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Abstract— We consider the problems of tracking a set of
indistinguishable agents with linear dynamics based only on
output measurements. The behaviors of the agents may be
modeled by distributions. We formulate the problems using
optimal mass transport theory with prior linear dynamics.
Though our problem has a convex formulation, with general
purpose solver, it is only computationally feasible if the state
dimension is low. In the case where the marginal distributions
are Gaussian, the problem is reformulated as a semidefinite
programming and can be efficiently solved for large state
dimension.

I. INTRODUCTION

The optimal mass transport theory provides a geometric
framework for mapping a distribution to another one in a
way that minimizes the total transport cost [16]. This has
been used in many contexts, traditionally for application in
economics and logistics [12], and more recently in imaging
and machine learning [2], [11], [13], [15] as well as systems
and controls [6], [7], [10]. In case when the transport cost
is quadratic, the problem may be formulated as a fluid
dynamics problem [1]. It can also be viewed as an optimal
control problem of the density of the particles that obey
the dynamics ẋ(t) = u(t) [5]. In the subsequent paper
[8] a natural generalization of this problem is introduced
where the underlying linear dynamics of the particles become
ẋ(t) = Ax(t) +Bu(t).

In this extended abstract, based on [9], we consider the
extension of this framework to the case where the full state
information is not available. In particular we consider the
tracking problems where we seek to estimate the states of
several identical and indistinguishable systems from only
their joint outputs. This is also known as state estimation of
ensembles, see [18], [17]. One of the main obstacles is that
it is not known which output that is generated by a certain
subsystem, hence an association problem has to be solved.
A brute force approach to this would result in a combina-
torial problem. However, by formulating this as an optimal
transport problem the number of variables only grow linearly
in the number of states. Our formulation not only allows
for tracking a finite number of particles, but also applies
to the more general problems of tracking distributions. We
also consider the case when the underlying distributions are
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Gaussian. In this case the number of variables can be reduced
significantly and the problem can be solved efficiently with
large number of state dimensions.

At the very high level, we are developing a framework to
smoothly interpolate a sequence of probability densities, in
a way akin to smoothly interpolate several points in the
Euclidean space. Indeed, the cubic spline interpolation of
several points has a variational formulation in the flavor of
optimal control [14]. The cubic spline counterpart in the
space of distributions has been recently studied in [4], [3].
Our work can be viewed as a generalization of these where
more general underlying linear dynamics, instead of simple
second order integrator, are considered.

II. BACKGROUND ON OPTIMAL MASS TRANSPORT

Monge’s original formulation of optimal mass transport is as
follows (see, e.g., [16]). Consider two nonnegative distribu-
tions, ρ0 and ρ1, of the same mass, defined on a set X ⊂
Rn. The optimal mass transport problem seeks a transport
function f : X → X that minimizes the transportation cost∫

X

c(x, f(x))ρ0(x)dx

over all the mass preserving maps from ρ0 to ρ1, namely,∫
x∈U

ρ1(x)dx =

∫
f(x)∈U

ρ0(x)dx for all U ⊂ X,

which is often denoted f#ρ0 = ρ1. The function c(x0, x1) :
X ×X → R+ is a cost function that describes the cost for
transporting a unit mass from x0 to x1. The Monge’s problem
is usually difficult to solve due to the nontrivial constraint
f#ρ0 = ρ1. To overcome this difficulty, Kantorovich pro-
posed a linear programming relaxation

min
π∈Π(ρ0,ρ1)

∫
X×X

c(x, y)dΠ(x, y) (1)

where Π(ρ0, ρ1) denotes the set of all joint distributions
between ρ0 and ρ1. In fact, when ρ0 and ρ1 are absolutely
continuous, these two formulations are equivalent.

When the cost function is quadratic, i.e., c(x0, x1) = ‖x0 −
x1‖22, the optimal mass transport problem can be set up as
an optimal control problems in fluid dynamics [1]

min
u,ρ̂

∫ 1

0

∫
x∈X
‖u(t, x)‖2ρ̂(t, x)dxdt

subject to
∂ρ̂

∂t
+∇ · (uρ̂) = 0

ρk = ρ̂(k, ·), for k = 0, 1.
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This can be interpreted as an optimization problem where
the mass distributions represented by infinitecimal particles,
each carrying a cost corresponding to the optimal control
problem

min
u

∫ 1

0

‖u(t)‖2dt

subject to ẋ(t) = u(t),

x(0) = x0 and x(1) = x1

where x0, x1 are the initial and final position of the particle,
respectively. Hence, choosing the quadratic cost in the op-
timal mass transport problem can be seen as assuming the
underlying dynamic being ẋ(t) = u(t).

In [8] this was generalized through replacing the cost
function that reflects deviation from the trajectory of the
underlying system dynamics. It is associated with the linear
dynamic

ẋ(t) = Ax(t) +Bu(t) (2)

and optimal control problem

min
u

∫ 1

0

‖u(t)‖2dt

subject to ẋ(t) = Ax(t) +Bu(t),

x(0) = x0 and x(1) = x1.

The cost is then given by

c(x0, x1) = (x1 − Φx0)TQ(x1 − Φx0). (3)

where Φ = eA, Q = M−1
10 , and

M10 =

∫ 1

0

eA(1−τ)BBT eA
T (1−τ)dτ

is the controllability Grammian. Apparently, it reduces to the
standard cost c(x0, x1) = ‖x0 − x1‖2 when A = 0, B = 1.

III. TRACKING WITH OPTIMAL MASS TRANSPORT FROM
OUTPUT MEASUREMENTS

We next extend this connection between optimal transport
and optimal control to systems with output measurements.
To this end, assume that the underlying dynamic and output
measurements corresponds to the linear system

ẋ(t) = Ax(t) +Bu(t) (4a)
y(t) = Cx(t) (4b)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n and (A,B)
is a controllable pair. We seek to track the time varying
distribution ρ̂(t), where each particle abides by (4a), based
on the output distributions ρk = C#ρ̂(t) at the times k =
0, 1, . . . , T . Note that only the distribution of the output is
available. We don’t have access to the information about
each particle, namely, the particles are indistinguishable. For
determining identifiability of this problem, see [18].

We propose to model this tracking problem as the following
optimal mass transport problem. We seek a flow of nonneg-
ative measures ρ̂ : t→M+(X) that minimize

min
u,ρ̂

∫ T

t=0

∫
x∈X
‖u(t, x)‖2ρ̂(t, x)dxdt (5a)

subject to
∂ρ̂

∂t
+∇ · ((Ax+Bu)ρ̂) = 0 (5b)

ρk = C#ρ̂(k, ·), for k = 0, 1, . . . , T. (5c)

Reformulating this using the Kantorovich formulation of the
optimal transport problems we arrive at the linear program-
ming problem

min
πk∈M+(X×X)

T−1∑
t=0

∫
(x,y)∈X×X

c(x, y)dπk(x, y) (6a)

subject to
∫
y∈X

dπk(x, y) = dρ̂k(x) (6b)∫
x∈X

dπk(x, y) = dρ̂k+1(y) (6c)

ρk = C#ρ̂k, for k = 0, 1, . . . , T, (6d)

where the cost c(x0, x1) is given by (3).

This is a linear programming problem that can be solved
using standard methods if the number of states are small.
However, it suffers from the curse of dimensionality and
when the number of states are large we need to restrict the
distributions to certain classes. One such class of particular
interest is the Gaussian distributions.

IV. GAUSSIAN CASES

In this section, we focus on the case when all the marginal
distributions are Gaussian. We assume that, for all k =
0, 1, . . . , T , the k-th marginal ρk of the measurement is
a Gaussian distribution with mean µk and covariance Σk.
By linearity, the output density tracking problem can be
divided into two parts: interpolating the means {µk} and
interpolating the covariances {Σk}.

Interpolating the means is equivalent to solving (5) for a
single particle. It reduces to the optimal control problem

min
u

∫ T

0

‖u(t)‖2dt (7a)

subject to ẋ(t) = Ax(t) +Bu(t), 0 ≤ t ≤ T (7b)
Cx(k) = µk, k = 0, . . . , T. (7c)

By introducing a Lagrangian multiplier λ(·), it is easy to
see the optimal control is of the form u(t) = BTλ(t)
with λ satisfying the dual dynamics λ̇(t) = −ATλ(t) for
each interval t ∈ (k, k + 1). For each interval, if we fix
x(k), x(k+ 1), then we can obtain a closed-form expression
for the optimal cost, which is

(x(k + 1)− Φx(k))TQ(x(k + 1)− Φx(k)).

Therefore, a strategy to solve (7) is first minimizing u over
fixed x(0), . . . , x(T ) and then minimizing the result over
x(0), . . . , x(T ).
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The covariances part is solved using semidefinite program-
ming (SDP). We first minimize the cost with fixed state
x(0), x(1), . . . , x(T ) and then minimize the resulting cost
over x(k), k = 0, 1, . . . , T subject to the constraint that
Cx(k) is zero mean Gaussian distribution with covariance
Σk. For fixed x(k), k = 0, 1, . . . , T , the minimum of the
cost is given in the quadratic form

T−1∑
k=0

c(x(k), x(k + 1))

=

T−1∑
k=0

(x(k + 1)− Φx(k))TQ(x(k + 1)− Φx(k)).

We then minimize this cost subject to the distribution con-
straint of the output, which reads as

min E{
T−1∑
k=0

c(x(k), x(k + 1))} (8a)

y(k) = Cx(k) ∼ Σk, k = 0, 1, . . . , T. (8b)

We notice that in the state space, the problem can be viewed
as T separate optimal transport problems. However, these
problems are coupled through the constraints on the output.
Since the cost function is quadratic, it is not difficult to show
that the solution remains Gaussian. Thus, the cost becomes

T−1∑
k=0

Tr(QΣ̂k+1 + ΦTQΦΣ̂k − 2QΦSk,k+1),

where Sk,k+1 = E{x(k)x(k + 1)T }.

Theorem 1: The density tracking Problem (5) for Gaussian
marginals with covariances {Σ0,Σ1, . . . ,ΣT } has the SDP
formulation

min
Σ̂,S

T−1∑
k=0

Tr(QΣ̂k+1 + ΦTQΦΣ̂k − 2QΦSk,k+1) (9a)[
Σ̂k Sk,k+1

STk,k+1 Σ̂k+1

]
≥ 0, k = 0, . . . , T − 1 (9b)

CΣ̂kC
T = Σk, k = 0, 1, . . . , T. (9c)

We remark that it suffice to have constraint (9b) to guarantee
a well-defined covariance matrix for the random vector
(x0, x1, . . . , xT )T . This can be proven constructively using
graphical models, see [4].

After obtaining the marginal covariances {Σ̂k} for the state
variables, we can recover Σ̂(t), k ≤ t ≤ k+1 from Σ̂k, Σ̂k+1

in closed-form for each k = 0, . . . , T − 1, using optimal
mass transport theory over linear dynamics [8]. It follows
that the trajectory of the covariances of the output is given
by Σ(t) = CΣ̂(t)CT . Finally, let µ(t) = x(t) be the solution
to (7), we obtain our optimal density flow being a flow of
Gaussian distributions with mean µ(t) and covariance Σ(t).

V. EXAMPLES

Two examples are provided to illustrate our framework. In
the first example, we explain the tracking of finite number
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Fig. 1: Example with N = 5 systems to be tracked. Noise
level: σ = 0.5. Available measurement points (x). True
system states (solid). Estimated system stares (dashed) Upper
figure: State x1. Lower figure: State x2.

of particles and in the second one, we consider a Gaussian
distributions tracking problem.

A. Tracking of particles

We illustrate the tracking of a series of systems with a given
system dynamic. Consider the tracking of N = 5 systems
with oscillatory dynamics

dx(t) = Ax(t)dt+ σdw(t)

y(t) = Cx(t)

where the state dynamics is given by

A =

(
0 1
−1 0

)
, C =

(
1 0

)
.

and where dw is normalized white Gaussian noise. We seek
to recover the full state information of the systems based
on only the unordered outputs, observed at the time point
t = 0, 1, . . . , 5. For this example we use σ = 0.5. Figure 1
shows the reconstruction based on the optimization problem
(6). Even though the noise level is fairly large, we are able
to achieve good reconstructions of the states.

B. Tracking of Gaussian distributions

We consider a dynamical system consisting of a simple, pos-
sibly high dimensional, first order integrator. The dynamics
are governed by

A =

[
0 I
0 0

]
, B =

[
0
I

]
, C =

[
I 0

]
,

where I is an identity matrix of proper size n. When the
dimension of the output is n = 1, we randomly generate sev-
eral covariances and interpolate them using (9). The results
are depicted in Figure 2 for T = 5, 10. It can be observed that
the interpolated curves are smooth. Similar results hold for
high dimensional setting. Figure 3 depicts several Gaussian
distributions with different means and covariances we want
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(a) T = 5 (b) T = 10

Fig. 2: Interpolation of covariances

Fig. 3: Marginal distributions

to track. The tracking result is shown in Figure 4, which is
a natural and smooth interpolation of the observations.

VI. CONCLUSIONS

A framework of tracking the states of indistinguishable
particles with linear dynamics using output measures is pre-
sented. The measurements are the distributions of the output
at several time points. Our framework relies on a recent
development of optimal mass transport theory with prior
dynamics [8]. In the special case with Gaussian marginals,
our problem has a SDP formulation and can be solved
efficiently. Developing fast algorithms for the general cases
will be a future research topic.
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