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Abstract— In this extended abstract, we revisit the problem
of Kalman filtering with intermittent observations. It is known
that the definition of non-degeneracy plays a key role in
determining the critical value of packet arrival probability for
bounded estimate errors. In this extended abstract, we provide
topological conditions for the existence of eigen-cycle, which can
lead to degenerate systems. We prove that aperiodicity of the
graph corresponding to the A matrix is a necessary condition
for non-existence of eigen-cycle. We also prove that a special
class of aperiodic graphs does not contain non-zero eigen-cycles.

Index Terms— Estimation, Kalman filtering, networked con-
trol
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I. INTRODUCTION

Wireless sensor networks (WSNs) have attracted wide
attention in recent years because of its successful applica-
tions in various domains, such as area monitoring, building
automation, and navigation of an autonomous vehicle [1].
Due to the sensitivity of wireless connections to changes
in the environment, packet loss is a common phenomenon
for data traveling in WSNs, and its influence should not be
neglected. Spurred by this consideration, a large amount of
work has been devoted to design and analyze control and
estimation algorithms over unreliable networks .

In this extended abstract, we focus on the Kalman fil-
tering over unreliable networks in which the packets arrive
according to a certain probability and thus the observations
are intermittent. This problem is originally formulated and
studied in [2], in which the authors consider discrete-time
linear Gaussian systems under the assumption of a non-zero
loss probability associated with each packet. It has been
proven that, although the Kalman filter is still the optimal
estimator in this packet loss situation, its estimate error
may be unbounded if the arrival probability of the packets
is below a critical value. The authors provide the upper
and lower bounds of the critical value for general systems.
However, the bounds are only tight for several special cases.

The study in [2] inspires a substantial amount of work to
characterize the critical value of packet arrival probability
in more general cases. Mo and Sinopoli also introduce a
new concept of non-degeneracy, that requires the system
to remain observable even if it is sampled at a different
frequency [3]. They further prove that the critical value for
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a non-degenerate system is indeed the lower bound. Rohr et
al. and Sui et al. extend the study by including degenerate
systems and by considering a more general packet loss model
[4], [5]. It has been shown that for degenerate systems,
the critical value may be higher than the lower bounds. In
other words, more communication resources are required to
stabilize the system.

Even though the non-degeneracy is a desirable property to
ensure the stable state estimation with bad communication
quality, the condition for non-degeneracy depends on the
rank of matrices, which is non-trivial to validate, especially
for large scale networked systems. Furthermore, it does not
provide any insight on how to design the system to avoid
degeneracy. In this extended abstract, we utilize a concept,
called eigen-cycle, to provide topological conditions to char-
acterize non-degenerate systems from the graph-theoretic
perspective.

The extended abstract is organized as follows: Section II
reviews some results from the literature and formulates the
problem. In Section III, we present our main results. Section
IV concludes the extended abstract.

II. PROBLEM FORMULATION

A. System Settings

Consider the following LTI system:

x(k + 1) = Ax(k) + w(k) (1)
y(k) = Cx(k) + v(k) (2)

where x(k) ∈ Rn is the state vector; y(k) ∈ Rm is the mea-
surement vector; w(k)(v(k)) is the process (measurement)
noise, which is assumed to be zero mean and i.i.d. Gaussian
with covariance Q(R). The initial state x(0) is zero mean
Gaussian with covariance Σ. Assume that w(k), v(k), x(0)
are jointly independent, Q, R, Σ are strictly positive, and
(A,C) is observable.

Consider the case in which observations are sent to the
estimator via an unreliable communication channel, where
the packet arrival is modeled by an i.i.d. Bernoulli random
process {γ(k)}. According to this model, the measurement
y(k) sent at time k reaches the estimator if γ(k) = 1; it
is lost otherwise. Define the packet arrival rate to be p ,
P (γ(k) = 1). We further assume that γ(k) is independent
of w(k), v(k) and x(0), i.e., the communication channel is
independent of both process and measurement noises.
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B. Kalman Filtering with Intermittent Observations

The Kalman Filter equations for the above system were
derived in [2] and take the following form:

x̂(k) = x̂(k|k − 1) + γ(k)K(k)(y(k)− Cx̂(k|k − 1))

P (k) = P (k|k − 1)− γ(k)K(k)CP (k|k − 1)

where

x̂(k|k − 1) = Ax̂(k − 1)

P (k|k − 1) = AP (k − 1)AT +Q

K(k) = P (k|k − 1)CT (CP (k|k − 1)CT +R)−1

x̂(0) = 0, P (0) = Σ

C. Existence of Critical Value

The following theorem establishes the existence of a
critical packet arrival probability for the stability of the
Kalman filter:

Theorem 1: [2] If A is unstable, then there exists a critical
value pc ∈ [0, 1] such that

1) If p < pc, then there exists some initial condition Σ,
such that supEP (k) =∞;

2) If p > pc, then for any initial condition Σ, there exists
a matrix M(Σ), such that supEP (k) ≤M(Σ).

In general, the computation of the critical value pc is
difficult. A lower bound of pc is given in [2]:

pc ≥ 1− 1

ρ(A)2
,

where ρ(A) is the spectral radius of A.

D. Non-degenerate System and Eigen-Cycle

Now we will give an equivalent definition of non-
degeneracy from [4]:

Definition 2: A pair of matrices (A,C) is called non-
degenerate if A is diagonalizable and for any strictly positive
integer h, (Ah, C) is observable.

Notice that A matrix can be decomposed as A =
diag(Au, As), where Au contains all the unstable and criti-
cally stable mode and As is strictly stable. Since the strictly
stable mode does not affect the stability of the estimator [3],
we can weaken our definition of non-degeneracy.

Definition 3: A pair of matrices (A,C) is called weakly
non-degenerate if Au is diagonalizable and for any strictly
positive integer h, (Ah, C) is detectable.

The following theorem establishes the critical value of a
weakly non-degenerate system:

Theorem 4: For a system with (A,C) weakly non-
degenerate, the critical value pc is given by

pc = 1− 1

ρ(A)2
.

For general unstable LTI systems, the above lower bound
of critical value is not always tight [6], [7]. In other words, a
higher communication successful rate is needed to stabilize
the Kalman filter. As a result, weak non-degeneracy is a
desirable property to reduce the communication constraint

on the system. However, when dealing with large scale
networked systems, checking weak non-degeneracy may be
difficult due to numerical issues or parameter uncertainties.
To avoid such a problem, in the next subsection, we seek to
provide topological conditions for weak non-degeneracy.

Before continuing on, we shall introduce the concept of
eigen-cycle, which is closely related to non-degeneracy.

Definition 5: A set of eigenvalues {λ1, . . . , λj} is called
an eigen-cycle of A if there exists a strictly positive integer h,
such that λh1 = . . . = λhj . A matrix A is (weakly) aperiodic
if A (Au) is diagonalizable and does not contain any eigen-
cycle.

It can be proved, using Hautus lemma [8], that if (A,C)
is observable (detectable) and A is (weakly) aperiodic, then
(A,C) is (weakly) non-degenerate.

III. MAIN RESULT

In this section, we will consider non-degeneracy from a
graph-theory perspective, by first introducing the concept of
structured system and the graph of the system matrix A.

Definition 6: A system is called structured if each entry
of its matrices A and C, is either a fixed zero or a free
parameter. A property of a structured system is called generic
if it is true for almost every value of the free parameters.

The graph G = {V,E} corresponding to matrix A has
n vertices representing n states of the system, i.e., V =
{1, . . . , n}. If aij 6= 0, i.e., state j has influence on state
i, there exists a directed edge from vertex j to vertex i. In
other words

E = {(j, i) : i, j ∈ V, aij 6= 0}.

We say i is reachable from j if there exists a path,
i.e., sequential directed edges, from j to i. A strongly
connected component is a maximal subgraph in which every
vertex is reachable from every other vertex. A single vertex
with a self-loop is also considered as a strongly connected
component.

A cycle is defined a path such that the first vertex on the
path is the same as the last. The size of the cycle is the
number of vertices visited by the cycle.

The period of a strongly connected component is the
greatest common divisor of the lengths of all cycles (closed
directed paths) inside the component. If the period is one,
the component is called aperiodic; otherwise it is periodic.

Based on the concept of reachability, we can partition the
vertex set V = {1, 2, · · · , n} as

V = V1 ∪ · · · ∪ Vr ∪ {i1} ∪ · · · ∪ {is}

where each Vi is a strongly connected component and ij
is a vertex that does not belong to any strongly connected
component.

A. Sufficient Conditions for the Existence of Eigen-Cycle

In this subsection, we consider sufficient conditions for
the existence of eigen-cycle. We will first consider a graph
with one strongly connected component and then generalize
it to general graphs.
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Theorem 7: Suppose the matrix A corresponding to a
strongly connected graph with period h. If λ is an eigenvalue
of A, then λα is also an eigenvalue, for any αh = 1.

Proof: If the graph corresponding to A is periodic with
period h > 1, from [9] we know that the system matrix can
be written in its Frobenius form (by properly numbering the
vertices in the graph) as follows:

A =


0 A12 0 · · · 0
0 0 A23 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 Ah−1,h
Ah1 0 · · · 0 0


Suppose that A has an eigenpair (v, λ) such that Av = λA,

which can be written as follows:
0 A12 0 · · · 0
0 0 A23 · · · 0
...

...
. . . . . .

...
0 0 · · · 0 Ah−1,h
Ah1 0 · · · 0 0




v1
v2
...

vh−1
vh

 = λ


v1
v2
...

vh−1
vh


One can prove that

A


αhv1
αv2

...
αh−2vh−1
αh−1vh

 = αλ


v1
αv2

...
αh−2vh−1
αh−1vh


If αh = 1, then αλ is an eigenvalue of A.

For the more general case where the graph is not necessar-
ily strongly connected, the graph can be divided into some
strongly connected components and some single vertices
which do not belong to any components.

Proposition 8: The matrix A contains an eigen-cycle if
one of its strongly connected components is periodic.

Proof: This proposition can be proved by rearranging
the index of the vertices, such that the system matrix A can
be written in the following block upper triangular form:

A =


A11 A12 · · · A1k

0 A22 · · · A2k

...
...

. . .
...

0 0 · · · Akk


Each block on the diagonal represents a strongly connected
component or a single vertex. The eigenvalues of A are the
collection of eigenvalues of Aii, i = 1, · · · , k, unrelated to
off-diagonal blocks.

If any strongly connected component Aii is of period hi >
1, by the result from Theorem 7, the matrix A will contain
an eigen-cycle.

We conjecture that the above sufficient condition for the
existence of eigen-cycle is also necessary. However, this has

not been proved yet and we would like to investigate it in
the future.

Using Hautus Lemma, we can easily prove the following
corollary:

Corollary 9: If C is a rank 1 matrix and A contains
a periodic strongly connected component, then (A,C) is
degenerate.

B. Case Study of A Class of Aperiodic Graphs

Next we will consider a special class of strongly connected
graphs that ensures the weak aperiodicity of the matrix A.
Consider the graph shown in Fig 1, that is covered by
2 connected cycles. Suppose that two cycles have lengths
m̃ and ñ, respectively. To ensure the graph is aperiodic,
the greatest common divisor of m̃ and ñ, gcd(m̃, ñ) = 1.
Without loss of generality, we assume m̃ < ñ. The products
of edge weights of the cycles are p and q, respectively, which
are free parameters. Denote the number of common vertices
of the two cycles by r < m̃.

p q

m n 

Fig. 1. An aperiodic graph with two joint cycles.

It can be proved that the characteristic polynomial of the
system in Fig. 1 has the following form [10]:

det(λI −A) =
(
λñ + pλñ−m̃ + q

)
λm̃−r

The roots of the characteristic polynomial are m̃−r zeros
and the roots of the following polynomial:

f(λ) = λñ + pλñ−m̃ + q

, λn + pλm + q (3)

where redefining notations n = ñ and m = ñ− m̃ is for the
convenience of the following analysis.

Theorem 10: The A matrix corresponding to the graph
shown in Fig 1 is generically weakly aperiodic.

Proof: We prove the statement in two steps. First, we
prove that f almost surely does not contain double roots and
therefore the unstable part of A can be diagonalized almost
surely. To this end, suppose f has a double root z. Hence,
z is also a root of f ′, i.e.,

nzn−1 + pmzm−1 = (nzn−m + pm)zm−1 = 0.

Since f(0) = q 6= 0, we know that nzn−m + pm = 0,
which implies that z = αg(p), where αn−m = 1 and g(p) =
(pm/n)1/(n−m).

Now use the fact that f(z) = 0, we have

q = −g(p)nαn − pg(p)mαm.

As a result, as long as q does not take finitely many specific
values, then f(z) 6= 0, which implies that f almost surely
does not have double roots.
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Next we prove that for any α = exp(jθ) and α 6= 1,
the roots of f(λ) and f(αλ) almost surely do no coincide.
Suppose the opposite and

f(z) = zn + pzm + q = 0, f(αz) = αnzn + pαmzm + q = 0.

Clearly

f(z)− f(αz) =
[
(1− αn)zn−m + p(1− αm)

]
zm = 0,

αmf(z)− f(αz) = (αm − αn)zn−m + q(αm − 1) = 0.

Since f(0) = q 6= 0, we know that z 6= 0 and hence

(1− αn)zn−m + p(1− αm) = 0,

(αm − αn)zn + q(αm − 1) = 0.

which implies that

|1− αn| × |z|n−m = |p| × |1− αm|,
|αm − αn| × |z|n = |q| × |1− αm|. (4)

Since gcd(n,m) = gcd(ñ, m̃) = 1, we know that there
exists integer τ and β, such that τn+βm = 1, which implies
that

(αn)τ (αm)β = α 6= 1.

Therefore, αn and αm cannot be 1 simultaneously, which
implies that (4) almost surely does not have a solution.

Let us define the set

A = {α = exp(jθ) 6= 1 : θ/π is rational.}

Consider the set of (p, q), such that

S = {(p, q) : (4) does not have a solution for any α ∈ A},

which can be written as the intersection of countably many
sets:

S =
⋂
α∈A
{(p, q) : (4) does not have a solution for α}.

We can prove that the complement of S has Lebesgue
measure 0. Therefore, the unstable part of A almost surely
does not contain an eigen-cycle and hence A is weakly
aperiodic.

We can extend the result to more general graph, which
can be covered by two connected cycles with coprime sizes.

Corollary 11: The A matrix corresponding to a graph,
which is covered by two connected cycles with coprime
sizes, is generically weakly aperiodic.

From the relationship between weak non-degeneracy and
weak aperiodicity, we know that the following holds.

Corollary 12: If A matrix corresponds to a graph, which
is covered by two connected cycles with coprime sizes, then
the system is generically weakly non-degenerate. Moreover,
the critical value of the system equals to the lower bound
almost surely.

IV. CONCLUSIONS

In this extended abstract we address the problem of
Kalman filtering with intermittent observations. We provide
structural conditions for aperiodicity of the A matrix. We
prove that aperiodicity of the graph generated by A matrix is
a necessary requirement of the aperiodicity of the A matrix.
We also prove that systems corresponding to a special kind
of aperiodic graphs are generically weakly aperiodic and
weakly non-degenerate.

For the future work, a complete characterization of the
property of non-degeneracy from the graph-theoretical per-
spective is still an open problem. The analysis present herein
can provide a valuable insight for achieving the final goal.
In addition, designing graph-based algorithms to validate
the structural conditions for non-degeneracy will also be
investigated.
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