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Consensus-based distributed estimation under linear attacks
Yuanyuan Xia1, Wen Yang1

Abstract— In this paper, we consider a consensus-based
distributed filtering over wireless sensor networks under linear
attacks. Suppose that in the network a malicious attacker injects
false data into the data. First, we design an optimal estimator
by minimizing the covariance of state estimation error. Then,
we propose an effective detector for each sensor to resist the
malicious data transmitted between the sensors in the network.
Finally, the performances of the proposed estimator with the
detector is demonstrated by comparing with the other typical
attacking strategies.

Index Terms— Distribute estimation; Linear attack; χ2 de-
tector; Wireless sensor networks

I. INTRODUCTION

A wireless sensor network is composed by a group of
homogeneous sensors, which aims to cooperatively perceive,
collect and process the information distributed in the geo-
graphical area including the deserts, the forest and so on.
Wireless sensor networks have attracted great attention due
to its broad potential applications in the area of forest fire de-
tection, transportation surveillance, and industrial automation
[1], [2]. In practical applications, it is usually deployed in an
open, unattended or even hostile environment, which brings
the security issue due to its distributed structure, see [3].
Generally, the attacking methods can be classified into two
types: Denial of Service Attacks, and Integrity Attacks [4].
In [5], Liu et al. considered the integrity attack on parameter
estimation in smart grid. Similar results can be found in [6]
[7], Mo et al. considers linear deception attacks in the linear
estimation process. Intuitively, if the data is modified under
integrity attacks, the statistical properties in general change
accordingly. Motivated by these problems, the residue-based
χ2 detectors are widely deployed to distinguish the attacks
by checking the characteristics of the received data [8].

II. PROBLEM FORMULATION

A. System Model

Consider the following linear discrete-time system:

x(k + 1) = Ax(k) + w(k), (1)
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where x(k) ∈ Rm is the state vector, w(k) ∈ Rm is
the process noise, which is zero-mean white Gaussian with
covariance matrix Q > 0. The initial state x(0) is also
zero-mean Gaussian matrix with covariance Π0 ≥ 0, and
is independent of w(k) for all k ≥ 0.

The measurement equation of the ith sensor is given by

yi(k) = Hix(k) + vi(k), (2)

where yi(k) ∈ Rm is the measurement of sensor i, the
measurement noise vi(k) ∈ Rm is zero-mean white Gaussian
with covariance matrix Ri > 0 which is independent of x0,
w(k) ∀k, i, and is independent of vj(s) when i 6= j or k 6= s.

We model the sensor network as a directed graph G =
(V, E) with the nodes V = {1, 2, ..., n} being the sensors and
the edges E ⊂ V ×V representing the communication links.
The existence of edge(i, j) means the ith sensor receives
data from the jth sensor. Define the neighboring sensors of
the ith sensor by Ni = j : (i, j) ∈ E. Let di = |Ni| be the
number of neighboring sensors of the ith sensor.

Consider the following distributed state estimator at ith
sensor:

x̂i(k + 1|k) =Ax̂i(k|k − 1) +Ki
p(k)[zi(k) + ε

∑
j∈Ni

zj(k)],

(3)

where zi(k) = yi(k)−Hix̂i(k|k−1). The innovation zi(k) is
zero-mean Gaussian; zi(k) and zj(k) are independent, ∀i 6=
j; Moreover, the innovation covariance is denoted by Σz ,
E[zi(k)zi(k)

T
]. ε is the consensus gain and in the range of

(0, 1/∆) with ∆ = maxi(di).
Lemma 1: The optimal estimator gain is derived by min-

imizing the estimation error covariance Pi(k) at each time
step,

Ki∗
p (k) = AYM−1, (4)

where

M = ε2
∑

s,r∈Ni

HrPr,s(k)Hs
T +HiPi(k)Hi

T +Ri

+ε
∑
r∈Ni

(HrPr,i(k)Hi
T ) + ε

∑
s∈Ni

(HiPi,s(k)Hs
T ),

Y = ε
∑
s∈Ni

Pi,s(k)Hs
T + Pi(k)Hi

T , i = 1, 2, . . . , n.
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B. Attack Model

In this paper, we consider an attack model as

z̃i(k) , Tkzi(k) + bi(k), (5)

where Tk ∈ Rm×m is an arbitrary attack matrix. Note that
zi(k) ∼ (0,Σz) and bi(k) ∼ (0,Σb), it is easy to see
that z̃i(k) still follows zero-mean Gaussian distribution with
covariance Σz̃ = TkΣzTk

T + Σb.

C. Detection and Estimation Model

In the following, we propose a distributed estimator for
the considered system under linear attacks.

A typical χ2 detector for the innovation zi(k) adopts the
following hypothesis testing,

ξi(k) =

k∑
i=k−J+1

zi(k)
T

Σ−1z zi(k) ≶H0

H1
η, (6)

where the null hypotheses H0 means that the system is
operating normally, while the alternative hypotheses H1

means that the system is under attacks, J is the window
size of detection and the threshold η is designed by χ2 test
threshold table properly.

Here, a detector based on the real time innovation is
proposed,

γij(k) =

{
1, ξi(k) < η,

0, otherwise.
(7)

From (3) and (7), we derive the distributed estimator with
the detector for each sensor as the following,

x̂i(k + 1|k) =Ax̂i(k|k − 1) +Ki
p(k)[zi(k)+

ε
∑
j∈Ni

γij(k)z̃j(k)], (8)

where γij(k) is a binary variable representing the detection
decision. If the detector of sensor i regards the edge (i, j)
being attacked, i.e., the received data from sensor j is
suspicious, then γij(k) = 0, otherwise, γij(k) = 1.

III. SIMULATION AND COMPARISON

In this section, we will present some numerical examples.
Consider a wireless sensor network with n = 5 sensors and
the system parameters are defined as follows,

A =

[
1.01 0

0 1.01

]
, Hi =

[
2ζi 0
0 2ζi

]
, Q =

[
2 0
0 2

]

Ri =

[
2vi 0
0 2vi

]
, T (k) =

[
2δi 0
0 2δi

]
, Bi =

[
σi 0
0 σi

]
,

where ζi, vi, δi, σi ∈ (0, 1] for all i, and ε = 0.05. As Fig.
1 shows, all the sensors (blue curves) track the unstable
considered system (red curve) well as time evolving.
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Fig. 1: Tracking performance.
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Fig. 2: The estimation error co-
variances of different cases.

We first define the trace of the averaged estimation error
covariance, as J(k) = 1

n

∑n
i=1 tr(Pi(k)).

As shown in Fig. 2, all the estimation error covariances
of the four different cases converge to a limit. In the case
of random attack matrix Tk, the estimation error covariance
with the χ2 detector is bounded as k goes infinity as well.

IV. CONCLUSION

In this paper, we have investigated the detection issue
for consensus-based distributed filtering under linear attacks
over wireless sensor networks. We proposed a χ2 square
detector for the distributed estimator, which effectively resist
the linear attacks from the attacker. We have also provided
a sufficient condition to ensure the stability of the estima-
tion error covariances, and verified the effectiveness of the
proposed detector by a numerical example. In the future, we
will further explore the effects of the proposed detector under
different types of attacks.
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