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The univariate moment problem is an old problem with
origins tracing back to work of Stieltjes. Given a sequence
(sk)k≥0 of real numbers one wants to know when there exists
a Radon measure µ on R such that

sk =
∫

xkdµ ∀ k ≥ 0.2

Since the monomials xk, k ≥ 0 form a basis for the
polynomial algebra R[x], this problem is equivalent to the
following one: Given a linear functional L : R[x] → R,
when does there exist a Radon measure µ on R such that
L(f) =

∫
fdµ ∀ f ∈ R[x]. One also wants to know to what

extent the measure is unique, assuming it exists. Akhiezer
1965 and Shohat-Tamarkin 1943 are standard references.

The multivariate moment problem has been considered
more recently. For n ≥ 1, R[x] := R[x1, . . . , xn] denotes
the polynomial ring in n variables x1, . . . , xn. Given a linear
functional L : R[x] → R and a closed subset Y of Rn one
wants to know when there exists a Radon measure µ on
Rn supported on Y such that L(f) =

∫
fdµ ∀ f ∈ R[x].

Haviland, 1936 proved that such a measure exists if and
only if L(Pos(Y )) ⊆ [0,∞), where Pos(Y ) := {f ∈ R[x] :
f(x) ≥ 0 ∀x ∈ Y }.

Again, one also wants to know to what extent the measure
is unique, assuming it exists. Berg 1987, Fuglede 1983 are
general references. A major motivation here is the close
connection between the multivariate moment problem and
real algebraic geometry; as revealed in Schmüdgen 1991,
see Marshall 2008 for an excellent exposition.

The infinite-variate moment problem is dealing with the
moment problem in infinitely many variables, mainly where
the linear functional in question is continuous for a certain
topology. Albeverio-Herzberg 2008 apply the Positivstellen-
satz to represent L1-continuous linear functionals on the
vector space of polynomials of Brownian motion as inte-
gration with respect to probability measures on the Wiener
space of R. Berezansky-Kondratiev 1995, Berezansky-Sifrin
1971, Borchers-Yngvason 1975, Hegerfeldt 1975, Infusino-
Kuna-Rota 2014, consider linear functionals on the symmet-
ric algebra of a nuclear space. Ghasemi-Kuhlmann 2013,
Lasserre 2013, Ghasemi-Kuhlmann-Marshall 2014 study
continuous linear functionals on topological real algebras
in general. This is applied in Ghasemi-Infusino-Kuhlmann-
Marshall 2018 to linear functionals on the symmetric algebra
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of a locally convex space (V, τ) which are continuous with
respect to the finest locally multiplicatively convex topology
extending τ .

In this talk, based on Ghasemi-Kuhlmann-Marshall 2016,
we deal with the general case systematically, without any
continuity assumptions. The main new concept that we intro-
duce and develop to this end is that of a constructibly Radon
measure on the (infinite dimensional) real vector space
RΩ. After that, due to time constraints, we will focus on
presenting the following (infinite dimensional) generalization
of Haviland’s theorem:

Theorem 1: Let A = AΩ := R[xi | i ∈ Ω], the ring of
polynomials in an arbitrary number of variables xi, i ∈ Ω
with coefficients in R. Suppose L : AΩ → R is linear and
L(PosAΩ(Y )) ⊆ [0,∞) where Y is a closed subset of RΩ

and is described by countably many inequalities (i.e., there
exists a countable S ⊂ AΩ such that Y = {α ∈ RΩ | ĝ(α) ≥
0 ∀ g ∈ S}.) Then there exists a constructibly Radon measure
ν on RΩ supported by Y such that L(f) =

∫
f̂dν ∀ f ∈ AΩ.

We note that the condition imposed on Y is always sat-
isfied for countable Ω and we deduce the following version
of Haviland in the countable dimensional case:

Corollary 2: Suppose Ω is countable, L : AΩ → R is
linear and L(PosAΩ(Y )) ⊆ [0,∞) where Y is a closed
subset of RΩ. Then there exists a Radon measure ν on RΩ

supported by Y such that L(f) =
∫

f̂dν ∀ f ∈ AΩ.
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[17] K. Schmüdgen, The K-moment problem for compact semi-algebraic
sets. Math. Ann. 289, no. 2, 203–206 (1991).

[18] J.A. Shohat and J.D. Tamarkin, The Problem of Moments. American
Mathematical Society Mathematical surveys, vol. I. American Math-
ematical Society, New York, 1943.

[19] T.J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sci.
Toulouse, A5–A47 (1985). Reprinted in Ann. Fac. Sci. Toulouse Math.
4 no. 4, A5–A47 (1995).

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

526


