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Abstract— In this paper, we propose a mathematics ap-
proach to improve the computational efficiency of economic-
oriented model predictive control (EMPC). We approximate
the nonlinear dynamic system with a Two-tier method: 1)
Approximate the system through Taylor expansion and obtain a
polynomial formulation; 2) Expand the polynomial formulation
through Carleman approximation (also known as Carleman
linearization) and arrive at an extended bilinear expression.
This expression has a bilinear form but carries information of
higher order dynamics. In this way, we save simulation efforts
by predicting the future economic performances with analytical
solutions. We also save optimization efforts by providing the
sensitivity of the economic performances to the manipulated
inputs as the search gradient. Hence, despite the economic
stage costs are mostly non-tracking and non-quadratic, we
achieve significant acceleration in the computation of EMPC.
An oxidation of ethylene reactor is demonstrated as the ap-
plication example. We optimize three manipulated inputs and
establish a non-tracking cyclic operation. The improvement
in computational efficiency is presented by comparison with
standard EMPC method.

I. INTRODUCTION

In recent years, economic-oriented model predictive con-
trol (EMPC) has gained popularity in chemical and petro-
chemical industries. The primary difference of EMPC from
traditional MPC is that EMPC is directly formulated to max-
imize the economic profits. It naturally puts more emphasis
on the process path [1][2]. Typically, the economic operation
of a process is a two-layer scheme [3]. The upper layer
is the real-time optimization (RTO) layer, which performs
economic process optimization and determines the optimal
operation trajectory. The lower layer is the MPC layer. It
forces the system to track the optimal process trajectory
obtained from the upper layer and to reject disturbances.
However, the RTO results may be inconsistent with the MPC
objectives and may lead to infeasibility. These issues give
rise to the development of EMPC.

An increasing number of results on EMPC studies was
recently published; [4] presents a good review. However,
one of the remaining major challenges is the heavy burden
on computation. Unlike traditional tracking MPC, the eco-
nomically optimal cost functions representing the economic
performances, are usually non-quadratic or even non-convex.
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They may require significant amount of simulation and put
heavy load of work on the optimizer. If the optimizer fails
to converge to the solution fast enough, the delay in sending
the control signals, or sending non-converged control signals
may degrade its closed loop performance, or even cause
potential stability issues. There are formulations to guarantee
the stability of systems under EMPC, including adding
quadratic regularization terms in the economic cost function,
applying terminal constraints, and using Lyapunov-based
constraints [5][6]. These formulations further exacerbate the
computational burden of EMPC.

There have been approaches reported in literature to
achieve computational acceleration. For example, multi-
parametric MPC developed by Pistikopoulos and coworkers
in [14][15] accelerates computation via querying response
hypersurfaces. Fast approaches to solve for MPC have also
been reported in applications, such as lithium-ion battery
systems [16][17][18]. To address the computational issue
of EMPC, we propose an approach based on Carleman
approximation. It builds on our previous work that fo-
cused on efficient reformulations of nonlinear MPC (NMPC)
published in [7][8][9][10]. Carleman approximation-based
Moving Horizon Estimation (MHE) methods are reported
in [11][12]. In this paper, we intend to show the readers the
readiness of our approach when working with non-tracking
economic stage costs and path-emphasized optimization.
Our approach significantly reduces computational efforts in
EMPC context.

The approach we are proposing is built upon two founda-
tions: the theory of Carleman approximation and the theory
of bilinear control systems. After a Two-Tier approxima-
tion, we use high order polynomial states to capture the
nonlinearity of the original dynamic process. With an ex-
tended bilinear expression and assuming piecewise constant
manipulated inputs, we analytically predict future states
and future economic performances. We also analytically
calculate the sensitivity of the economic cost function to the
manipulated inputs. The sensitivity serves as the gradient to
facilitate the optimizer by reducing the number of iterations
tremendously. Hence, the computational effort in solving
the EMPC problem is sufficiently reduced. This approach
circumvents feedback delays in the following two ways:
First, the economic performance of the plant becomes a
nonlinear function of the manipulated inputs, releasing the
optimization problem from equality dynamic constraints.
Second, it analytically predicts future economic performance
of the system and provides the sensitivity as the search
gradient to facilitate the optimizer.
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II. DEFINITION AND FORMULATION

A. Basic EMPC formulation

The plant, which is a continuous system, is represented by
the following ordinary differential equation (ODE):

ẋ = f (x)+
m
∑
j=1

g j(x)u j(t) (1)

x(t0) = x0

f (x) and g j(x), j = 1, · · · ,m are nonlinear vector functions.
u j(t) denotes the j-th design variable vector. x0 denotes the
initial system states at the starting time t0.

The stage cost, representing the process economics over
each sampling time, is expressed as:

ti∫
ti−1

Le(x(τ),u1(τ),u2(τ), · · · ,um(τ))dτ, (2)

∀i = 1, · · · ,N

In this context, the overall economic cost function, which de-
scribes the economic performance of the plant, is maximized
over a finite time window, the prediction horizon.

tN∫
t0

Je(x(τ),u1(τ),u2(τ), · · · ,um(τ))dτ

=
N
∑

i=1

ti∫
ti−1

Le(x(τ),u1(τ),u2(τ), · · · ,um(τ))dτ (3)

t0 and tN denote the starting and ending of the prediction
horizon.

The economically optimal control problems are recast
as receding finite horizon dynamic optimization ones. We
use control vector parameterization (CVP) to reformulate
dynamic optimization problems (DOP) as finite dimensional
nonlinear programming (NLP) ones [13]. The basic principle
is to express the manipulated inputs in a finite vector of
design variables as the parameters to be optimized [19][20].
Assuming piecewise constant manipulated inputs during ev-
ery sampling time, the EMPC problem has a general form:

max
u1,u2,··· ,um

tN∫
t0

Je(x,u1(τ),u2(τ), · · · ,um(τ))dt

s.t.

u j(t) =
N
∑

i=1
u j,iB(t;Ti−1;Ti),

∀ j = 1, · · · ,m (4)

ẋ = f (x)+
m
∑
j=1

g j(x)u j(t)

x(t0) = x0

xmin ≤ x(t)≤ xmax,∀ t ∈ [t0, tN ]

umin ≤ u(t)≤ umax,∀ t ∈ [t0, tN ]

f c(x,u1,u2, · · · ,um)≤ 0

x ∈ Rn is the vector of states, and u j, j = 1, · · · ,m are
the vectors of the manipulated inputs, which are the design
variables. u j,i denotes the i-th element in the j-th design
variable vector. We use u to represent all of them in the rest
of this manuscript. From a view of control, it denotes the

i-th signal of the j-th manipulated input in its corresponding
time period (Ti−1,Ti]. The time period (Ti−1,Ti] is defined as
the i-th sampling time and has a length of ∆Ti = Ti−Ti−1.
We define a pulse function with B(t;Ti−1;Ti) =H(t−Ti−1)−
H(t−Ti), where H is the standard Heaviside function. N is
the total number of the sampling times within each control
horizon. T0 and TN are the beginning and the end of the
control horizon, respectively. In typical MPC designs, the
length of the prediction horizon is usually greater than the
control horizon, depending on the robustness requirement.
In this paper, we set the prediction horizon equal to the
control horizon for the purpose of simplicity. The last three
equations denote the bounds on the states, on the manip-
ulated inputs, and any other equality/inequality constraints
on the system. These constraints may account for physical
limitations, safety concerns, and other requirements on the
system performance.

B. Two-Tier approximation

Tier One
For the simplicity of derivation, we perform Taylor ex-

pansion around the origin x = 0. In NMPC problems, the
desired steady states, which we try to track, are often the
ideal points to perform Taylor expansion around. In EMPC
problems, unlike traditional MPC, there are usually not any
desired steady states to track. In these cases, we pick the
steady states within or close enough to the economically
optimal set to perform Taylor expansion around.

Nonlinear vector functions f (x) and g j(x) are expanded
by Maclaurin series in the following form:

f (x) = f (0)+
∞

∑
k=1

1
k!
∂ f[k]|x=0x[k] (5)

g j(x) = g j(0)+
∞

∑
k=1

1
k!
∂g j[k]|x=0x[k] (6)

x[k] denotes the k-th order Kronecker product of x. Details
of the Kronecker product rule are presented in the next
section.
∂ f[k]|x=0 ∈ Cn×(nk) and ∂g j[k]|x=0 ∈ Cn×(nk) are the k-th

partial derivatives of f (x) and g j(x) with respect to x, based
on the Kronecker product rule:

∂ f[k] =
∂

∂x
⊗∂ f[k−1], ∂g j[k] =

∂

∂x
⊗∂g j[k−1], (7)

For example, if x = [x1 x2], k = 2,

∂ f[2] = [
∂2 f
∂x2

1

∂2 f
∂x1x2

∂2 f
∂x1x2

∂2 f
∂x2

2
] (8)

With the approximations above, the nonlinear dynamic
system described by Eq. (1) can be approximated with the
following polynomial form:

ẋ∼=
p
∑

k=1
Akx[k]+A0 +

m
∑
j=1

(
p
∑

k=1
B jkx[k]+B j0)u j (9)

Ak =
1
k!∂ f[k]|x=0; B jk =

1
k!∂g j[k]|x=0;

A0 = f (0); B j0 = g j(0);

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

754



Tier Two
We now introduce the Kronecker product rule to facilitate

the description of Carleman approximation. The Kronecker
product of matrix X ∈CN×M and matrix Y ∈CL×K is defined
as matrix Z ∈C(NL)×(MK).

X =

∣∣∣∣∣∣∣∣
x1,1 x1,2 · · · x1,M
x2,1 x2,2 · · · x2,M
· · · · · · · · · · · ·
xN,1 xN,2 · · · xN,M

∣∣∣∣∣∣∣∣, Y =

∣∣∣∣∣∣∣∣
y1,1 y1,2 · · · y1,K
y2,1 y2,2 · · · y2,K
· · · · · · · · · · · ·
yL,1 yL,2 · · · yL,K

∣∣∣∣∣∣∣∣,
Z = X⊗Y =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x1,1y1,1 · · · x1,1y1,K · · · · · · x1,My1,1 · · · x1,My1,K
...

. . .
... · · · · · ·

...
. . .

...
x1,1yL,1 · · · x1,1yL,K · · · · · · x1,MyL,1 · · · x1,MyL,K
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

xN,1y1,1 · · · xN,1y1,K · · · · · · xN,My1,1 · · · xN,My1,K
...

. . .
... · · · · · ·

...
. . .

...
xN,1yL,1 · · · xN,1yL,K · · · · · · xN,MyL,1 · · · xN,MyL,K

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We first extend the states of the system x to x⊗:

x⊗ = [xT x[2]
T · · · x[p]

T
]T (10)

where x[p] denotes the p-th order Kronecker product of x.
For the rest of this paper, a p-th order x⊗ means the term
of the highest order in x⊗ is x[p]. So far, there has been
no systematic method reported in literature to determine the
order of Carleman approximation. In our proposed method,
we simulate the system after performing a Taylor expansion.
When selecting the order of Taylor expansion, we make
sure the truncation error caused by the simulator can be
compensated later by the optimizer. We extend Eq. (9) to
a bilinear form:

ẋ⊗ = A x⊗+A0 +
m

∑
j=1

(B jx⊗+B j0)u j, (11)

where the nonlinear dynamic information recorded in Tier
One approximation is carried by the following extended
matrices: A , A0, B j and B j0 are matrices of the form:

A =

∣∣∣∣∣∣∣∣∣∣
A1,1 A1,2 · · · A1,p
A2,0 A2,1 · · · A2,p−1

0 A3,0 · · · A3,p−2
· · · · · · · · · · · ·
0 0 · · · Ap,1

∣∣∣∣∣∣∣∣∣∣
, A0 =

∣∣∣∣∣∣∣∣∣∣
A1,0

0
0
· · ·
0

∣∣∣∣∣∣∣∣∣∣
,

B j =

∣∣∣∣∣∣∣∣∣∣
B j1,1 B j1,2 · · · B j1,p
B j2,0 B j2,1 · · · B j2,p−1

0 B j3,0 · · · B j3,p−2
· · · · · · · · · · · ·
0 0 · · · B jp,1

∣∣∣∣∣∣∣∣∣∣
, B j0 =

∣∣∣∣∣∣∣∣∣∣
B j1,0

0
0
· · ·
0

∣∣∣∣∣∣∣∣∣∣
,

where Ak,i =
k−1
∑

l=0
I[l]n ⊗Ai⊗ I[k−1−l]

n and B jk,i =
k−1
∑

l=0
I[l]n ⊗B ji⊗

I[k−1−l]
n . Arriving at Eq. (11) means we have finished Tier

Two approximation. This extended bilinear formulation car-
ries nonlinear dynamic information of the original system.

There are two important assumptions in our proposed ap-
proach: (i) The manipulated inputs are all piecewise constant
signals within each sampling time. (ii) Each manipulated in-
put enters or can be reformulated to enter the system linearly.
This means the system is or can be reformulated as input
affine with respect to all manipulated inputs. Fortunately,
these two assumptions are commonly satisfied in practice.

Hence, we are able to perform convolution integral and
draw an analytical solution to predict system evolution within
each sampling time:

x(t)⊗ = exp
[(

A +
m

∑
j=1

B ju j,i
)(

t−Ti−1
)]

x
(
Ti−1

)
⊗

+

t∫
Ti−1

exp
[(

A +
m

∑
j=1

B ju j,i
)(

t− τ
)]

dτ ·
(
A0 +

m

∑
j=1

B j0u j,i
)

t ∈ (Ti−1, Ti] (12)

x(Ti)⊗ = exp
[(

A +
m

∑
j=1

B ju j,i
)
∆Ti

]
x
(
Ti−1

)
⊗

+
(
A +

m

∑
j=1

B ju j,i
)−1
[(

A +
m

∑
j=1

B ju j,i
)
∆Ti− I

]
·
(
A0 +

m

∑
j=1

B j0u j,i
)

(13)

This also enables us to perform analytical sensitivity cal-
culation to serve as the search gradient. Detailed derivations
are presented in the next section.

Using analytical solutions to predict future economic per-
formance takes less computational efforts. With the search
gradient provided, less iterations are required by the op-
timizer, which further saves computational efforts. This
method leads to complexity in modeling the dynamic pro-
cess. However, since the modeling part is performed off-line,
it is an acceptable trade-off for saving tremendous on-line
computational efforts.

C. Sensitivity-based optimization

The economic cost function Je(x,u) or Je(x,u j), j =
1, · · · ,m can be approximated with the following form:

Je =
∞

∑
k=0

∞

∑
l=0

1
(k+ l)!

∂[k+l]Je

∂xk∂ul |0xkul (14)

∼= Je,0 + Je,Ax⊗+
m

∑
j=1

Je,B ju j,⊗+
m

∑
j=1

Je,N ju j,⊗⊗ x⊗

where Je,0 is a scalar; Je,A, Je,B j and Je,N j are Jacobian

matrices. The last term
m
∑
j=1

Je,N ju j,⊗⊗x⊗ is likely to be useful

for a non-quadratic economic cost function.
Either the control actions u or the control moves ∆u can be

chosen as the design variables, depending on the knowledge
of the reference trajectories of the manipulated inputs.
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We define the following notations to be used later:

˜AK = A +
m

∑
j=1

B ju j,K , (15)

EK = exp( ˜AK ∆TK ), (16)

G uUK = ˜AK
−1
(EK − I), (17)

FK =
m

∑
j=1

B j0u j,K +A0. (18)

where I is the identity matrix with the corresponding dimen-
sion. When constructing the time integral of the economic

cost function
∫ TN

T0

Jedt:

∫ TN

T0

Je dt ∼= Je,0(TN−T0)

+
N

∑
i=1

[Je,A +
m

∑
j=1

Je,N ju j,i⊗⊗]
∫ Ti

Ti−1

x⊗dt

+
N

∑
i=1

m

∑
j=1

Je,B ju j,i⊗∆Ti (19)

We incorporate the integral of the extended states x⊗ over
each sampling time:∫ Ti

Ti−1

x⊗ dt = G uUix⊗,i−1 + Ãi
−1
(G uUi−∆Ti · I)Fi (20)

Hence, we free the optimization from the equality constraint
that represents the system dynamics.

uk,K denotes the K -th element in the k-th design variable
vector, which is the value of the k-th manipulated input
during the K -th sampling time. The sensitivity of the
economic cost function to uk,K is:

∂

∂uk,K

∫ TN

T0

Je dt = [Je,A +
N

∑
i=K

m

∑
j=1

Je,N ju j,i⊗⊗]×

[
∫ TK

TK −1

∂x⊗
∂uk,K

dt +
∫ TK +1

TK

∂x⊗
∂x⊗,K

dt
∂x⊗,K
∂uk,K

(21)

+
N

∑
i=K +2

∫ Ti

Ti−1

∂x⊗
∂x⊗,i−1

dt(
i−1

∏
l=K +1

∂x⊗,l
∂x⊗,l−1

)
∂x⊗,K
∂uk,K

]

+ Je,Nk∂(uk,K )⊗⊗
∫ TK

TK −1

x⊗dt + Je,Bk∂(uk,K )⊗∆TK

The following derivations are used in the sensitivity calcu-
lation:

∂(uk,K )⊗ = [1 2uk,K · · · puk,K
p−1] (22)

∂x⊗,K
∂x⊗,K −1

= EK (23)

∫ TK

TK −1

∂x⊗
∂x⊗,K −1

dt = G uUK (24)

∂x⊗,K
∂uk,K

=
∂EK

∂uk,K
x⊗K −1

+ ˜AK
−1 ∂EK

∂uk,K
FK +G uUK Bk0 (25)

− ˜AK
−1

BkG uUK FK

∫ TK

TK −1

∂x⊗
∂uk,K

dt

=
∫ TK

TK −1

∂EK

∂uk,K
dt · x⊗,K −1

+ ˜AK
−1
∫ TK

TK −1

∂EK

∂uk,K
dtFK (26)

+ ˜AK
−1
[G uUK −∆TK · I]Bk0

− ˜AK
−1

Bk ˜AK
−1
[G uUK −∆TK · I]FK

∂EK

∂uk,K
and

TK∫
TK −1

∂EK

∂uk,K
dt can both be computed analyti-

cally:

∂EK

∂uk,K
=

∞

∑
l=1

(∆TK )l

l!

l

∑
λ=1

˜A λ−1
K Bk ˜A l−λ

K (27)

TK∫
TK −1

∂EK

∂uk,K
dt =

∞

∑
l=1

(∆TK )l+1

(l +1)!

l

∑
λ=1

˜A λ−1
K Bk ˜A l−λ

K (28)

During the optimization, we discretize the system in time
by performing convolution integral within each sampling
time. We make sure the system behavior satisfies the bounds
on the states, the bounds on the manipulated inputs, and the
equality/ inequality constraints f c(x,u)≤ 0 at the end of each
sampling time.

III. APPLICATION AND DISCUSSION

In this section, we demonstrate the proposed Carleman
EMPC approach is applicable and computationally efficient
by comparing it with the numerical EMPC approach that is
the standard method.

As an application example, we consider a CSTR where
ethylene is oxidized by air in a catalytic environment [21].
Figure 1 presents a diagram of this reactor. The product is
ethylene oxide (C2H4O). This CSTR is non-isothermal, so a
coolant jacket is used to remove heat. The chemical reactions
are:

C2H4+
1

2
O2

r1−−−−→C2H4O

C2H4+3O2
r2−−−−→2CO2+2H2O

C2H4O+
5

2
O2

r3−−−−→2CO2+2H2O
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Fig. 1. Diagram of the catalytic ethylene-oxide reactor

where ri, i = 1,2,3 are the reaction rates expressed by

r1 = k1 exp(
−E1

RT
)P

1
2

E

r2 = k2 exp(
−E2

RT
)P

1
4

E

r3 = k3 exp(
−E3

RT
)P

1
2

EO

ki and Ei, i = 1,2,3 are the reaction rate constant and
activation energy, respectively. R is the ideal gas constant. T
is the temperature. PE and PEO denote the partial pressures
of ethylene (E) and ethylene-oxide (EO), respectively. Under
the assumption of ideal gas, the concentrations of E and EO
can be written as:

CE =
PE

RT
, CEO =

PEO

RT

The states and the manipulated inputs of the system are all
normalized and become unit-less:

x1 =
ρ

ρre f
, x2 =

CE

Cre f
, x3 =

CEO

Cre f
, x4 =

T
Tre f

x1 is the normalized vapor density in the reactor. x2 and x3
are the concentrations of E and EO in the reactor. x4 is the
normalized reactor temperature.

u1 =
Q f

Qre f
, u2 =

CE, f

Cre f
, u3 =

Tc

Tre f

u1 is the normalized feeding flow rate. u2 is the normalized
feeding concentration of ethylene. u3 is the normalized
coolant temperature. The dynamic process is described with
four ODEs:

ẋ1 = u1(1− x1x4)

ẋ2 = u1(u2− x2x4)−A1 exp(
γ1

x4
)(x2x4)

1
2 −A2 exp(

γ2

x4
)(x2x4)

1
4

ẋ3 =−u1x3x4 +A1 exp(
γ1

x4
)(x2x4)

1
2 −A3 exp(

γ3

x4
)(x3x4)

1
2

ẋ4 =
u1

x1
(1− x4)+

B1

x1
exp(

γ1

x4
)(x2x4)

1
2 +

B2

x1
exp(

γ2

x4
)(x2x4)

1
4

+
B3

x1
exp(

γ3

x4
)(x3x4)

1
2 − B4

x1
(x4−u3)

The parameters are listed in Table I, referring to [22] and
[23]. We also refer to [24] to decide our EMPC parameters.

In order to apply the proposed Carleman EMPC method,
we define u∗2 = u1u2, which is the normalized amount of
E in the reactor feed, and replace u1u2 with it. Hence,
all our manipulated inputs uT = [u1, u∗2, u3] are entering
the system linearly. We choose an asymptotically stable
steady-state xT

s = [0.9980, 0.4235, 0.0320, 1.0020] and the
corresponding steady-state input uT

s = [0.35, 0.175, 1.0] as
the nominal point to perform Carleman approximation.

The economic performance of the reactor is characterized
by the time-averaged yield of EO:

Y (t f ) =

∫ t f
0 u1(τ)x3(τ)x4(τ)dτ∫ t f

0 u∗2(τ)dτ

which is the amount of EO produced compared with the
amount of E fed to the reactor over an operating window t f .
The amount of E is uniformly provided over each operating
window. So our EMPC is subject to the following constraint:

1
t f

∫ t f

0
u∗2(τ)dτ = 0.175

Over each operating window t f = 4.68 min, the prediction
horizon Np = 11 shrinks at each sampling time, Np,k =
Np− k, and is reset to NP when starting the next operating
window. Accumulated constraints are applied to make sure
the constraint 1

t f

∫ t f
0 u∗2(τ)dτ = 0.175 is strictly satisfied. The

system is simulated for 10 operating windows.
We use interior-point method as the search algorithm for

both standard EMPC approach and the proposed Carleman
EMPC approach with Intel Core i7-3770 CPU at 3.40GHz.
Standard EMPC is carried out with numerical simulation
via Matlab ode45, since the system under investigation has
nonlinear dynamics.

In our simulation, the system is initialized at xT
0 =

[0.997, 1.264, 0.209, 1.004]. We simulate the system un-
der nominal condition. Standard EMPC generates a time-
averaged yield of 9.22% and spends 226.701 s in calculating
the optimal control inputs. The proposed Carleman EMPC
achieves a time-averaged yield of 8.81% and spends 83.375
s, which cuts down the computational time by 63.2%.

We also simulate the process under system noise. At
each sampling time, bounded Gaussian white noise is added
to the system, which has zero mean and a range of δ =
±[0.005, 0.03, 0.01, 0.02]. Figure 2 shows the closed loop
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Parameter Value Parameter Value
A1 92.80 B3 2170.57
A2 12.66 B4 7.02
A3 2412.71 γ1 -8.13
B1 7.32 γ2 -7.12
B2 10.39 γ3 -11.07

TABLE I
DIMENSIONLESS PARAMETERS OF THE ETHYLENE OXIDATION CSTR

Fig. 2. Standard EMPC: the closed loop performance of the system under
system noise

performance of the system under standard EMPC. The time-
averaged yield is 9.19% and takes 225.861 s to calculate
the economically optimal control policy. In comparison, the
simulation under the proposed Carleman EMPC is shown in
Figure 3. It generates a time-averaged yield of 8.83% and
spends 83.715 s, which saves 62.9% of the computational
time.

We test a case where there is a model mismatch between
the real system and the parameters we use to design the
EMPC controller. The parameter γ1 is assumed to be -10%
smaller than the given value in the real system. Figure 4
shows the performance of the closed loop system under
standard EMPC scheme. Figure 5 shows the performance
under the proposed Carleman EMPC. They are both able to
tolerate the model mismatch and generate the same time-
averaged yield of 17.6%. The proposed Carleman EMPC
spends 125.254 s in computation, which is 36.4% faster than
standard EMPC spending 197.014 s.

Therefore, the proposed Carleman EMPC method demon-
strates significant computational efficiency. Table II presents
a summary of different computational times under different
conditions. The difference in the yield probably comes from
the approximation of the process and the effect of random
noises. In our future work, we will address error prediction
methods to compensate for the loss in approximation.

IV. CONCLUSIONS

In this paper, we proposed an approach based on Carleman
approximation to increase the computational efficiency of
EMPC. Our approach readily worked with non-tracking and

Fig. 3. The proposed Carleman EMPC: the closed loop performance of
the system under system noise

Fig. 4. Standard EMPC: the closed loop performance of the system under
model mismatch

Fig. 5. The proposed Carleman EMPC: the closed loop performance of
the system under model mismatch
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Condition Standard EMPC Carleman EMPC

Nominal 226.701 s 83.375 s
Under system noise 225.861 s 83.715 s
Under model mismatch 197.014 s 125.254 s

TABLE II
COMPARISON OF COMPUTATIONAL TIME: STANDARD EMPC VS THE

PROPOSED CARLEMAN EMPC

non-quadratic stage costs of EMPC. We predicted future
states and economic performances of the system with fast
analytical calculations. We also provided the sensitivity of
the economic performance to the manipulated inputs as the
search gradient to accelerate optimization. A CSTR produc-
ing ethylene-oxide was studied as an application example.
We established a non-tracking, cyclic operation. The com-
putational effort was significantly reduced with the proposed
Carleman EMPC method.

In our future work, we intend to minimize the loss
caused by approximation of the original system. We will
also improve our algorithms so they can be applied to more
complex systems where the manipulated inputs may not
necessarily enter the system in a linear way. In addition,
we will apply our proposed method to large-scale EMPC
problems to relieve them from heavy computational burden.
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