ̃t̂+h)− V (t̂, x̂t̂)

≤ L(β̃)h+ ϕ(t̂+ h, ξ̃t̂+h)− ϕ(t̂, x̂t̂)

= L(β̃)h+ ∂tϕ(t̂, x̂t̂)h+ 〈∇xtϕ(t̂, x̂t̂), β̃〉h
+ hω(h; (t̂, x̂t̂), ξ̃).

Dividing the above inequality by h and sending h → 0+,
we have

0 ≤ ∂tϕ(t̂, x̂t̂) + 〈∇xtϕ(t̂, x̂t̂), β̃〉+ L(β̃).

Since β̃ ∈ arg minβ∈Rd{〈∇xtϕ(t̂, x̂t̂), β〉 + L(β)}, we can
have

0 ≤ ∂tϕ(t̂, x̂t̂) + inf
β∈Rd
{〈∇xtϕ(t̂, x̂t̂), β〉+ L(β)}.

Thus V (t, xt) is a viscosity subsolution of (16).
We next show that V (t, xt) is a viscosity supersolution of

(16). Let ϕ ∈ C1u(X0,T ) and k ∈ N. Let (t̂, x̂t̂) ∈ X0,T− be a
minimum point of V −ϕ on Dk and suppose |∇xtϕ(t̂, x̂t̂)| ≤
C1 + 2C2. By (14), we note that the following holds;

0 = inf
β∈BK

t̂,t̂+h

{∫ t̂+h

t̂

L(β(s))ds+ V (t̂+ h, ξ̂β
t̂+h

)− V (t̂, x̂t̂)

}
,

(24)
where ξ̂β

t̂+h
is the solution of (2) with (t, xt) = (t̂, x̂t̂) and

β ∈ BK
t̂,t̂+h

. Taking a such that a ≥ K, we can see that

(t̂+h, ξ̂β
t̂+h

) ∈ Dk for any β ∈ BK
t̂,t̂+h

. Thus, since (t̂, x̂t̂) is
a minimum point of V − ϕ on Dk, we can have from (24)

0 ≥ inf
β∈BK

t̂,t̂+h

{∫ t̂+h

t̂

L(β(s))ds+ ϕ(t̂+ h, ξ̂β
t̂+h

)− ϕ(t̂, x̂t̂)

}
.

(25)
Noting that η̂β(r) := ξ̂β

t̂+h
(r ∧ (t̂ + h)) (r ∈ [0, T ]) is

Lipschitz continuous on [t̂, T ] with Lipschitz constant K
because ‖β‖L∞(t̂,t̂+h) ≤ K, η̂β ∈ Lip(K)(t̂, x̂t̂). Then using
ϕ ∈ C1u(X0,T ) with (25), we can have

0 ≥ inf
β∈BK

t̂,t̂+h

{∫ t̂+h

t̂

L(β(s))ds+ ∂tϕ(t̂, x̂t̂)h

+ 〈∇xtϕ(t̂, x̂t̂),

∫ t̂+h

t̂

β(s)ds〉+ hω(h; (t̂, x̂t̂), η̂
β)

}
≥ inf
β∈BK

t̂,t̂+h

{∫ t̂+h

t̂

[
∂tϕ(t̂, x̂t̂) + 〈∇xtϕ(t̂, x̂t̂), β(s)〉

+ L(β(s))
]
ds

}
− h sup

y∈Lip(K)(t̂,x̂t̂)

|ω(h; (t̂, x̂t̂), y)|

≥ h
[
∂tϕ(t̂, x̂t̂) + inf

β∈Rd
{〈∇xtϕ(t̂, x̂t̂), β〉+ L(β)}

]
− h sup

y∈Lip(K)(t̂,x̂t̂)

|ω(h; (t̂, x̂t̂), y)|.
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Dividing the above by h and h→ 0+, we obtain

0 ≥ ∂tϕ(t̂, x̂t̂) + inf
β∈Rd
{〈∇xtϕ(t̂, x̂t̂), β〉+ L(β)}.

Hence V (t, xt) is a viscosity supersolution of (16).
The uniqueness of viscosity solutions is an implication of

the comparison theorem given below. �
Theorem 5.6: Suppose (A1)–(A3) hold. Let v and w be

a viscosity subsolution and supersolution of (16) satisfying
(11) and (12), respectively. If v(T, xT ) ≤ w(T, xT ) for xT ∈
XT , then v(t, xt) ≤ w(t, xt) for (t, xt) ∈ X0,T .

Proof. We follow the arguments of the proof of [12,
Theorem 2] and modify them for cases of unbounded control
spaces and superlinear Lagrangians. Although we already
proved a comparison theorem in [13] with unbounded control
spaces (but under a viscosity notion slightly different from
Definition 5.2) and here we use the arguments similar to
that in [13], we will give a quick proof for the readers’
convenience.

Since v and w are continuous and D = ∪∞k=1Dk is dense
in X0,T , it suffices to show that v ≤ w on D. On the contrary,
suppose that there exists k ∈ N such that

δ := max
(t,xt)∈Dk

{v(t, xt)− w(t, xt)} > 0. (26)

Let 0 < α < δ/4T . Given 0 < ε < 1, we define Φε :
X0,T ×X0,T → R by

Φε((t, xt), (s, ys)) = v(t, xt)− w(s, ys)− α(2T − t− s)

− 1

2ε
ν((t, xt), (s, ys)),

where

ν((t, xt), (s, ys)) = |t− s|2 + |xt(t)− ys(s)|2

+

∫ T

0

|xt(r ∧ t)− ys(r ∧ s)|2dr.

Let ((tε, x
ε
tε), (sε, y

ε
sε)) be a maximum point of Φε on

Dk × Dk. By standard arguments as in comparison the-
orems of conventional viscosity theory, we can have
(1/2ε)ν((tε, x

ε
tε), (sε, y

ε
sε)) ≤ 2(maxDk |v| + maxDk |w|).

Also, by the arguments used in comparison theorems with
uniform continuity of v and w on Dk, we can have

ρ((tε, x
ε
tε), (sε, y

ε
sε))→ 0 (ε→ 0), (27)

1

2ε
ν((tε, x

ε
tε), (sε, y

ε
sε))→ 0 (ε→ 0). (28)

We note that tε, sε < T for sufficiently small ε because of
(26), (27) and v(T, xT ) ≤ w(T, xT ).

Since (tε, x
ε
tε) is a maximum point of Φε(·, (sε, yεsε)) on

Dk, we have

v(t, xt)− v(tε, x
ε
tε) ≤ φ(t, xt)− φ(tε, x

ε
tε), (t, xt) ∈ Dk,

(29)
where

φ(t, xt) = w(sε, y
ε
sε)+α(2T−t−sε)+

1

2ε
ν((t, xt), (sε, y

ε
sε)).

We note that φ ∈ C1u(X0,T ) and

∂tφ(tε, x
ε
tε) = −α+

tε − sε
ε

,

∇xtφ(tε, x
ε
tε) =

1

ε
(xεtε(tε)− y

ε
sε(sε))

+
1

ε

∫ T

tε

{xεtε(tε)− y
ε
sε(r ∧ sε)}dr.

Similarly, since (sε, y
ε
sε) is a minimum point of

−Φε((tε, x
ε
tε), ·) on Dk, we have

ψ(s, ys)−ψ(sε, y
ε
sε) ≤ w(s, ys)−w(sε, y

ε
sε), (s, ys) ∈ Dk,

where

ψ(s, ys) = v(tε, x
ε
tε)−α(2T−tε−s)−

1

2ε
ν((tε, x

ε
tε), (s, ys)).

Noting ψ ∈ C1u(X0,T ), we can have

∂tψ(sε, y
ε
sε) = α+

tε − sε
ε

,

∇xtψ(sε, y
ε
sε) =

1

ε
(xεtε(tε)− y

ε
sε(sε))

+
1

ε

∫ T

sε

{xεtε(r ∧ tε)− y
ε
sε(sε)}dr.

Set pε = ∇xtφ(tε, x
ε
tε) and qε = ∇xtψ(sε, y

ε
sε). We will

show that

|pε| ≤ C1 + 2C2, |qε| ≤ C1 + 2C2. (30)

where C1 and C2 are from (11) and (12) which v and w
satisfy. By φ ∈ C1(X0,T ) and (29), we have

v(tε + h, ζtε+h)− v(tε, x
ε
tε)

≤ ∂tφ(tε, x
ε
tε)h+ 〈∇xtφ(tε, x

ε
tε), ζ(tε + h)− xεtε(tε)〉

+ hω(h; (tε, x
ε
tε), ζ),

∀ζ ∈ Lip(tε, xεtε) with (tε + h, ζtε+h) ∈ Dk.

Noting that v satisfies (11) and (12), we can have

− C1‖ζtε+h − xεtε+h(· ∧ tε)‖∞ − C2h

≤ ∂tφ(tε, x
ε
tε)h+ 〈∇xtφ(tε, x

ε
tε), ζ(tε + h)− xεtε(tε)〉

+ hω(h; (tε, x
ε
tε), ζ), (31)

∀ζ ∈ Lip(tε, xεtε) with (tε + h, ζtε+h) ∈ Dk.

By arguments similar to the above, we also can obtain

∂tψ(sε, y
ε
sε)h+ 〈∇xtψ(sε, y

ε
sε), ζ(sε + h)− yε(sε)〉

+ hω(h; (sε, y
ε
sε), ζ)

≤ C1‖ζsε+h − yεsε+h(· ∧ sε)‖∞ + C2h, (32)
∀ζ ∈ Lip(sε, yεsε) with (sε + h, ζsε+h) ∈ Dk.

Let ζ ∈ Lip(tε, xεtε) be given by

ζ(r) =

{
xεtε(r) (0 ≤ r ≤ tε),
xεtε(tε) (tε ≤ r ≤ T ).

Since (tε + h, ζtε+h) ∈ Dk, we have from (31)

−C2h ≤ ∂tφ(tε, x
ε
tε)h+ hω(h; (tε, x

ε
tε), ζ),
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which implies

−C2 + α ≤ tε − sε
ε

.

Using (32) with an argument similar to the above, we can
have

∂tψ(sε, y
ε
sε) ≤ C2,

which implies
tε − sε
ε

≤ C2 − α.

Thus we can have

−C2 ≤
tε − sε
ε

≤ C2. (33)

Given a unit vector e ∈ Rd, let η ∈ Lip(tε, xεtε) be given
by

η(t) =

{
xεtε(r) (0 ≤ r ≤ tε),
xεtε(tε) + (r − tε)e (tε ≤ r ≤ T ).

Since (tε+h, ηtε+h) ∈ Dk, we can have from (31) with (33)

− C1h− C2h

≤ ∂tφ(tε, x
ε(tε))h+ 〈pε, e〉h+ hω(h; (tε, x

ε
tε), η)

≤ C2h+ 〈pε, e〉h+ hω(h; (tε, x
ε
tε), η).

Dividing the above by h and h→ 0+, we can obtain

−C1 − 2C2 ≤ 〈pε, e〉.

Since the unit vector e is taken arbitrarily, we have

|pε| ≤ C1 + 2C2.

In a way similar to the above argument, we can have from
(32) with (33)

|qε| ≤ C1 + 2C2.

Since v is a viscosity subsolution, φ ∈ C1u(X0,T ) and
|∇xtφ(tε, x

ε
tε)| = |pε| ≤ C1 + 2C2, we have from Definition

5.2
−α+

tε − sε
ε

+G(pε) ≥ 0,

where G(p) = infβ∈Rd{〈β, p〉 + L(β)}. Also, since
w is a viscosity supersolution, ψ ∈ C1u(X0,T ) and
|∇xtψ(sε, y

ε
sε)| = |qε| ≤ C1 + 2C2, we have

α+
tε − sε
ε

+G(qε) ≤ 0.

Thus we can have

2α ≤ G(pε)−G(qε).

Take β∗ε ∈ arg minβ∈Rd{〈β, qε〉 + L(β)}. Then we can see
that

G(pε)−G(qε) ≤ 〈β∗ε , pε〉+ L(β∗ε )− 〈β∗ε , qε〉 − L(β∗ε )

≤ |β∗ε ||pε − qε|.

Noting (22) with (30), we can see that there exists a constant
M̃ not depending on ε such that |β∗ε | ≤ M̃ . Thus we can
have

2α ≤ M̃ |pε − qε|.

Doing a bit of calculation using the explicit forms of pε and
qε, we can show that

|pε−qε| ≤
1

ε
|tε−sε||xεtε(tε)−y

ε
sε(sε)|+ka(1+ck)

|tε − sε|2

ε
,

where ck = max(u,zu)∈Dk ‖zu‖∞. Thus we can obtain

|pε − qε| ≤ c̃k
ν((tε, x

ε
tε), (sε, y

ε
sε))

ε
,

where c̃k = (1/2) + ka(1 + ck). Hence we have

2α ≤ M̃ c̃k
ν((tε, x

ε
tε), (sε, y

ε
sε))

ε
.

By sending ε→ 0, we can have with (28)

2α ≤ 0.

This contradicts the choice of α. Hence v ≤ w on D =
∪∞k=1Dk. �
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