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Abstract— We define the probability structure of a
continuous-time time-homogeneous Markov jump process, on
a finite graph, that represents the continuous-time counterpart
of the so-called Ruelle-Bowen discrete-time random walk. It
constitutes the unique jump process having maximal entropy
rate. Moreover, it has the property that, given the number of
jumps between any two specified end-points on the graph, the
probability of traversing any one of the alternative paths that
are consistent with the specified number of jumps and end-
points, is the same for all, and thereby depends only on the
number of jumps and the end-points and not the particular
path being traversed.

I. INTRODUCTION

The motivation for this note stems from our recent work
[1], [2], where the topic was the scheduling for transporting
resources over a graph. Indeed, a theoretical framework
was developed based on the Schrödinger bridge problem,
namely, to identify a probability law on alternative paths
through which (probability) mass is transported between end-
point marginals. The sought probability law was taken as
the closest to that of the discrete-time Ruelle-Bowen (RB)
random walk [3], [5], [6], so as to disperse the flow of mass
maximally over available paths and, thereby, ensure a level
of robustness.

In the present note, we discuss and develop the
continuous-time counterpart of the discrete-time RB-walk, as
a preparation towards subsequent development of transport
protocols emulating our previous aforementioned work [1],
[2]. The construction builds on a standard model for jump
processes as well as the discrete-time RB-probability law.

II. MARKOV JUMP PROCESSES

We consider a time-homegenious Markov jump process
{Xt | t ≥ 0} with finite state-space V = {1, 2, . . . , n}. This
is identified with the vertices (nodes) of a strongly connected
directed graph G = (V, E) having no self loops. We suppose
that the transition probabilities pij(t) are continuous at t = 0
and that limt→0 pi,j(t) = δij , where δij = 1 when i =
j and 0 otherwise. Then, as is well known, the transition
probabilities are of the form

[pij(t)]
n
i,j=1 = exp(Qt),
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where the infinitesimal generator

Q = [qij ]
n
i,j=1

of the process satisfies

−qii =: qi > 0,

qij ≥ 0 for i 6= j,

qi =
∑
j 6=i

qij .

That is, Q1 = 0, where 1,0 denote column vectors with ones
and zeros, respectively. We note that the chain is ergodic,
pij(t) > 0 for all i, j and t > 0, which follows from the fact
that the graph is strongly connected.

It is quite standard to realize the jump process [4,
Chapter 2] via the bivariate process

{(Zk, Tk) | k = 0, 1, . . .}

on the product space S = V×(0,∞), where Zk is a discrete-
time Markov chain with transition probabilities

πij = P{Zk+1 = j | Zk = i} =
qij
qi
,

taking place at a random time tk+1 =
∑k
i=0 Ti, t0 = 0,

where Tk are random times exponentially distributed with
density q

Zk
exp(−q

Zk
t) representing time-intervals between

successive transitions between elements of V . Thence, Xt is
the right-continuous process

Xt = Zk for tk ≤ t < tk+1.

Note that, in general, the random time Tk is a function of
Zk. The bivariate realization of Xt models a random walker
on the network, taking steps and transitioning from one node
to the next, according to this probabilistic model.

III. DISCRETE-TIME MARKOV CHAINS AND THE RUELLE
BOWEN RANDOM WALK

We briefly outline the construction of the discrete-time
RB random walk [3] on G, as it will be needed in the
continuous-time construction that follows.

Once again we begin with a strongly connected directed
graph1 G = (V, E), having nodes V = {1, 2, . . . , n}, whose
adjacency matrix is denoted by A = [aij ]

n
i,j=1. We consider

a stationary, i.e., time-homogeneous, discrete-time Markov
chain {Zk | k = 0, 1, . . .} taking values on V , and we let
P = [pij ]

n
i,j=1 denote the matrix of transition probabilities

1In discrete-time, self loops are allowed.
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and π = [πi]
n
i=1 the corresponding stationary probability

distribution.2 The entropy rate of the process is

H(P ) = −
∑
i,j

πipij log pij . (1)

The discrete-time RB random walk is the Markov chain that
is consistent with the topology of the graph and has maximal
entropy rate. It is well known that this is unique [5], [3] and
the construction proceeds as follows. Its transition probability
matrix P

RB

= [pij ]
n
i,j=1 has entries

p
RB

ij =
1

λA

ϕj
ϕi
,

where ϕ is the right Frobenius-Perron eigenvector of A
and λA the corresponding Frobenius-Perron eigenvalue, i.e.,
Aϕ = λAϕ and λA > 0 and maximal. The stationary
distribution πi = ϕ̂iϕi where ϕ̂ is the left Frobenius-Perron
eigenvector of A, normalized so that

∑
i πi = 1. It is easy to

verify that the entropy rate of the corresponding discrete-time
Markov chain is in fact log λA, and that the probability of
transitioning between states i and j in N steps following any
of the several possible alternative N -step paths is ϕ̂iϕj/λNA .
This is a rather remarkable property, that the probability is
independent of which of the alternative paths was taken! The
chances that the random walker takes any of those is the
same, and the entropy rate is in fact the topological entropy
of the graph. Thus, the purpose of this note is to see that there
is a completely analogous continuous-time random walk with
exactly the same properties.

IV. CONTINUOUS-TIME RUELLE BOWEN RANDOM WALK

We will now resume with the construction of a
continuous-time analogue of the Ruelle Bowen random walk,
which is the main contribution of this work. As in the
discrete-time case, the process maximizes the entropy rate
over all such continuous-time random walks. As noted,
interestingly, it also equalizes the probability of traversing
any path, for any specified number of transitions in its flight
between any two specific nodes, in complete analogy with
the standard RB random walk [3].

Consider the time-homogenous Markov jump process
Xt as before, with generator Q and invariant measure π,
and the right-continuous discretized-in-time process

X∆
t := Xk∆, for k∆ ≤ t < (k + 1)∆.

The entropy rate of X∆
t is the same as that of the discrete-

time Markov chain with transition probability matrix Π =
exp(Q∆). For ∆ small, the entropy rate of Xk∆, and hence,
of X∆

t as they carry the same amount of information, is

H(Xk∆) ' −∆(1− log ∆)
∑
i

πiqii −∆
∑
j 6=i

πiqij log qij .

Clearly, the differential entropy rate H(Xk∆)/∆ grows
unbounded as the time-scale resolution ∆ goes to zero.

2Vectors, such as π, will be thought as column vectors throughout.

A meaningful way to define a suitable rate of information
for a jump process is separate the information content of
the transition between nodes with that of the actual timing.
Thus, we may specify at the outset the value of the average
“retention rate” −

∑
i πiqii at nodes. Equivalently, we may

define intstead as differential entropy rate for the jump
process Xt

hη(Q) := −η
∑
i

πiqii −
∑
i 6=j

πiqij log qij , (2)

for any fixed choice of a value η > 0. The parameter η effec-
tively serves as a Lagrange multiplier in the optimization that
follows, that dictates a corresponding value for −

∑
i πiqii.

Whatever the interpretation, our problem is now to seek
the maximum of hη(Q) over choices of the infinitesimal
generator matrix Q and in accordance with the geometry
of the given graph G.

Since the graph is strongly connected, a sufficiently
high power of the adjacency matrix A has all of its entries
strictly positive. By Frobenius-Perron theory, A has a unique
eigenvalue λA having maximal modulus which is also real
and positive. The corresponding right and left eigenvectors ϕ,
ϕ̂ can be taken to have positive entries, and also normalized
so that

〈ϕ, ϕ̂〉 =

n∑
i=1

ϕiϕ̂i = 1.

As before,
π

RB

:= ϕϕ̂, (3)

but now we also define

Q
RB

= diag(ϕ)−1A diag(ϕ)− λAI. (4)

Clearly, Q
RB

is a generator having π
RB

as invariant mea-
sure, since it has non-negative off-diagonal entries, positive
diagonal entries,

Q
RB

1 = diag(ϕ)−1Aϕ− λA1
= diag(ϕ)−1λAϕ− λA1 = 0,

and

(Q
RB

)′π
RB

= diag(ϕ)A′ϕ̂− λAπ
RB

= λA diag(ϕ)ϕ̂− λAπ
RB

= 0,

where “ ′” denotes transposition and π
RB

is thought of as a
column vector.

Theorem 1: The differential entropy rate h1(Q) has a
unique maximum at Q

RB

given above, over all infinitesimal
generators that are consistent with the topology of a graph
with adjacency matrix A. Moreover,

h1(Q
RB

) = λA.

Proof: Define rij = πiQij (i.e., for j 6= i these represent
“flow rates” from node i to j), then maximizing h(Q)
reduces to maximizing

f(r, π) = −
∑
i

rii −
∑
i 6=j

rijaij log
rij
πiaij
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over r, π subject to the constraints∑
j

rij = 0, and
∑
i

rij = 0.

To see this note that R = [rij ]
n
ij=1 equals diag(π) × Q,

and the above constraints are precisely the requirements that
Q1 = 0 and Q′π = 0.

Introducing Lagrangian multipliers α, β for these two
constraints gives

L(r, π, α, β) = −
∑
i

rii −
∑
i 6=j

rijaij log
rij
πiaij

+
∑
i

αi
∑
j

rij +
∑
j

βj
∑
i

rij .

By standard duality theory we have that the maximum of
h1(Q) is bounded above by

min
α,β

max
r,π
L(r, π, α, β).

Now choose a specific pair of α∗ and β∗ as

β∗j = logϕj , and α∗i = 1− β∗i ,

then

min
α,β

max
r,π
L(r, π, α, β) ≤ max

r,π
L(r, π, α∗, β∗).

For any fixed π, we have that

L(r, π, α∗, β∗) =
∑
i 6=j

(−rijaij log
rij
πiaij

+ (α∗i + β∗j )rij)

is a concave function of r. Considering first order optimality
conditions we conclude that the maximizer is

r∗ij =

{
πie

α∗
i +β∗

j−1 if aij = 1,

0 if aij = 0.

corresponding to the maximal value∑
i 6=j

(−r∗ijaij log
r∗ij
πiaij

+ (α∗i + β∗j )r∗ij)

=
∑
i 6=j

−πieα
∗
i +β∗

j−1aij log
πie

α∗
i +β∗

j−1

πiaije
α∗

i +β∗
j

=
∑
i 6=j

πie
α∗

i +β∗
j−1aij

=
∑
i6=j

πi
ϕj
ϕi
aij = λA.

Therefore h1(Q) is bounded above by λA. On the other
hand, with Q = Q

RB

,

h1(Q
RB

) = −
∑
i

πiq
RB

ii −
∑
i6=j

πiq
RB

ij log q
RB

ij

= λA −
∑
i 6=j

πi
ϕj
ϕi
aij(logϕj − logϕi)

= λA − λA
∑
j

ϕ̂jϕj logϕj + λA
∑
i

πi logϕi

= λA,

and achieves the upper bound. This completes the proof. 2

The argument carries through for other values of η, in
which case the solution is a scaled multiple of (4), corre-
sponding to a different value for the average rate −

∑
i πiqii

for staying at the current node.

Corollary 1: The differential entropy rate hη(Q) has
a unique maximum at eη−1Q

RB

with Q
RB

given in (4),
over all infinitesimal generators that are consistent with the
topology of a graph with adjacency matrix A. Moreover,

hη(eη−1Q
RB

) = eη−1λA.

The continuous-time time-homogeneous Markov jump
process with infinitesimal generator Q

RB

in (4) we refer to
as the continuous-time Ruelle-Bowen random walk. We now
complete the final claim in this note that the continuous-
time RB random walk shares the property, of its discrete-
time counterpart, of equalizing probability across alternative
paths. The proof is almost verbatim with only subtlety
the need to condition on the number of steps taken in a
flight between two nodes, since we are now dealing with a
continuous-time jump process. But this can be easily done
using the realization of the process as outlined in Section II.

Theorem 2: Let X
RB

t be a continuous-time RB walk
on a graph G. The probability of transitioning from node i
to node j, over any specified window of time, say [0, tf ],
via a sequence of precisely N nodes, is independent of the
particular sequence of nodes.

Proof: Consider the corresponding bivariate process
(Z

RB

k , T
RB

k ). The key is to observe that the random time
Tk are identically distributed with the same exponent, −λA,
independent of Zk. In fact, Zk and Tk are independent. Thus,

P(T0 = t1,

1∑
0

Tk = t2, . . . ,

N−1∑
0

Tk = tN ,

tN ≤ tf < tN+1,

X0 = i, . . . ,Xtf = j)

is equal to the product

P(tN ≤ tf < tN+1)× P(Z0 = i, . . . , ZN = j).

The former is independent of the particular path and the
latter, using the facts detailed in Section III, is

ϕ̂iϕj
λNA

.

Thus, the discrete-time analysis applies verbatim and the
probability is independent of the path and only a funtion
of beginning and ending nodes, and of the number of steps
taken. 2

The relation between the infinitesimal generator Q
RB

of
the continuous-time RB walk and the transition probability
matrix P of the discrete-time RB walk, on the same graph,
is

Q
RB

= λA(P
RB

− I).
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