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Abstract— We present a distributed control law for a
group of agents that solves the problem of formation control
with obstacle avoidance and that can be combined with a
coordinated group stabilization control law. In particular, we
consider a control law that is given by a linear combination
of distributed formation, distributed obstacle avoidance and
centralized group motion control laws. Simulation results
show the effectiveness of our proposed control law.

I. INTRODUCTION

In this paper, we consider the problem of steering a
group of agents as a formation towards a final desired
destination while avoiding obstacles along the course of
motion. A possible application can be found in smart
manufacturing systems where a group of mobile robots
are required to work together to transport an object from
position A to position B. In such smart manufacturing
systems there may be barriers which the mobile robots
individually and as a group should avoid while carrying
out the requested task.

In literature, numerous references can be found for
achieving each of the individual tasks (formation control,
group motion control, obstacle avoidance) or combina-
tions thereof. See, for example [1] for an overview of
approaches for achieving the formation control task based
on the interconnection topology and sensing capability
of the agents. In [2], [3], the weighted centroid tracking
problem is considered in which the formation centroid
is required to track an assigned task function. In [4],
a decentralized controller is constructed based on the
notion of navigation function. This controller guarantees
the convergence of the multi-agent system to the de-
sired formation while maintaining network connectivity
and avoiding obstacles. In [5], the multi-agent collision
avoidance problem is introduced and formulated as a
nonlinear differential game. Dynamic feedback strategies
are constructed guaranteeing the avoidance of collisions
with obstacles or other agents while the individual agents
reach their target. In [6], Lyapunov-like barrier functions
are introduced such that the objective of avoiding obstacles
can be composed together with other control objectives of
the multi-agent systems into a single function for every
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agent. Furthermore, avoiding obstacles can be regarded
as part of the requirements for guaranteeing safety of a
(non)linear system; other requirements being the state and
input constraints on the system. In [7], [8], the problem
of synthesizing controllers for safety critical systems is
considered. In both papers, the control design is based
on the unification of both Control Lyapunov functions
and Control Barrier functions for satisfying repectively the
performance/stability properties and safety objectives.

In the current work, we propose a new control design
for guaranteeing collision avoidance between the agents in
formation and obstacles. Each individual agent is assumed
to be able to sense the obstacle and action needs to be taken
when the agent is within a certain threshold distance from
the obstacle. The obstacle avoidance behavior of agent i
is then diffused towards the other agents in the network
by means of a consensus type protocol explained later.

Compared with [5], our obstacle avoidance approach is
decentralized, Moreover, in [5], the agents are not required
to achieve a network objective (a desired formation or
consensus) while moving to the individual target. Different
from [4], we consider as well the movement of the
formation as a whole towards a desired destination in the
plane. This motion group control is for now a centralized
approach.

The outline of this paper is as follows. In Section
II, the problem of steering a group of agents towards a
desired destination is formulated. The control laws for the
different sub tasks are given in Section III. The merging
of these control laws for an agent is as well considered.
We illustrate our approach with an example in Section IV
and Section V concludes the paper.

II. PROBLEM FORMULATION

We consider a group of N identical agents moving in
the 2-dimensional plane. Each agent is modeled as a single
integrator, i.e.,

ṗi = ui, i = 1, . . . , N, (1)

where pi ∈ R2 and ui ∈ R2 denote the position and
controlled velocity of agent i, respectively.

Without loss of generality, we consider obstacles that
can be encapsulated by m ≥ 0 circles in the plane where
the centroid and radii of each circle Ok, k = 1, . . .m, is
given by pobs

k ∈ R2 and Robs
k ∈ R, respectively. In this
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case, the boundary of the k-th obstacle is defined by

∂Ok :=
{
x
∣∣∣ ∥∥x− pobs

k

∥∥−Robs
k = 0

}
.

For our later description of distributed collision avoidance
control law, we associate for each agent i a parameter
Rsafe
i which defines the safe distance to the boundary of

any obstacle. Roughly speaking, when the agent’s distance
to the boundary of an obstacle is less than Rsafe

i , then the
distributed obstacle avoidance control will set in for the i-
th agent. Throughout this paper, we will consider the case
of Rsafe

i being constant for all i.
For the following definitions, let P0 denote the set of

initial conditions which do not intersect Ok for all k.
Definition 2.1 (local obstacle avoidance): The i−th

agent is said to avoid collision with obstacle Ok if for
almost all pi(0) ∈ P0 the trajectories pi(t) do not enter
Ok for all t ≥ 0, i.e., pi(t) /∈ Ok for all t ≥ 0.

Definition 2.2 (obstacle avoidance task): The group of
N agents is said to achieve obstacle avoidance if every i-th
agent avoids collision with all obstacles Ok, k = 1, . . .m.

The interaction between the agents is represented by
an undirected graph G(V, E) with V = {1, . . . , N} be-
ing the set of nodes representing the agents and E =
{(i, j) ∈ V × V} being the links/edges between the agents.
The direct neighbors of each agent i is denoted by Ni ={
j
∣∣ (i, j) ∈ E}. In the present work we assume that the

agents can obtain relative position information from its
neighbors, i.e., agent i has access to pj−pi, ∀j ∈ Ni. The
desired relative position between the agents is encoded in
a vector p∗ ∈ R2N . Note that p∗ has to satisfy geometric
constraints that define the shape of the formation. We refer
to the exposition in [9], [10], [11] on the graph formalism
of mobile robots’ formation. For a given p∗, the group
of N -agents is said to be in the desired formation if
pj − pi = p∗j − p∗i , ∀(i, j) ∈ E .

Definition 2.3: For a given p∗, the group solves forma-
tion task w.r.t. p∗ if all agents’ trajectories asymptotically
converge to the desired formation, i.e.,

lim
t→∞

(
pj(t)− pi(t)

)
= p∗j − p∗i ∀(i, j) ∈ E .

Furthermore, we assume that the graph is connected;
in which case, the Laplacian matrix L ∈ RN×N is
positive semidefinite and has an eigenvalue at zero with the
corresponding eigenvector of all ones which is denoted by
1. L is as well doubly stochastic, i.e., its row and column
sum are zero.

In addition to the above distributed control tasks, we
can add a group motion task where the group’s centroid
and orientation are controlled to achieve certain control
behaviour, such as, following a given reference trajectory
or converge to a desired point (e.g., group stabilization).

Definition 2.4: The group of N -agents is said to achieve
group stabilization if the centroid of the group pcen :=
1
N

∑
i pi converges asymptotically to the origin, i.e.,

pcen(t)→ 0 as t→∞.

In the following section, we present our control design
framework which can accomplish all three different control
tasks. Both obstacle avoidance and formation tasks are
solved by distributed control laws while group stabilization
task is solved by a coordinated control law.

Assumption 2.1: At any given instantaneous time, at
most one agent is within a given safe distance to an
obstacle.

Assumption 2.2: For the group stabilization task, the
formation centroid pcen is allowed to cross the obstacles.

III. DISTRIBUTED OBSTACLE
AVOIDANCE-FORMATION CONTROL DESIGN

The navigation function as used in [4] requires us to
have apriori information of all tasks so that we can embed
this information to the navigation function. In contrast
to this approach, we will pursue a control design that is
modular where one can add and remove control law for
particular task directly without jeopardizing the completion
of other tasks. Therefore we assume that the control law
for each agent is a linear combination of control laws of
different tasks, i.e.,

ui = uf
i + ug

i + uo
i , i = 1, . . . , N (2)

where uf
i is the local control law for solving formation task

of i-th agent, ug
i is the local control law for solving group

stabilization task of i-th agent and uo
i is the local control

law for solving collision avoidance task of i-th agent.
In the following sub-sections, we present a particular

control law for each of the aforementioned tasks that
will be used in our unified control framework. While our
framework is not restricted to these control laws, we will
focus mainly on these laws in this paper where we can
demonstrate the applicability of our approach.

A. Distributed formation control law

For achieving formation task, we consider the following
standard relative position-based formation control law

uf
i = cf

∑
j∈Ni

wij

(
pj − pi −

(
p∗j − p∗i

))
, (3)

where cf > 0 is the formation gain and wij > 0, i, j =
1, . . . N the weight of the edge (i, j) ∈ E . In compact
form, the above law can be written as

U f = cf(L⊗ I2)(p∗ − p) (4)

where U f is the stacked vector of uf
i, i = 1 . . . N and ⊗

is the Kronecker product.

B. Coordinated group stabilization control law

For stabilizing the group, we assume the existence of
a central coordinator. The role of the central coordinator
is to calculate/estimate the formation centroid pcen based
on the position of the agents and use it to compute the
stabilizing control law for the group.
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The design of the control law for group stabilization is
based on the assumption that the desired formation has
been reached and there is no obstacle. In this case, using
(1), (2), (3) and uo

i = 0, the dynamics of the centroid’s
position is given by

ṗcen =
1

N

N∑
i=1

ṗi = ug, (5)

where we assume that the control law ug will be commu-
nicated to all the agents and as such ug

1 = ug
2 = · · · =

ug
N = ug.
We propose the following group motion control law:

ug = −cPpcen + cIγ, γ̇ = −pcen, (6)

where cP > 0 and cI > 0 are the proportional and integral
gain, respectively. In compact form, we can write the group
stabilization control law for the whole group as

U g =
(
1N×1 ⊗−cPpcen + cIγ

)
, (7)

where U g is the stacked vector of ug
i , i = 1 . . . N .

If we do not need to solve obstacle avoidance task then
the group stabilization task can be solved only by using the
proportional controller. As it will be clear later, the integral
action is needed in our control law for compensating the
drift that is introduced by the distributed control law for
the obstacle avoidance given in the next subsection.

We also remark that as each agent gets ug, the forma-
tion control is not affected by the group motion control.
Therefore, both control laws are complementary to each
other.

C. Distributed obstacle avoidance control law

In order to move safely towards the desired destination,
the agents should avoid any obstacle during the course of
transition. Since we have Assumption 2.1, at any given
instantaneous time t, at most one agent can be in close
vicinity of an obstacle. When an agent i has the task of
avoiding obstacle Ok (without considering the control law
for other tasks), we can consider the following control law
which has been proposed in [12]

uo
i = cαα

k
i (pi) :=


0 if

∥∥∥pi − p∗i,k∥∥∥ > Rsafe

cα
pi−p∗i,k
‖pi−p∗i,k‖2

if
∥∥∥pi − p∗i,k∥∥∥ ≤ Rsafe

,

(8)

where cα > 0 is the gain and

p∗i,k := argmin
x∈∂Ok

dist(pi, x). (9)

So when the relative distance between an agent i and
the obstacle k is less than the threshold Rsafe, agent i
will activate the collision avoidance action. However, if
we apply this obstacle avoidance control law locally then
when it is activated locally on the i-th agent, the rest of
the agents will only be driven by the formation and group

stabilization control laws (c.f. (2)). As a consequence,
the unexpected obstacle avoidance manoeuvre by agent i
that is not communicated with the others will introduce
undesirable deformation to the formation shape. On the
other hand, the real-time communication of the obstacle
avoidance control action to all nodes should be prohib-
ited as it will unnecessarily consume the communication
channel and is not scalable.

In order to ‘diffuse’ the obstacle avoidance action to the
other agents, we introduce a dynamic obstacle avoidance
controller whose state variable ζi is communicated to
its neighbors. More precisely, the local dynamic obstacle
avoidance controller is described by

ζ̇i = cζ
∑
j∈Ni

wij(ζj − ζi) + uαi
(10)

uo
i = ζi, (11)

where cζ > 0 is the diffusion gain of obstacle avoidance
control law, wij > 0, i, j = 1, . . . N , is the weight of the
edge (i, j) ∈ E and uαi

is given by

uαi
= cαα

k
i (pi).

In compact form, the distributed dynamic obstacle avoid-
ance control law is given by

ζ̇ = −cζ(L⊗ I2)ζ + Uα

Uo = ζ,

where U o is the stacked vector of uo
i , i = 1 . . . N , and

respectively, Uα is the stacked vector of uαi
. The state

variable ζ can be seen as an aggregation of the obstacle
behavior of the individual agent.

If we pre-multiply (10) by 1
N

(
1> ⊗ I2

)
, we get

1

N

(
1> ⊗ I2

)
ζ̇ =

1

N

(
1> ⊗ I2

)(
− cζ(L⊗ I2)ζ + Uα

)
⇒ ζ̇avg =

1

N

N∑
i=1

uαi
,

where ζavg := 1
N

(
1> ⊗ I2

)
ζ. When the agents are already

free from obstacles after some finite time t̃ > 0, then
Uα(t) = 0 for all t > t̃. In this case, the distributed ob-
stacle avoidance control law becomes a consensus system
which implies that ζi will converge to a common value
given by 1

N

∑
j ζj(t̃) due to the average consensus proto-

col. Due to the integral action in the group stabilization
controller, such constant bias from the asymptote of ζi(t)
will be compensated and the integral controller ensures
that the formation will not be deformed and the group’s
centroid converges to the origin.

IV. NUMERICAL SIMULATION

A. Simulation setup

To demonstrate the applicability of the proposed control
law, we perform numerical simulations with a network of
3 agents.
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As shown in Figures 1 and 2, we consider two circular
obstacles in the plane with center at pobs1 = (4, 7) and
pobs2 = (1, 4) (shown in red). The radii of the obstacles
is set equally to Robs = 0.75. For the obstacle avoidance
control law, we take Rsafe = 0.5. In these figures, the blue
annulus shows the area within Rsafe from the obstacles
where the obstacle avoidance control law is activated.

The gains of the control law are set to be cf = 10, cP =
1, cI = 0.9, cα = 400, cζ = 10.

The desired relative positions for the formation are set
to be p∗21 = [0, 3]>, p∗31 = [−2, 0]> in Figure 1 and
p∗21 = [−2, 2]> and p∗31 = [2, 4]> in Figure 2.
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Fig. 1: State trajectory of three agents transitioning from
initial position to final desired position; Agent 1 is within
a distance Rsafe of both obstacles during the transition and
avoids the obstacles.

B. Simulation results

We consider two initial conditions for simulating dif-
ferent interesting scenario. For the first one, during the
group movement to the origin, there is only one agent
that encounters both obstacles. For the second one, two of
the agents must avoid the obstacles and the centroid pass
through the obstacles.

The results of the closed-loop system using our pro-
posed control law are shown in Figures 1 and 2. From
these figures, we can observe that whenever an agent is
within a distance Rsafe from the boundary of the obstacle
(the blue region) then the obstacle avoidance behavior
of that particular agent is ‘activated’. As can also be
seen in these figures, the distributed obstacle avoidance
control law enables the diffusion of the avoidance ma-
noevre to their neighbors. The neighboring agents undergo
similar trajectories as that of the manoevring agent. The
deformation of the group formation due to the collision
avoidance is also minimized by the diffusive control law.
Finally, one can observe that the group stabilization control
law is able to steer the whole group towards the origin
while compensating for the constant bias introduced by the
distributed dynamic obstacle avoidance control law when
they are exiting the blue region.
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Fig. 2: State trajectory of three agents transitioning from
initial position to final desired position. Agent 1 and
Agent 2 avoids respectively obstacles O1 and O2 during
transition while the centroid crosses obstacle O1.

V. CONCLUSIONS
In this paper, we propose a new distributed control de-

sign law for achieving formation while avoiding obstacles
for a group of agents. In combination with a coordinated
group controller, we are able to steer the formation to the
origin while maintaining formation shape during and after
the obstacle avoidance manoevre.
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