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Abstract— Anomaly detection discovers regular patterns in
unlabeled data and identifies the non-conforming data points,
which in some cases are the result of malicious attacks by ad-
versaries. Learners such as One-Class Support Vector Machines
(OCSVMs) have been successfully used in anomaly detection,
yet their performance may degrade significantly in adversarial
conditions such as integrity attacks. This work focuses on
integrity attacks, where the adversary distorts the training
data in order to successfully avoid detection during evaluation.
This paper presents a unique combination of anomaly detec-
tion using (1) OCSVMs in the presence of adversaries who
distort training data in a targeted manner and (2) nonlinear
randomized kernel methods, which facilitate computational
and conceptual simplification through dimension reduction. We
theoretically analyze the effects of adversarial distortions on
the separating margin of OCSVMs and provide supporting
empirical evidence. The proposed approach introduces a layer
of uncertainty on top of the OCSVM learner, making it
challenging for the adversary to guess the specific configuration
of the learner.

Index Terms— Machine learning, unsupervised learning, ad-
versarial learning.

I. INTRODUCTION
Machine learning algorithms have been successfully em-

ployed in a wide range of domains such as finance, health,
security etc [1]. The basis of many machine learning algo-
rithms is to learn the underlying hidden structure and patterns
from data, without being explicitly programmed. Once the
patterns are learned from the data, the algorithm can apply
this knowledge on unseen samples with significant accuracy.

Anomaly detection is a class of machine learning that
is associated with the problem of discovering patterns in
data and identifying data points that do not conform to the
learned patterns (i.e., outliers). It has numerous applications
in a variety of domains such as network intrusion detection,
credit card fraud detection, and spam filtering. Algorithms
such as One-Class Support Vector Machines (OCSVM) [2],
have been proven to be effective in anomaly detection appli-
cations. Although they are designed to withstand the effects
of random noise in data, when adversaries deliberately alter
the input data, the performance of these learning algorithms
may degrade significantly.
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Anomaly detection systems are often deployed in environ-
ments where the data naturally evolves, and hence the models
need to be retrained periodically, in contrast to many con-
ventional machine learning applications, where the current
and future data is assumed to have identical properties. This
periodic training may allow adversaries to gradually inject
malicious data to diminish the decision making capabilities
of the learning algorithms. The aim of the adversaries may be
to reduce the risk of being detected (i.e., attack on integrity)
or to decrease the performance of the learning system [3].

A sophisticated adversary has the capacity to conduct an
attack in numerous ways. Hence, it is not feasible to provide
a general analysis that covers the whole range of attacks,
across different machine learning algorithms. In this work,
we explore the following key question: Is it possible to make
OCSVMs more resistant against adversarial attacks which
target the integrity of the training data through distortions?.
If an adversary can maliciously distort the input data used
by a learning algorithm, they can force the learner to learn
a model that is favorable to them. It has become imperative
to secure machine learning systems against such adversaries
due to the recent increase of automation in many day to day
applications.

For example, in the context of image recognition, the
adversary could cause distortions that are imperceptible to
humans, but influential enough to force a learned model
to mis-classify the distorted images with high confidence.
As [4] have shown, with the emergence of self driving
vehicles, an adversary could alter a “S-T-O-P” road sign in
such a way that a vehicle (learning system) would reliably
classify it as a “Speed Limit 45” sign. Such distortions could
be imperceptible to humans and could result in the loss of
human lives.

To mitigate this issue, we utilize a nonlinear data pro-
jection based algorithm to increase the attack resistance of
OCSVMs against an adversarial opponent under realistic as-
sumptions. Recent work in the literature shows that nonlinear
random projections improve the training and evaluation times
of kernel machines, without significantly compromising the
accuracy of the trained models [5], [6]. In this paper, we in-
vestigate whether selective nonlinear random projections can
be leveraged to increase the attack resistance of OCSVMs
under adversarial conditions.

The main contributions of this work are summarized as
follows. We propose a nonlinear data transformation based
defence mechanism that can (i) increase the attack resistance
of OCSVMs under adversarial conditions, and (ii) give the
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learner a significant advantage from a security perspective
by adding a layer of unpredictability through the random-
ness of the data transformation. The adversary’s goal is to
hinder the decision making capabilities of the OCSVM by
shifting its decision boundary using distorted data points. It
should be noted that the learner cannot demarcate adversarial
distortions from the normal data, otherwise the learner would
be able to remove the adversarial distortions during training,
making the problem trivial. Due to this reason, the margin of
a OCSVM trained only on clean data cannot be calculated
empirically. Therefore, we analytically derive an upper bound
on the length of the weight vector of a OCSVM trained on
an undistorted dataset that has been nonlinearly transformed
to a lower dimensional space.

II. BACKGROUND AND RELATED WORK

As our proposed approach on adversarial learning for
anomaly detection is based on randomized kernels, in this
section we briefly review these two lines of research.

To improve the efficiency of kernel machines, in [5],
Rahimi and Recht embedded a random projection into the
kernel formulation. They introduced a novel, data indepen-
dent method (Random Kitchen Sinks (RKS)) that approxi-
mates a kernel function by mapping the dataset to a relatively
low dimensional randomized feature space. Instead of rely-
ing on the implicit transformation provided by the kernel
trick, they explicitly mapped the data to a low-dimensional
Euclidean inner product space using a randomized feature
map z : Rd → Rr.

More recently, the method of [5] has been applied to other
types of kernel machines. In [6], Erfani et al. introduced
Randomized One-class SVMs (R1SVM), an unsupervised
anomaly detection technique that uses randomized, nonlinear
features in conjunction with a linear kernel. They reported
that R1SVM reduces the training and evaluation times of
OCSVMs by up to two orders of magnitude without com-
promising the accuracy of the predictor. Our work differs
from these as we look at random projections as a defense
mechanism for OCSVMs under adversarial conditions. How-
ever, to the best of our knowledge, no existing work adopts
Rahimi and Recht’s method to address adversarial learning
for anomaly detection with OCSVMs.

The problem of adversarial learning has inspired a wide
range of research from the machine learning community,
see [7] for a survey. For example, [8] introduced an Ad-
versarial SVM (AD-SVM) model. AD-SVM incorporated
additional constraint conditions to the binary SVM optimiza-
tion problem in order to thwart an adversary’s attacks. Their
model leads to unsatisfactory results when the severity of
real attacks differs from the model’s expected attack severity.
While we gain valuable insights regarding attack strategies
from this work, the defense mechanism in our work is
significantly different and our work primarily focuses on
unsupervised learning, whereas [8] uses a binary SVM.

Deep Neural Networks (DNNs) have been shown to be
robust to noise in the input [9], but are unable to withstand
carefully crafted adversarial data [10]. While these works are
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Fig. 1: Training data distribution and separating hyperplane
(black line) of a toy problem with and without an attack.
‘o’ (blue) denotes the undistorted data points and ‘x’ (red)
denotes the data points distorted by the adversary. The
OCSVM is trained using the entire (unlabeled) dataset as
normal.

in the same domain, they are not directly related to our work,
which uses OCSVMs and kernels.

III. PROBLEM STATEMENT AND ATTACK MODEL

We consider an adversarial learning problem for anomaly
detection in the presence of a malicious adversary. The
adversary modifies the training data in order to disrupt the
learning process of the learner, who aims to detect anomalous
data points. Hence, the adversary’s main goal is to hinder the
decision making capability of the learner by compromising
the integrity of the input data.

In an integrity attack, the adversary desires false negatives
(i.e., anomalies classified as normal), and hence, would use
distorted anomalies during training to move the decision
boundary of the learner away from the normal data cloud
and towards the anomalies. Subsequently, during the testing
phase, any anomalies that lie beyond the compromised
decision boundary will be classified as normal data points. As
Figure 1a depicts, in the context of OCSVMs, the decision
boundary (i.e., separating hyperplane) is found closer to the
normal data cloud. The adversary would distort anomalies
in order to place them closer to the normal data cloud.
Since the OCSVM algorithm considers all the data points
in the training set to be from the normal class (i.e., only
uses data from normal class during training), these distorted
anomalies would be seen by the learning algorithm as normal
data points (similar to label flipping). As Figure 1b depicts,
this would result in the separating hyperplane moving closer
to the origin. The adversary is able to orchestrate different
attacks by changing the percentage of distorted anomaly data
points in the training dataset (i.e., pattack) and the severity of
the distortion (i.e., sattack).

The attack model used is inspired by the restrained attack
model described by [8]. Let X +D be the training dataset
that contains the data from the normal class X as well as the
adversarial distortions D. The adversary has the freedom to
determine D based on the knowledge it possesses regarding
the learning system, although the magnitude of D is usually
bounded due to its limited knowledge about the learners’
configuration, the increased risk of being discovered, and
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computational constraints. It is assumed that the adversary
has the capability to move the ith data point in any direction
by adding a non-zero displacement vector κi ∈ D to xi ∈
X . It is also assumed that the adversary does not have
any knowledge about the projection used by the learner.
Therefore, all of the adversary’s actions take place in the
original full dimensional space. The adversary picks a target
xt

i for each xi to be distorted and moves it towards the
target by some amount. Choosing xt

i for each xi optimally
requires a significant level of computational effort and a
thorough knowledge about the distribution of the data. For
each attribute j in the original feature space, the adversary
is able to add κi j to xi j, where

κi j = (1−sattack)(xt
i j−xi j) and |κi j| ≤ |xt

i j−xi j|,∀ j ∈ d. (1)

IV. METHODOLOGY
Anticipating possible distortions by an adversary, the

learner can take precautions to minimize their effects by con-
tracting the data to a lower dimensional space. Projecting a
high dimensional dataset, using a carefully chosen projection
matrix would preserve its pairwise Euclidean distances with
high probability in the projected space [11]. Therefore, the
properties of the original data distribution would be present
in the projected dataset with only minor perturbations. By
randomly drawing projection directions from some distri-
bution, the learner introduces a layer of uncertainty to the
adversary-learner problem. For high dimensional datasets,
this method gives the learner considerate flexibility to select
the dimension to which the data is projected, as well as the
direction, which gives a significant advantage from a security
perspective. But this unpredictability can also be seen as
the main caveat of using random projections to reduce
the dimensionality of data. While some random projections
result in better separated volumetric clouds than the original
ones, some projections result in the data from different
classes being overlapped.

In order to increase the attack resistance of a learning
system, the impact of adversarial inputs should be mini-
mized. Based on this intuition, we propose that a projection
that conceals the potential distortions of an adversary would
make any learning system that learns from the projected data
more resistant to attacks. As the learner cannot demarcate D
from the training data, it is not possible to identify an ideal
projection that conceals the adversarial distortions. Thus, the
learner would have to select a projection that contracts the
entire training set (expecting the adversarial points to be
masked by normal data) and separates the training data from
the origin with the largest margin in the transformed space.
Therefore, we propose a novel compactness measure to iden-
tify suitable projection directions in a one-class problem [12].

V. IMPACT OF ATTACK ON THE OCSVM MARGIN

This section analyzes the effects of the adversary’s dis-
tortions on the margin of separation of the OCSVM. The
distance between the hyperplane and the origin of a OCSVM
is given by ρ/‖w‖2, where ρ is the offset and w is the vector
of weights. This implies that a small ‖w‖2 corresponds to a

large margin of separation from the origin. Since the learner
cannot demarcate the distortions from the normal training
data, it cannot empirically calculate this value for the undis-
torted dataset. Therefore, based on the assumptions given
below, we analytically derive an upper bound on ‖w‖2 of a
OCSVM that has been trained on a nonlinearly transformed
undistorted dataset. This result would lead to a lower bound
for the margin of separation of the OCSVM without any
adversarial distortions. It should be noted that any attack
on the integrity of the learner would be reflected on the
margin of separation (i.e., a large change in the margin would
indicate a successful attack). As the adversary distorts data
in the original feature space, we can align any given dataset
in such a way that any outliers present in the data would lie
closer to the origin and the normal data cloud would lie in
the positive orthant. Such a transformation would compel the
adversary to make adversarial distortions in the direction of
the normal data cloud (positive) as distortions in the negative
direction would favor the learner.

Assumption 1. The distortions made by the adversary are
small s.t. small angle approximation cos(θ) = 1− θ 2

2 holds.
This assumption is reasonable because small distortions

decrease the risk of the adversary being discovered, therefore
a rational adversary would refrain from conducting attacks
with significant distortions.

Definition 1. Let X ∈ Rn×d be the matrix that contains
the training data (normalized between 0 – 1) and D ∈ Rn×d

the matrix that contains the adversarial distortions. Let A ∈
Rd×r be the projection matrix where each element is an
i.i.d. N (0,1) random variable. Define b as a 1× r row
vector where each element is drawn uniformly from [0,2π].
Using these variables, we define C ∈Rn×r (which is linearly
separable [5]), where the element at row i column j takes
the following form.

Ci, j = cos
([(

Xi,1 +Di,1
)
A1, j +

(
Xi,2 +Di,2

)
A2, j + . . .

+
(
Xi,d +Di,d

)
Ad, j

]
+b1, j

)
.

(2)

Similarly, we define the matrices CX ,CD,SX ,SD as follows,

CX
i, j = cos

([
Xi,1A1, j +Xi,2A2, j + · · ·+Xi,dAd, j

]
+b1, j

)
,

CD
i, j = cos

([
Di,1A1, j +Di,2A2, j + · · ·+Di,dAd, j

])
,

SX
i, j = sin

([
Xi,1A1, j +Xi,2A2, j + · · ·+Xi,dAd, j

]
+b1, j

)
,

SD
i, j = sin

([
Di,1A1, j +Di,2A2, j + · · ·+Di,dAd, j

])
.

We address the anomaly detection problem using the
OCSVM algorithm introduced by [2], which separates the
training data from the origin with a maximal margin in the
transformed space. The dual form of the OCSVM algorithm
can be written in matrix notation as,

minimize
α

1
2

α
TCCT

α, s.t 0≤ α ≤ 1
νn

and 1T
α = 1,

(3)
where α is the vector of Lagrange multipliers, ν ∈ (0,1] is
a parameter that defines an upper bound on the fraction of

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

36



support vectors and a lower bound on the fraction of outliers,
and 1 is a vector of ones.

Theorem 1. Let w∗p be the primal solution of the OCSVM
optimization problem in the transformed space without ad-
versarial distortions. Similarly, define w∗pd as the primal
solution in the presence of a malicious adversary. Let r be
the number of dimensions to which the data is transformed
using the method in (2). Then, if Assumption 1 holds, the
length of the weight vector w∗p is bounded above by

‖w∗p‖2 ≤ ‖w∗pd‖2 +
3
√

r
2

. (4)

Proof outline: Let α̃ be the vector achieving the optimal
solution in the projected space when adversarial distortions
are present. Then, the solution for the primal problem in the
projected space with adversarial distortions, defined as w∗pd ,
can be obtained as ∥∥w∗pd

∥∥
2 =

∥∥α̃
TC
∥∥

2. (5)

Using the cosine angle-sum identity on the matrix defined
by equation 2 (the symbol � denotes the Hadamard product
for matrices),∥∥w∗pd

∥∥
2 =

∥∥α̃
T (CX �CD)− α̃

T (SX �SD)∥∥
2. (6)

Using the reverse triangle inequality we obtain∥∥w∗pd

∥∥
2 ≥

∥∥α̃
T (CX �CD)∥∥

2−
∥∥α̃

T (SX �SD)∥∥
2. (7)

From the constraint conditions of the OCSVM problem (3),
we get 1T

α̃ = 1. Also, as sin(θ) ∈ [−1,1] the inequality can
be further simplified as,∥∥w∗pd

∥∥
2 ≥

∥∥α̃
T (CX �CD)∥∥

2−
√

r. (8)

Due to Assumption 1, using small-angle approximation on
CD, followed by the reverse triangle inequality, we obtain∥∥w∗pd

∥∥
2 ≥

∥∥α̃
TCX∥∥

2−
∥∥α̃

T
(

CX �
(DA�DA

2
))∥∥

2−
√

r.

(9)

As the training data is normalized between (0 – 1), the
maximum distortion magnitude that can be achieved is 1.
Also, as cos(θ)∈ [−1,1] and 1T

α̃ = 1, the inequality can be
further simplified as,∥∥w∗pd

∥∥
2 ≥

∥∥α̃
TCX∥∥

2−
√

r
2
−
√

r. (10)

Since the optimization problem is a minimization problem,
as shown in (3), the optimal solution for the OCSVM without
any distortion (i.e., α∗) would give a value less than or equal
to the value given by α̃ . Thus,∥∥α

∗,TCX∥∥
2 ≤

∥∥w∗pd

∥∥
2 +

3
√

r
2

, (11)

∥∥w∗p
∥∥

2 ≤
∥∥w∗pd

∥∥
2 +

3
√

r
2

. (12)

The strength of the adversary’s attacks will be reflected on
the value of upper bound and will increase with the strength

of the attacks. The learner is able to make the upper bound of
‖w∗p‖2 tighter by reducing the dimensionality of the dataset
(i.e., r). Refer Table I for empirical validation that shows the
consistency of the upper bound, which is about 6% higher
than the empirical value for both dimensions.

TABLE I: Comparison of actual
∥∥w∗p

∥∥
2, calculated on the

MNIST data (pattack = 5% and sattack = 0.5) and the theo-
retical upperbound calculated using Theorem 1 in Section
V.

# of dim ‖w∗p‖2 Upperbound ‖w∗p‖2 as % of upperbound

210 1,969.30 2,094.74 94.01%
393 2,734.40 2,908.03 94.03%
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