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Abstract— We propose a method of approximating multivari-
ate Gaussian probabilities using dynamic programming. We
show that solving the optimization problem associated with a
class of discrete-time finite horizon Markov decision processes
with non-Lipschitz cost functions is equivalent to integrating a
Gaussian functions over polytopes. An approximation scheme
for this class of MDP’s is proposed and explicit error bounds
under the supremum norm for the optimal cost to go functions
are derived.

I. INTRODUCTION

Integration of a Gaussian function over a polytope is a
central computational bottleneck in several control and op-
timization problems, including machine learning [1], chance
constrained optimization [2], [3], [4], and statistical model-
ing [5]. While this problem is known to be a computationally
challenging problem [6], in this paper, we show that it
can be reformulated as an optimization problem associated
with a Markov Decision Process (MDP). Next, we show
that MDPs of this form can be uniformly approximated by
MDPs with countable state space. Finally, we show that this
sequence of approximated MDPs can be efficiently solved
using a variation of Belman’s equation. The solution is then
demonstrated in several numerical examples.

Many methods for integrating a Gaussian function over a
polytope have emerged in the literature. Genz [7] represents
the state of the art, where the algorithm makes a series of
transformations to reduce integration over a hyper-rectangle
to integration over a unit cube. Here lattice point numerical
integration can be used and explicit error bounds can be
achieved. However Genz only looks at the specific case
where the integration is over a rectangle. Several other
algorithms of Gaussian integration over rectangles can be
found in [8]. Another approach is to use bounding methods
where the polytope is inner approximated by closed and
bounded sectors such as in [9], but no error bound can
be found here. A common approach is to use expectation
propagation but as seen in [6] this method performs badly
on anything that is more complicated than a rectangular inte-
gration region. An alternative method is to use probabilistic
methods where confidence intervals can be provided instead
of error bounds [10]. In this paper we propose an integration
algorithm over a possibly non-compact general polytope with
explicit error bounds.
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In Section III we show the equivalence of solving the
optimization problem associated with a class of MDP’s
and evaluating Gaussian probabilities. MDP’s describe the
mathematical framework for modeling discrete time evolving
processes involving a decision making situation coupled
with partly random outcomes. Each MDP has an associated
optimization problem of picking the sequence of decisions
that minimizes the total expected cost of the process. MDP’s
appear in a vast number of fields such as economics, com-
puter science, engineering etc; an in depth list of application
of MDP’s can be found in the survey [11].

MDP’s are commonly solved using dynamic programing
(DP) [12]. Unfortunately in practice it is rare to be able find
an analytical solution to Bellman’s equation and thus the
problem must be solved numerically, see [13] as an example.
In this paper we are interested in MDP’s where the state and
control spaces can be uncountable (for example [0,1]). In
these cases for an algorithm to solve the problem it becomes
necessary to approximate the MDP by discretization; that is
we replace the state and control spaces with a countable set.
One hopes there is sufficient continuity in the original MDP
such that as the discretization sharpness increases a solution
can be found arbitrarily close to the true solution.

In the literature there has been much work done on deriv-
ing error bounds for discretization approximations of MDP’s
with compact control and state spaces and Lipschitz cost
functions [14], [15]. However in many practical problems
the state dynamics are of the form x(t +1) = Ax(t)+Bε(t)
where ε ∼N (0,1), inducing the non-compact state space
of x ∈ Rn. A major contribution was made in [16] where
a discretization scheme was proposed and error bounds
were proved for a general class of MDP’s with locally
compact state and control spaces. In this paper we modify
and extend the work of [16] to the case when the terminal
cost function of the MDP is non-Lipschitz. The discretization
scheme we propose is to first approximate the cost function
by a Lipschitz continuous function and then to use the
discretization scheme from [16].

The rest of this paper is organized as follows. In section
III we show the relation of MDP’s and integrating Gaussian
random variables over polytopes. In section IV we introduce
the class of MDP’s we are interested in approximating. In
Section V we show how to approximate this class of MDP’s.
In Section VI we present our numerical results and in VII
we finish with our conclusion.
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II. NOTATION

For a matrix A ∈Rm,n we denote the j’th column of A by
A·, j = [a1, j, . . . ,am, j]

T .
For A ∈ Rm×n we define ||A||max= max{|ai, j|}.
We define the power set of a set S to be the set of all

subsets denoted by S∪ := {U : U ⊆ S}.
For T ∈ N we denote the set [T ] = {0, ...,T}.
We define the positive scalars as R++ := {x ∈R : x > 0}.
For functions f1 : X→R and f2 : X→R we denote f1(x)∨

f2(x) := max{ f1(x), f2(x)}.
We denote the Hausdorff metric space in Rn as Dn with

metric dH , which is the set of non-empty subsets of Rn where
if X ,Y ∈ Dn, then dH(X ,Y ) = max{sup{x∈X} inf{y∈Y}||x−
y||2,sup{y∈Y} inf{x∈X}||x− y||2}.

The function f : Rn→ Rm is said to be Lipschitz contin-
uous if there exists L > 0 such that :

|| f (x1)− f (x2)||2≤ L||x1− x2||2 for all x1, x2 ∈ X (1)

For a Lipschitz continuous function f : Rn→Rm, we denote
by L f the smallest constant L such that Equation (1) holds.

For bounded function on X , we denote the infinity norm
as ‖h‖∞ := supx∈X |h(x)|.

For a given weighting function w : Rn → R++, we also
define the weighted infinity norm ||v||w:= supx∈Rn{ |v(x)|w(x) } and
v ∈ Lw(X) to be the space of Lipschitz continuous functions
with finite ||v||w.

We denote B(X) to be the Borel sigma algebra of some
set X.

Consider a probability space (Ω,F ,P). We say Z : Ω→R
is a real valued random variable if it is a F -measurable
function. For any B ∈ F we denote the law of Z by
PZ(B) :=P({w : Z(w)∈B}). For a Borel measurable function
g : R→R we define the expectation as EZ [g(Z)] :=

∫
R gdPZ .

Furthermore we say Z ∼N (µ,Σ), µ ∈ Rn and Σ ∈ Rn×n if
PZ(B) =

∫
B φ(x)dx where φ : Rn → [0,1] is given by φ(x) =

1√
(2π)n det(Σ)

exp
(

1
2
(x−µ)T Σ−1(x−µ)

)
.

For any subset X ⊂ Z, we define the indicator function
1X : Z→{0,1} as

1X (x) =

{
1, if x ∈ X
0, otherwise.

In Section V, we will make use of a parameterized
smoothed indicator function gλ ,b(x) : Rm → [0,1] which is
defined for any b ∈ Rm and λ > 0 as gλ ,b(x) := Πm

i=1gi(x)
where

gi(x) :=


1, if xi < bi−

1
λ

−λ (xi−bi), if bi−
1
λ

< xi < bi

0, if bi < xi.

(2)

Associated with gλ ,b, we define the region of smoothing
R ⊂ Rn as

Rλ ,b = {x ∈ Rn : gλ ,b(x) 6= 1{x∈Rn : x<b}(x)}

Suppose (X ,D) is a compact metric space. We say the set
Γβ = {x1, ...,xn} is an β -partition of X if:

• There exists disjoint subsets, X1, ...,Xn, of X such that
∪n

i=1Xi = X and xi ∈ Xi for i ∈ {1, ...,n}.
• D(x,xi)≤ β for all x ∈ Xi.

Furthermore given a partition Γβ = {x1, ...,xn} of some space
X , we define pX ,Γβ

: X→Γβ as pX ,Γβ
(x)= xi for every x∈Xi.

III. MULTI-VARIABLE GAUSSIAN INTEGRATION OVER
POLYTOPES CAN BE WRITTEN AS A DYNAMIC

PROGRAMING PROBLEM

Our aim is to compute:

PZ(Z ∈P) =
∫

x∈P
φ(x)dx (3)

Where Z ∼N (µ,Σ), µ ∈Rn, Σ∈Rn×n P = {x ∈Rn : Ax≤
b}, A ∈ Rm×n and b ∈ Rm.

Remark 1: For any Σ > 0, there exists an invertible C ∈
Rn×n such that Σ =CCT and under the transformation N =
C−1(Z−µ) we see N∼N (0, I). Thus PZ(Z ∈P)=PN(N ∈
P ′) where P ′ = {x ∈Rn : ACx≤ b−Aµ}= {x ∈Rn : A′x≤
b′}. Therefore without loss of generality we can assume µ =
0 and Σ = I for the rest of this paper.

Lemma 1: For every polytope P ⊂ Rn there exists A ∈
Rm×n and b ∈ Rm such that P = {x ∈ Rn : Ax ≤ b} with
ai,n 6= 0 ∀i ∈ {1, . . . ,m}.

Proof: Since P is a polytope there exists some A′ ∈
Rm×n and b′ ∈ Rm such that P = {x ∈ Rn : A′x ≤ b′}.
Now A′x ≤ b′ ⇐⇒ TA′x ≤ T b′ for any elementwise-
nonnegative invertible T ∈ Rm×m. WLOG we assume there
is at least one nonnegative element in the last column of
A′ (otherwise we can restrict the space to Rn−1) and by
relabeling coordinates we assume a′m,n 6= 0. Consider the

matrix T =


1
2 0 . . . 0 ||A′||max/|a′m,n|
0 1

2 . . . 0 ||A′||max/|a′m,n|
... . . .

. . .
...

...
0 0 . . . 1

2 ||A′||max/|a′m,n|
0 0 . . . 0 ||A′||max/|a′m,n|

 . Clearly

T has all nonnegative elements and is invertible as all of its
columns are independent. It follows P = {x ∈ Rn : TA′x <
T b′} where TA′·,n = [

a1,n
2 + sign(am,n)||A′||max, ...,

am−1,n
2 +

sign(am,n)||A′||max,sign(am,n)||A′||max]
T which clearly has no

nonzero elements since ||A′||max> ai,n for 1≤ i≤ m.
We consider the Dynamic Programing (DP) problem:

J = ExT {1{x≤b}(xT )} Subject to: (4)

xi,t+1 = xi,t +ai,t+1εt t ∈ [T −1], i ∈ {1, ..,m}
xi,0 = 0 i ∈ {1, ..,m}
εt ∼N (0,1) t ∈ [T −1]

Proposition 1: The objective function, J, defined in (4) is
equal to

∫
x∈P φ(x)dx, where P = {x ∈ RT : Ax ≤ b} and

A = {ai,t} ∈ Rm×T .
Proof: Let us denote xt = (x1,t , ...,xm,t)

T . From the
second line in (4) we see xt+1 = xt +A·,t+1εt . Thus:

xT = xT−1 +A·,T εT−1 = xT−2 +A·,T−1εT−2 +A·,T εT−1

· · · · · ·= A·,1ε0 + ....+A·,T εT−1 = Az

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

619



Where z = (ε0, ....,εT−1) and thus z ∼ N (0, IT×T ). Now
considering the objective function in (2):

J = ExT1{x≤b}(xT ) = Ez1{Ax≤b}(z) = Pz(Az≤ b) =
∫

x∈P
φ(x)dx

Proposition 1 shows that computing integrals of Gaussian
functions over polytopes is equivalent to solving a DP
problem. Later we will discuss how to find an approximate
solution to DP problems of the form (4).

IV. MARKOV DECISION PROCESSES

In this section state the properties of the class of MDP’s
we are interested in.

A. Markov Decision Processes

In this chapter we follow closely the notation and defini-
tions of [17].

Definition 1: We say M is a finite time horizon Markov
Decision Process (MDP) if it is a six tuple M =
(({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T ) such that the follow-
ing hold,

• X is a locally compact Borel space, with metric dX ,
representing the state space. {Xt}t∈N is a family of
locally compact Borel subsets of X representing the state
space at time t.

• A is a locally compact Borel space with metric dA
representing the set of admissible inputs.

• ψ is a map X→A ∪ such that for each x∈ X , ψ(x) is a
measurable subset of A representing the set of feasible
controls that can be used at state x ∈ X . We suppose
Kt = {(x,a) : x ∈ Xt ,a ∈ ψ(x)} and K = {(x,a) : x ∈
X ,a ∈ ψ(x)} are measurable subsets of X×A ∪. (Note
if A = /0 then we define K= X and Kt = Xt ).

• {Qt}t∈N is a family of stochastic kernels. That is, for
B ∈ B(Xt+1) the map B→ Q(B|x,a) is a probability
measure on (Xt+1,B(Xt+1)) for all (x,a) ∈ Kt , and
(x,a)→ Q(B|x,a) is a measurable function on K for
every B ∈B(Xt+1). When A = /0, we simplify our no-
tation by Qt(B|x) = Qt(B|x,a). We denote the Lebesgue
integral

∫
B f (y)Qt(dy|x,a) :=

∫
B f (y)dµ where µ is

the induced measure created by the stochastic kernel,
µ(B) = Qt(B|x,a).

• c : K → R is a measurable function representing the
cost per stage and h : X → R is a measurable function
representing the terminal cost.

• T ∈N with T < ∞, representing the terminal time step.

Furthermore we denote M to be the set of all finite time
horizon MDP’s.

Definition 2: Consider a MDP M =
(({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T ) ∈ M. We define
a policy to be a sequence of maps π = {πt}t∈[T−1] such that
πt : Xt →A and for all t ∈ [T −1] πt(x) ∈ ψ(x) ∀x ∈ Xt . We
denote the space of policies for the MDP M by ΠM .

Definition 3: For every MDP M =
(({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T ) ∈ M we can define

its associated optimization problem, LM (x0).

min
π∈ΠM

GM (x0,π) := Ex[
T−1

∑
t=0

c(xt ,πt(xt))+h(xT )] Given,

Pxt+1(xt+1 ∈ B|xt = x,a = πt(xt)) = Qt(B|x,a), B ∈B(Xt+1),

x(0) = x0,

where GM (x0,π) denotes the expected cost for the policy
π ∈ΠM and initial condition x0 ∈ X0 associated with M .

Definition 4: Consider a MDP, M ∈ M. The optimal
total expected cost, G∗ : X0 → R is defined by G∗M (x) =
infπ∈ΠM

GM (x,π) for x ∈ X0. We define π∗ ∈ΠM to be the
optimal policy if GM (x,π∗) = G∗M (x) for any x ∈ X0.

Commonly the associated optimization problem for an
MDP is solved using a method called dynamic programing
where Bellman’s equation, which we will define in the next
definition, is recursively solved backwards in time.

Definition 5: For a MDP M ∈M we define the optimal
cost to go function (OCTGF) JM ,t : X → R recursively as:

JM ,T (x) = h(x) x ∈ XT (5)

JM ,t(x) = inf
a∈ψ(x)

{c(x,a)+
∫

Xt+1

JM ,t+1(y)Qt(dy|x,a)}

x ∈ Xt , t ∈ [T −1]
Proposition 2: For any MDP M ∈M, if JM ,t(x) is the

associated OCTGF and G∗M (x) is the optimal expected cost,
then JM ,0(x) = G∗M (x) for all x ∈ X0. Moreover, for every t,
there exists ft : X →A such that

JM ,t(x) = c(x, ft(x))+
∫

Xt+1

JM ,t+1(y)Qt(dy|x, ft(x))}.

ft then defines the optimal policy as π∗ = { ft}t∈[T−1].
Proof: See [17].

Note (5) can tractably be solved and the infimum attained
for MDP’s with countable state and countol spaces.

Corollary 1: There exists M ∈M such that the associated
optimization problem, LM (0), is equivalent to (4).

Proof: We propose an MDP M =
(({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T ) ∈ M with an
associated optimization problem equivalent to (4). We
define the elements of M as follows,

• X = Rm and Xt = X for all t ∈ N. (6)

• A = /0. (7)

• ψ(x) = /0 for all x ∈ X . (8)

• We can define the family of stochastic kernels for B ∈
B(Rm) and x ∈ Rm,

Qt(B|x) =
∫

∞

−∞

1B(x+A·,t+1y)
1√
2π

exp
(
−y2

2

)
dy (9)

Where A = [A·,1, · · · ,A·,T ] ∈ Rm×T as in (4).
• The cost per stage and the terminal cost is,

c(x) = 0, h(x) = 1{x<b}(x). (10)

Where b ∈ Rm is from (4).
• The finite time horizon is given to be,

T < ∞ is as defined in Eq. (4). (11)
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B. Readily-aproximable MDP’s

Next we introduce similar properties of MDP’s that [16]
approximates, however we allow for discontinuity in the
terminal cost function and require Property 8.

Definition 6: We say a six tuple M =
(({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T ) is an approximable
MDP or M ∈A⊂M if M satisfies the following Properties
1-8.

Property 1: X = Rm.
Property 2: ψ(x) is compact for all x ∈ X .
Property 3: The map ψ : X→A ∪ is Lipschitz continuous

with respect to the Hausdorff norm. So dH(ψ(x),ψ(y)) ≤
Lψ dX (x,y) for some constant Lψ > 0.

Property 4: The cost function, c : K → R, is Lipschitz
continuous on K. The terminal cost function, h : X → R,
can be written in the form h(x) = h1(x) + h2(x) where h1
is a Lipschitz continuous and h2 is of the form h2(x) ={

f1(x) x≤ b
f2(x) x > b

. Where b ∈ X and f1 and f2 are bounded

and Lipschitz continuous (we note h1 is not necessarily
bounded). Furthermore there exists a positive lower semi-
continuous function w : X→R and a positive constant c̄ > 0
such that

|h1(x)|+||h2||∞+ sup
a∈ψ(x)

|c(x,a)|< c̄w(x). (12)

Before we proceed to Property 5 we will introduce some
additional notation. Given a function v : X→R and an MDP
M = (({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T )∈M, we define
ζ M

v,t : Kt → R by,

ζ
M
v,t (x,a) =

∫
Xt+1

v(y)Qt(dy|x,a). (13)

We note for the MDP with tuple elements defined (6) to (11)
we have ζ M

v,t (x) =
∫
R v(x+A·,t+1w)φ(w)dw for x ∈ Rm.

Property 5: There exists w satisfying (12) such that
ζ M

w,t (x,a) is upper continuous on Kt . In addition there exists
d̄ > 0 such that ζ M

w,t (x,a)≤ d̄w(x) for all (x,a) ∈Kt .
Property 6: For every bounded and continuous function v

on X , the MDP M has the property that the induced function
ζ M

v,t is continuous on K for each t ∈ N .
Property 7: There exists a constant Lq > 0 such that ∀t ∈

N, (x,a) and (y,b) in Kt and for any Lipschitz continuous
function v : X → R with Lipschitz constant Lv > 0:

|ζ M
v,t (x,a)−ζ

M
v,t (y,b)|< LqLv|dX (x,y)+dA(a,b)|

Property 8: Consider w : X→R and b∈Rm as in Property
4, then for all θ > 0 there exists an Λ ∈ R such that,
|supx∈X ,u∈ψ(x)

∫
y∈Rλ ,b

w(y)QT−1(dy|x,u)|< θ for all λ > Λ.
Next we will prove a Lemma showing the MDP associated
with tuple elements defined (6) to (11) has Property 8. Then
in the next proposition we will show the MDP is in A.

Lemma 2: Consider the stochastic kernel, of the MDP
with tuple elements (6) to (11),

Qt(B|x) =
∫

∞

−∞

1B(x+A·,t+1y)
1√
2π

exp
(
−y2

2

)
dy

Where B ∈B(Rm), b ∈Rm, x ∈Rm and A ∈Rm×T , then for
all λ > 0 we have,∣∣∣∣∣ sup

x∈Rm

∫
y∈Rλ ,b

QT−1(dy|x)

∣∣∣∣∣< m
min1≤i≤m{|ai,T |}λ

. (14)

Proof: By Lemma 1 we have ai,T 6= 0 ∀i ∈ {1, ..,m}.
For some x ∈ Rm and λ > 0 we have,∫

y∈Rλ ,b

QT−1(dy|x) = PεT−1(x+A·,T εT−1 ∈Rλ ,b) (15)

= PεT−1

(
∪1≤i≤m

{
xi +ai,T εT−1 ∈ (bi−

1
λ
,bi)

})
≤

m

∑
i=1

PεT−1

(
εT−1 ∈

1
ai,T

(bi−
1
λ
− xi,bi− xi)

)
.

Where εT−1 ∼N (0,1). For i∈ {1, ...,m} let us consider the
function fi : R→ [0,1] defined by,

fi(x) = PεT−1

(
εT−1 ∈

1
ai,T

(bi−
1
λ
− x,bi− x)

)
=
∫ bi−x

ai,T

bi−
1
λ
−x

ai,T

1√
2π

exp
(
−w2

2

)
dw.

It can be shown x∗ = bi− 1
2λ

is the point at which fi attains
its maximum. Now,

fi(x∗) =
∫ 1

2ai,T λ

− 1
2ai,T λ

1√
2π

exp
(
−w2

2

)
dw≤

∫ 1
2ai,T λ

− 1
2ai,T λ

dw

=
1

|ai,T |λ
≤ 1

min1≤i≤m|ai,T |λ
.

Now by substituting this into (15) we derive (14).
Proposition 3: Let us denote the MDP with tuple ele-

ments defined (6) to (11) by M , then M ∈ A.
Proof: To show M ∈ A we will show M satisfies

Properties 1-8.
Property 1: True since X = Rm.
Properties 2 and 3: /0 is compact and ψ(x) = /0 ∀x ∈ X ,
moreover it follows dH(ψ(x),ψ(y)) = 0 for all x,y ∈ X .

Property 4: c(x,a)≡ 0, h1(x)≡ 0 and h2(x) =

{
1 x≤ b
0 x > b

.

We can trivially select w(x)≡ 1 in this case.
Property 5: The probability measure of the entire state space
is 1. ζ M

w,t (x,a) =
∫

X Qt(dy|x,a) = 1 = w(x).
Property 6: Consider continuous and bounded function
v : Rm → R and let C = ||v||∞. Let us denote φ(u) =

1√
2π

exp
(
−u2

2

)
. We can use Dominated Convergence Theo-

rem (DCT) to show ζ M
v,t (x)=

∫
y∈Rm v(y)Qt(dy|x)=

∫
∞

−∞
v(x+

At+1u)φ(u)du is continuous with respect to x. Suppose
limn→∞ xn = x and let gn(u) = v(xn +At+1u)φ(u). Since v is
continuous clearly limn→∞ gn = g = v(x+At+1u)φ(u). Now
gn(u)≤ supx|v(x+At+1u)|φ(u)≤Cφ(u). Thus gn(u) is dom-
inated by some integrable function Cφ(u) (

∫
|Cφ(u)|du =

C < ∞) and tends point-wise to g(u). It follows by DCT
limn→∞

∫
gn(u)du=

∫
g(u)du, showing ζ M

v,t (x) is continuous.
Property 7: We will show Lq = 1. Suppose v is a Lipschitz
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continuous function.∣∣∣ζ M
v,t (x,a)−ζ

M
v,t (y,b)

∣∣∣
=

∣∣∣∣∫ ∞

−∞

[v(x+A·,t+1w)− v(y+A·,t+1w)]φ(w)dw
∣∣∣∣

≤ Lv

∫
∞

−∞

|(x+A·,t+1w)− (y+A·,t+1w)|φ(w)dw

= Lv|x− y|

Property 8: The result follows from Lemma 2.

V. APPROXIMATING MDP’S

Given M ∈ A our approximation scheme has two stages;
smoothing and discretization. During the smoothing stage the
terminal cost function of the MDP is approximated with a
Lipschitz continuous function. During the discretization stage
the state and control spaces are approximated with compact
spaces and then further approximated to countable sets.

A. Smoothing

For any MDP M ∈ A we will show how to use the
function gλ ,b(x) (2) to construct a sequence of MDP’s with
smooth terminal cost function and OCTGF’s that converge
to the OCTGF of M under the supremum norm.

Definition 7: Consider an approximable MDP
M = (({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T ) ∈ A. By
Property 4 we can write h(x) = h1(x) + h2(x) where h1

is Lipschitz continuous and h2(x) =

{
f1(x) x≤ b
f2(x) x > b

.

Let us define the smoothed function h̃λ (x;b;M ) =
f1(x)gλ ,b(x) + f2(x)(1 − gλ ,b(x)). We call the MDP
M̃λ = (({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h1 + h̃λ ),T ) the
λ -smoothed MDP of M . Furthermore we define the map
Φ1 : A×R+→ A by Φ1(M ,λ ) = M̃λ .
Next we will show that the terminal cost function of the
λ -smoothed MDP is Lipschitz continuous.

Corollary 2: The function h̃λ : X → R defined by
h̃λ (x;b,M ) = f1(x)gλ ,b(x) + f2(x)(1− gλ ,b(x)), where f1
and f2 are any bounded Lipschitz functions, is Lips-
chitz continuous with Lipschitz constant Lh̃λ

= [L f1 +L f2 +

2λmmax{|| f1||∞, || f2||∞}]. Where m=dim(X).
Remark 2: The image of the map Φ1 is a subset of A.

Furthermore for any M ∈A and λ > 0 there exists a function
w : X→R such that both M and φ1(M ,λ ) satisfy Property
4 using w.

In the next lemma we will give the Lipschitz properties
of the OCTGF of a λ -smoothed MDP.

Lemma 3: For some λ > 0 consider the OCTGF’s Jt and
J̃t of the MDP’s M ∈ A and M̃ = Φ1(M ,λ ) respectively.
Then ||Jt ||w< ∞ and J̃t ∈ Lw(X), where w : X → R is as in
Property 4 for M . Furthermore,

LJ̃t
= [Lc +LqLJ̃t+1

][1+Lψ ] (16)

LJ̃T
= Lh̃λ

+Lh.
Proof: See Lemma 2.5 in [16].

Corollary 3: Consider the OCTGF, J̃t , of a MDP M̃ =
Φ1(M ,λ ) for some M ∈ A. Then its Lipschitz constant,

LJ̃t
> 0 satisfies,

LJ̃t
= (Lq[1+Lψ ])

T−t [L f1 +L f2 +2λmmax{|| f1||∞, || f2||∞}+Lh]+

Lc[1+Lψ ]∑
T−t
i=1 (Lq[1+Lψ ])

i−1 ∀t ∈ [T ].
The next Proposition proves that the OCTGF for a λ -

smoothed MDP converges to the OCTGF of its correspond-
ing approximable MDP under the supremum norm as λ→∞.

Proposition 4: Consider an MDP M =
(({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T ) ∈ A and
its corresponding λ -smoothed MDP M̃ =
(({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h1 + h̃λ ),T ) = Φ1(M ,λ )
with OCTGF’s denoted by Jt(x) and J̃t(x) respectively.
Then for θ > 0 there exists Λ ∈ R and w : X → R
such that ||Jt ||w< ∞, J̃t ∈ Lw(X) and for all λ > Λ we
have supx∈X

∣∣J̃t(x)− Jt(x)
∣∣ < (

||JT ||w+||J̃T ||w
)

θ for any
t ∈ [T −1].

Proof: Consider w : X→R as in Property 4 of M then
by Lemma 3 ||Jt ||w< ∞, J̃t ∈ Lw(X). For t ∈ [T − 1] using
Bellman’s equation (5) we have,∣∣J̃t−1(x)− Jt−1(x)

∣∣ (17)

≤

(
inf

u∈ψ(x)
sup

a∈ψ(x)

∣∣∣∣∫XT

J̃t(y)Qt−1(dy|x,u)−
∫

XT

Jt(y)Qt−1(dy|x,a)
∣∣∣∣

∨ inf
a∈ψ(x)

sup
u∈ψ(x)

∣∣∣∣∫XT

J̃t(y)Qt−1(dy|x,u)−
∫

XT

Jt(y)Qt−1(dy|x,a)
∣∣∣∣
)

+

(
inf

u∈ψ(x)
sup

a∈ψ(x)
|c(x,u)− c(x,a)|∨ inf

a∈ψ(x)
sup

u∈ψ(x)
|c(x,u)− c(x,a)|

)
We now proceed by downward induction starting at t =

T − 1. Let θ > 0, by Property 8 of M ∃Λ > 0 such that
∀λ > Λ ∣∣∣∣supx∈X ,u∈ψ(x)

∫
y∈Rλ ,B

w(y)QT−1(dy|x,u)
∣∣∣∣< θ

For λ > Λ we see,∣∣∣∣∫XT

J̃T (y)QT−1(dy|x,u)−
∫

XT

JT (y)QT−1(dy|x,a)
∣∣∣∣ (18)

≤
∣∣∣ζM

h1+h̃λ ,T
(x,u)−ζ

M
h1+h̃λ ,T

(x,a)
∣∣∣

+

∣∣∣∣∫XT

J̃T (y)QT−1(dy|x,a)−
∫

XT

JT (y)QT−1(dy|x,a)
∣∣∣∣

≤ Lq(Lh1 +Lh̃λ
)dA(u,a)

+

∣∣∣∣∫XT

J̃T (y)QT−1(dy|x,a)−
∫

XT

JT (y)QT−1(dy|x,a)
∣∣∣∣

≤ Lq(Lh1 +Lh̃λ
)dA(u,a)+

∣∣∣∣∫y∈Rλ ,b

J̃T (y)QT−1(dy|x,a)
∣∣∣∣

+

∣∣∣∣∫y∈Rλ ,b

JT (y)QT−1(dy|x,a)
∣∣∣∣

+

∣∣∣∣∫y∈XT /Rλ ,b

J̃T (y)QT−1(dy|x,a)−
∫

y∈XT /Rλ ,b

JT (y)QT−1(dy|x,a)
∣∣∣∣

≤ Lq(Lh1 +Lh̃λ
)dA(u,a)

+(||JT ||w+||J̃T ||w)
∣∣∣∣∫y∈Rλ ,b

w(y)QT−1(dy|x,a)
∣∣∣∣

+

∣∣∣∣∫y∈XT /Rλ ,b

[(h1(y)+ h̃λ (y))−h(y)]QT−1(dy|x,a)
∣∣∣∣

≤ Lq(Lh1 +Lh̃λ
)dA(u,a)+(||JT ||w+||J̃T ||w)θ .

Where the triangle inequality is used in the first and
third inequality, Property 7 is used in the second inequality,
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Property 4 is used in the fourth inequality and in the fifth
inequality Property 8 and the fact h(y) = h1(y) + h̃λ (y)
∀y ∈ X/Rλ ,b is used.
Also by Property 4 of M ,

|c(x,u)− c(x,a)|≤ LcdA(u,a). (19)

Moreover,

inf
u∈ψ(x)

sup
a∈ψ(x)

dA(u,a)∨ inf
a∈ψ(x)

sup
u∈ψ(x)

dA(u,a) (20)

= dH(ψ(x),ψ(x)) = 0.

Thus it follows by substituting t = T into (17) and further
using (18), (19) and (20),

sup
x∈X

∣∣J̃λ ,T−1(x)− JT−1(x)
∣∣≤ (||JT ||w+||J̃T ||w)θ .

Now we proceed by downward induction. Assuming the
result to be true for s + 1, ∃Λ such that ∀λ > Λ we
have supx∈X

∣∣J̃s+1(x)− Js+1(x)
∣∣ < (||JT ||w+||J̃T ||w

)
θ . Now

for λ > Λ,

∣∣∣∣∫Xs+1

J̃s+1(y)Qs(dy|x,u)−
∫

Xs+1

Js+1(y)Qs(dy|x,a)
∣∣∣∣ (21)

≤
∣∣∣ζM

J̃s+1,s
(x,u)−ζ

M
J̃s+1,s

(x,a)
∣∣∣+∫

Xs+1

∣∣J̃s+1(y)− Js+1(y)
∣∣Qs(dy|x,a)

≤ LPLJ̃s+1
dA(u,a)+ sup

y∈X
|J̃s+1(y)− Js+1(y)|

∫
Xs+1

Qs(dy|x,a)

≤ LPLJ̃s+1
dA(u,a)+(||JT ||w+||J̃T ||w)θ .

Where the first inequality uses the triangle rule, the second
inequality uses Property 7 and the third inequality uses the
induction hypothesis.
Thus it follows by substituting t = s+1 into (17) and further
using (21), (19) and (20),

|J̃s(x)− Js(x)| ≤ (||JT ||w+||J̃T ||w)θ .

B. Discretization

In this section we show how to mathematically discretize
a λ -smoothed readily-aporximable MDP. We will show the
discretized MDP can be made arbitrarily close to the λ -
smoothed MDP.

Definition 8: For any MDP M̃ =
(({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T ) ∈ Φ1(A,R+) and
ε > 0 we define HM̃ ,α as a set of compact subsets of X
where we say {Ht}t∈[T ] ∈HM̃ ,α if
• Ht is a compact subset of Xt for all t ∈ [T ] and
• sup(x,a)∈Jt−1

∫
X/Ht

w(y)Qt−1(dy|x,a) ≤ α for all t ∈ [T ],
where Jt−1 = {(x,a) : x ∈ Ht−1,a ∈ ψ(x)} and w : X →
R is as in Property 4 for some M such that M̃ =
Φ1(M ,λ ) for some λ > 0.

Lemma 4: ∀M̃ ∈Φ1(A,R+) and α > 0 HM̃ ,α 6= /0.
Proof: We note Φ1(A,R+) is a subset of A and thus

the result of the Lemma follows from Lemma 2.9 [16].
Consider α > 0. For some {Ht}t∈[T ] ∈ HM̃ ,α let us
denote the map Φ2 : X∪ × Φ1(A,R+) → M such

that for M̃ = (({Xt}t∈N,X),A ,ψ,{Qt}t∈N,(c,h),T ) ∈
Φ1(A,R+) we have Φ2({Ht}t∈[T ],M̃ ) =
(({Ht}t∈[T ],X),A ,ψ,{Qt}t∈N,(c,h),T ).

Proposition 5: Denote the MDP with tuple elements (6)

to (11) by M . For any λ > 1 let α =
√

2mmax|ai,t |√
log(λ )

( 1
λ
)

1
maxa2

i,t

and consider the family of sets Ht := γm
t,λ ⊂Rm where γt,λ =

[−t
√

2log(λ ), t
√

2log(λ )], then {Ht}t∈[T ] ∈Hφ1(M ,λ ),α .
Proof: Clearly Ht is a compact subset of Rm ∀t ∈ [T ].

Next using w(x) ≡ 1 that can be used in Property 4 of M
we show,

sup
x∈Ht−1

∫
X/Ht

Qt−1(dy|x)< α. (22)

Recalling ε ∼N (0,1),

sup
x∈Ht−1

∫
X/Ht

Qt−1(dy|x) = sup
x∈Ht−1

Pε (x+A·,tε /∈ Ht) (23)

≤ sup
x∈Ht−1

{
Pε

(
∪i∈{1,..,m}

{
xi +ai,tε > t

√
2log(λ )

})
+Pε

(
∪i∈{1,..,m}

{
xi +ai,tε <−t

√
2log(λ )

})}
≤

m

∑
i=1

{
sup

xi∈γt−1,λ

Pε

(
xi +ai,tε > t

√
2log(λ )

)
+ sup

xi∈γt−1,λ

Pε

(
xi +ai,tε <−t

√
2log(λ )

)}

We will show,

sup
x∈γt−1,λ

Pε

(
x+aε > t

√
2log(λ )

)
≤ |a|√

2log(λ )

(
1
λ

) 1
a2

(24)
by considering the cases a > 0, a < 0 and a = 0 separately.
For a > 0,

sup
x∈γt−1,λ

Pε

(
x+aε > t

√
2log(λ )

)
= sup

x∈γt−1,λ

Pε

(
ε >

t
√

2log(λ )− x
a

)
≤ Pε

(
ε >

√
2log(λ )

a

)

<
a√

2log(λ )
exp
(
− log(λ )

a2

)
≤ a√

2log(λ )

(
1
λ

) 1
a2

.

Where the second inequality uses Lemma 5 and the last
inequality follows since we can assume λ > 1. The case
a < 0 follows by a similar proof. The case a = 0 is trivial,
supx∈γt−1,λ

P(x+ aε > t
√

2log(λ )) = 0. A similar argument
of considering the different cases of a can show

sup
x∈γt−1,λ

P(x+aε <−t
√

2log(λ ))≤ |a|√
2log(λ )

(
1
λ

) 1
a2
.

(25)
Now, substituting (24) and (25) into (23), we get (22).
Next we return to a general λ -smoothed MDP and approxi-
mate its state and control space’s with a countable set.

Definition 9: Given an approximable MDP
M ∈ A we can define a corresponding MDP
M̃ = (({Ht}t∈[T ],X),A ,ψ,{Qt}t∈N,(c, h̃),T ) =
Φ2({Ht}t∈[T ],Φ1(M ,λ )) for some compact family {Ht}t∈[T ]
and λ > 0. Furthermore given
• Γt is a β -partition of Ht .
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• Θt(x) is a η-partition of ψ(x).
• Q̂ defined for x ∈ Γt , y ∈ Γt+1 and a ∈ Θt(x) as

Q̂t(y|x,a) := Qt(p−1
Ht+1,Γt+1

(y)|x,a) for t ∈ [T −1] where
p−1

Ht+1,Γt+1
(y) is the pre-image of y,

we define the map Φ3 : R+×R+× Im{Φ2} →M by M̂ =
Φ3(β ,η ,M̃ ) if M̂ = (({Γt}t∈[T ],X),A ,Θt , Q̂,(c, h̃),T ).

If ψ(x) = /0 ∀x∈X we simplify our notation and set η = 0.
Definition 10: We define the total approximation map

Ψ : A× (R+)3× (X∪)T →M by Ψ(M ,λ ,β ,η ,{Ht}t∈[T ]) =
Φ3(β ,η ,Φ2({Ht}t∈[T ],Φ1(M ,λ ))).
Note (5) can be tractably solved for MDP’s in ImΨ.

Definition 11: Let Ĵt be the OCTGF of some MDP in
Im{Ψ} with state space ({Γt}t∈[T ],X). For any compact set
Ht such that Γt ⊂Ht we define the extended OCTGF of Ĵt(x)
as follows:

F̂t(x) = Ĵt(pHt ,Γt (x)) x ∈ Ht
Next we will state a theorem that gives a bound for error
of the OCTGF’s of the MDP’s in Im{Φ1} and associated
MDP’s mapped under Φ3.

Theorem 1: Consider some M ∈A. For some λ > 0 sup-
pose J̃t is the OCTGF of M̃ = Φ1(M ,λ ). For any α,β ,η >
0 there exists {Ht}t∈[T ] ∈HM̃ ,α such that if we denote Ĵt as
the extended OCTGF of Ψ(M ,λ ,β ,η ,{Ht}t∈[T ]) then for
t ∈ [T −1],

sup
x∈HT

|J̃T (x)− ĴT (x)|≤ (Lh +Lh̃λ
)β (26)

sup
x∈Ht

|J̃t(x)− Ĵt(x)|≤||J̃t+1||wα +(LJ̃t+1
Lq +Lc)η (27)

+ sup
y∈Ht+1

|J̃t+1(y)− Ĵt+1(y)|+LJ̃t
β

Where the function w : X→R and Lipschitz constant Lq are
as in Property 4 and Property 7 of M respectively.

Moreover in the case where the control space of M is
empty we set η = 0.

Proof: See Theorem 3.4 in [16].
C. Error Bounds

In this section we will show how Theorem 1 can be
combined with Proposition 4 to show that the OCTGF’s
of an MDP M ∈ A, and the approximated MDP M̂ =
Ψ(M ,λ ,β ,η ,{Ht}t∈[T ]) are arbitrary close together.

Theorem 2: Consider some MDP M ∈ A with OCTGF
denoted by Jt . For any α,β ,η ,θ > 0 there exists {Ht}t∈[T ] ∈
HM̃,α and Λ > 0 such that for all λ > Λ and any t ∈ [T −1],

sup
x∈Ht

|Jt(x)− Ĵt(x)|≤ θ
{
||JT ||w+||J̃T ||w

}
+α

{
T−t

∑
i=1
||J̃t+i||w

}
(28)

+η

{
Lq

(
T−t

∑
i=1

LJ̃t+i
+(T − t)Lc

)}
+β

{
Lh +Lh̃λ

+
T−t

∑
i=1

LJ̃t+i−1

}
Where J̃t and h+ h̃λ is the OCTGF and terminal cost func-

tion of Φ1(M ,λ ) respectively. Ĵt is the extended OCTGF
of Ψ(M ,λ ,β ,η ,{Ht}t∈[T ]). The function w : X → R and
constant Lq are as in Properties 4 and 7 of M respectively.

Moreover in the case where the control space of M is
empty we set η = 0.

Proof: By the triangle inequality,

|Jt(x)− Ĵt(x)|≤ |Jt(x)− J̃t(x)|+|J̃t(x)− Ĵt(x)| (29)

We then use Proposition 4 to bound |Jt(x)− J̃t(x)|. Then
we recursively solve (26) and (27) in Theorem 4 to bound
|J̃t(x)− Ĵt(x)|. Substituting these bounds into (29) the re-
sult (28) follows.

We now specialize Theorem 2 to the MDP with tuple
elements defined (6) to (11). Since in this specific case the
control space, A , is empty we can set η = 0 in Theorem 2.

Corollary 4: Consider the MDP with tuple elements de-
fined (6) to (11) by M . For any λ > 1 and β > 0 let Ht =
[−t
√

2log(λ ), t
√

2log(λ )]m then the extended OCTGF, Ĵt ,
of Ψ(M ,λ ,β ,0,{Ht}t∈[T ]) satisfies,∣∣∣∣∫x∈P

φ(x)dx− Ĵ0(x0)

∣∣∣∣≤ 2m
mini∈[m]{|ai,T |}λ

(30)

+

√
2mT max|ai,t |√

log(λ )
(

1
λ
)

1
maxa2

i,t +2mλβ (T +1).

where x0 = (0, ..,0), P = {x ∈ RT : Ax < b} and A ∈ Rm×T

and b ∈ Rm.
Proof: By Proposition 3 M ∈ A, thus M̂ is well

defined. Let us denote the OCTGF of the MDP’s M and
M̃ = Φ1(M ,λ ) by Jt and J̃t . By Proposition 1 J0(x0) =∫

x∈P φ(x)dx. Using Corollary 3 and Corollary 2 LJ̃t
and Lh̃

can be calculated. Proposition 5 shows Ht ∈ HM̃ ,α where

α =
√

2mmax|ai,t |√
log(λ )

( 1
λ
)

1
maxa2

i,t . Now Theorem 2 can be applied to

the specific MDP M , where Lemma 2 is used to select an
appropriate θ ; and using induction and (5) it can be shown
||J̃t ||w≤ 1 ∀t ∈ [T ].

VI. NUMERICAL RESULTS
We find approximate solutions to the optimization

problem associated with the MDP M with tuple el-
ements (6) to (11). Our algorithm recursively solves
(5) for the MDP Ψ(M ,λ ,β ,0,{Ht}t∈[T ]) where Ht =

[−t
√

2log(λ ), t
√

2log(λ )]m and λ > 1,β > 0. For simula-
tions (λ ,β ) were parametrized by n∈N; λ =

√
n and β = 1

n .
Figure 1 shows the results of computing the probability

that a two dimensional Gaussian variable is in the positive
orthant; this can be written as an integral of the form (3)
where A = [1,1]T and b = [0,0]T . Using (30) it can be shown
the error bound for integration over the positive orthant is
E = 28√

n +
4√

n logn , which is of order O
(

1√
n

)
. The order of

the actual error of the algorithm, when compared to the true
value of 0.5, seems to also be O

(
1√
n

)
; indicating our error

bounds are tight in some cases.
In Figure 2 we evaluate an integral of the Form (3)

where A =

[
0.5 0.7 1 0.9
0.2 0.7 0.5 1

]
and b =

[
2

0.5

]
. The

horizontal line represents the Monte Carlo approximation of
108 samples. The curved line represents the OCTGF, Ĵ0(0),
of the approximated MDP with tuple elements (6) to (11).

VII. CONCLUSION

In this paper we showed that given a multivariate Gaus-
sian integral over a polytope it is possible to construct
an MDP such that the solution of the MDP’s associated
optimization problem is equal to the integral. In general this
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class of MDP’s have non-compact uncountable state spaces
and discontinuous terminal cost functions. In this paper we
use Bellman’s equation to solve the associated optimization
problem. However in general there is no analytical solution
to Bellman’s equation for MDP’s of this class and thus an
approximation is required. We proposed an approximation
scheme that maps our class of MDP’s to a much simpler
class of MDP’s with countable state and control spaces.
Moreover we derived bounds on the supremum norm error
of the optimal cost to go functions of the MDP and the
mapped MDP. The main contribution of this paper is thus
a dynamic programing based algorithm for evaluating mul-
tivariate Gaussian integration over polytopes with a priori
error bounds.

Our numerical results presented in section VI are consis-
tent with our error bounds in section V. There are substantial
computational costs to this dynamic programing approach
but using this approach we are able to compute the integral
to any degree of accuracy. This paper links computing

multivariate Gaussian integration over polytopes to dynamic
programing; a well developed computational technique.

VIII. APPENDIX

Lemma 5: For t > 0 Pε(ε > t) ≤ 1
t exp(−t2

2 ) where ε ∼
N (0,1).

Proof: Pε (ε > t) =
∫

∞

t

1√
2π

exp
(
−x2

2

)
dx

<
∫

∞

t

x
t

exp
(
−x2

2

)
dx

=
1
t

exp
(
−t2

2

)
Where the second inequality uses the fact that inside the
integral domain x≥ t and 1√

2π
< 1.
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