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Abstract— The output feedback control of distributed pa-
rameter systems (DPS) based on adaptive model reduction is
explored in this paper. A significant computational hurdle when
using model reduction for control is the numerical integration of
integrals that appear in the reduced order model reducing their
applicability when dealing with nonlinearities. The objective
of this paper is to further reduce the computational cost in
discrete adaptive proper orthogonal decomposition (DAPOD).
It is addressed by using discrete empirical interpolation method
(DEIM) in the observer and controller to reduce the com-
putational cost associated with the computation of nonlinear
functions. The proposed method is successfully applied in a
tubular reactor with recycle.

I. INTRODUCTION

In recent years, control of distributed parameter systems
(DPS) has been an important issue in many chemical industry
process due to spatial variation as a result of diffusion,
convection and chemical reaction. Some of the examples
include plasma enhanced chemical vapor decomposition,
polymerization catalysis and plug flow reactor. The controller
design for DPS is nontrivial since the state varies in both time
and space, which makes the problem infinite dimensional in
functional space.

Most of these DPS are mathematically described by dis-
sipative partial differential equation (PDE). A standard ap-
proach is to construct the reduced order model (ROM) using
the method of weighted residuals (MWR)[5], [2], [3] which
takes advantage of the property of dissipative PDEs that their
behavior can be approximated by finite dimensional systems
[4], [7]. It approximates the state variable by superposition
of basis functions multiplied by time dependent coefficients.
Basis functions are predetermined analytically by solving
eigenfunction problem of spatial operator of the system.

Since solving the eigenproblem analytically is complex
for systems with complex geometry and nonlinear systems,
proper orthogonal decomposition (POD) [11] can be used to
construct the basis functions using previous observation of
the systems (snapshots). However, the quality of the basis
functions depends on the quantity of the snapshots and how
the snapshots are collected [9].

One promising approach to mitigate this situation is
DAPOD [14], which updates the basis function when the
controller and observer are implemented on-line. The basis
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functions are updated using new snapshot collected from
the process as it evolves. Since applying POD iteratively is
computational intensive, DAPOD eliminates less important
and less recent snapshots and determines new basis function
size by estimating eigenvalues of new covariance matrix.
Compared with the modified APOD [10], DAPOD reduces
computational cost and improves the accuracy of the esti-
mated eigenvalues.

Another issue with ROMs is that the resulting ordinary
differential equations (ODEs) system may still be compu-
tationally expensive to evaluate since nonlinearities in the
original partial differential equation(s) have to be numerically
integrated in space in the resulting ROM. This can lead to
delays in the computation of control action. To circumvent
this issue, discrete empirical interpolation method (DEIM)
[6] is adopted to reduce computational cost. In this method,
the nonlinear term in governing equation in the whole
domain is estimated by measurement at k points with k much
less than the number of spatial grid points using nonlinear
basis functions. Nonlinear basis functions are constructed
off-line and the positions of those k points are determined
based on DEIM algorithm.

In this paper, we propose a combination of DAPOD and
DEIM to design nonlinear controllers of reduced computa-
tional requirements to force the closed-loop DPS evolution
to a desired operating point. To illustrate the performance of
the proposed control scheme and investigate the stability of
it, a tubular reactor with recycle example is investigated.

II. PROBLEM FORMULATION

We consider a dissipative process described by the follow-
ing PDE:

∂x

∂t
= Lx+ f(x) + b(x, z)u (1)

yi =

∫
Ωz

si(z)xdz (i = 1, 2, · · · , k1) (2)

subject to the boundary condition

gb(x,
∂x

∂z
) = 0 on Γ (3)

and the initial condition

x(z, 0) = x0(z) (4)

In this system, x is the state variable, t denotes time,
z ∈ Ωz ⊂ R3 is the spatial coordinate; L represents a
linear operator, f(x) is a nonlinear function. u ∈ Rs0×1

denotes manipulated variables, where s0 refers to the number
of manipulated inputs. b(z) ∈ R1×s0 describes how the
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manipulated variables u control the system spatially and is
known. yi denotes the ith measured output, and si(z) is
a function of space. g is a function of x and its spatial
derivative. Γ is the process boundary. The control objective
is to maintain the state variable at a desired steady state.

A. Method of Weighted Residuals

We use method of the weighted residuals (MWR) [13]
to construct ROMs. Here we provide a brief introduction of
MWR.

MWR approximates state variable, x, by a superposition
of basis functions {φq}.

x(z) =

n∑
q=1

cq(t)φq(z) (5)

where cq denotes time-dependent coefficients, called modes.
They are the state variables in the reduced order model.

A set of ordinary differential equations is used to approx-
imate the PDEs.

n∑
q=1

∫
Ωz

ϕj ċqφqdz =

∫
Ωz

ϕj(

n∑
q=1

cqLφq)dz

+

∫
Ωz

ϕjf(

n∑
q=1

cqφq)dz +

∫
Ωz

ϕjb(x, z)dzu

j = 1, 2, · · · , n

(6)

When weighting functions {ϕj} are constructed so that the
residual r is orthogonal to basis functions {φq}, this method
is also called the Galerkin method [12]. In this manuscript,
we will focus on the Galerkin method. Eq. 6 can be written
in matrix form:

ċ = Lc+ F (c) +B(c)u (7)

where c = [c1, c2, · · · , cn]T , Lij =
∫

Ωz
ϕjLφidz. Note that

both L and B can be calculated off-line, while F is a function
of c and has to be calculated by evaluating f(x) in every
point in space, which is computationally expensive.

B. Discrete Adaptive Proper Orthogonal Decomposition

We briefly review DAPOD for completeness. DAPOD can
be summarized into the following steps:

• construct basis functions off-line
• incorporate new snapshots
• determine basis function size
• check the accuracy of ROM
• update basis functions
• eliminate old snapshot(s)
In the off-line initial basis function construction step, we

can use singular value decomposition (SVD) to construct the
basis function Φ, and initial basis function size is determined
by energy captured by each basis function.

In on-line step, snapshot matrix A is updated when new
snapshot becomes available. Both importance and ”fresh-
ness” of snapshots are considered.

As new snapshots become available, the number of basis
functions needed to construct ROM may increase or decease.

We change the basis function size accordingly based on the
energy captured by the basis functions truncated in previous
steps.

After calculating energy captured by basis functions, we
check the accuracy of basis functions if the basis function
size is unchanged. When basis functions size changes or cur-
rent basis functions are not accurate enough, basis functions
are updated.

C. Discrete Empirical Interpolation Method

Discrete empirical interpolation method was proposed by
Sorensen in 2010 [6]. The method seeks to reduce the com-
putational cost associated with evaluating nonlinear terms in
POD with Galerkin projection. DEIM applies to ordinary
differential equations (ODEs) arising from discretization of
PDEs. The nonlinear term f(x) in Eq. 1 is discretized and
approximated by a linear combination of nonlinear basis
functions U = [u1, u2, . . . , uk] ∈ RM×k

f(t)︸︷︷︸
M×1

≈ Uc̃(t) (8)

where U is obtained using POD algorithm with nonlinear
snapshots. Nonlinear snapshots {f(t1), f(t2), . . . , f(tM̃ )}
are obtained from open loop process of the system (Eq. 1).
The unknown coefficients c̃ is determined using the value of
f at k grid points. (Recalling that k � M , this problem is
overdetermined for c̃). As a result, we obtain

c̃(t) = (PTU)−1PT f(t) (9)

where P is chosen to reduce the error of the approximation.
The finial approximation of nonlinear term is

f(t) ≈ U(PTU)−1︸ ︷︷ ︸
M×k

PT f(t)︸ ︷︷ ︸
k×1

(10)

Notices that U(PTU)−1 is predetermined and evaluating
PT f(t) only requires the values of f(t) at k spatial grid
points.

III. OBSERVER & CONTROLLER DESIGN USING
DEIM/APOD COMBINATION

In this section, we employ DEIM in APOD-based reduced
order model to reduce the computational cost in controller
and observer. Many controller design methods, such as
feedback linearization and Lyapunov based control, and dy-
namic observer design methods require the evaluation of the
nonlinear term. By using DEIM, evaluating nonlinear term
at each grid point can be circumvented and the integration
step can also be predetermined.

We consider a Luenberger-type dynamic observer based
on the reduced order model (Eq. 7)

dc̃

dt
= Lc̃+ F (c̃) +B(c̃)u+Gm(y − ỹ) (11)

where c̃ refers to the estimated state. The gain matrix Gm is
determined using LQR theory[8].
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Since the linear part Lc̃ can be evaluated with lower cost
than the nonlinear part F (c̃), we apply DEIM (Eq. 10) to
F (c̃),

F (c̃) =

∫
Ωz

ϕj f̃(

n∑
q=1

cqφq)dz

≈ΦT f̃∆z

≈ΦTU(PTU)−1∆z︸ ︷︷ ︸
D

PT f̃

(12)

where Φ denotes discretized basis functions. We assume the
grid points are evenly spaced and ∆z denotes the interval.

If b(x, z) is a linear function of x, B(c̃) in Eq. 11 can be
written as Bc̃, we still apply standard POD when evaluating
B(c̃). If b(x, z) is a nonlinear function of x, we generate
another set of nonlinear basis functions to reduce the cost of
evaluating B(c̃) like Eq. 12

B(c̃) =

∫
Ωz

ϕj b̃(

n∑
q=1

cqφq)dz

≈ΦT b̃∆z

≈ΦTUb(P
T
b Ub)

−1∆z︸ ︷︷ ︸
Db

PT
b b̃

(13)

We obtain,

dc̃

dt
= Lc̃+DPT f̃(t) +DbP

T
b b̃u+Gm(y − ỹ) (14)

where
D = ΦTU(PTU)−1∆z

Db = ΦTUb(P
T
b Ub)

−1∆z

can be predetermined and updated when the basis functions
are updated.

Similarly, we can use this approach in controller design
methods.

IV. APPLICATION

V. TUBULAR REACTOR WITH RECYCLE

In this section, we consider a tubular reactor with recycle,
where a first order reaction A→ B takes place [1]. A cooling
jacket is used to eliminate hot spot formulation.

∂x1

∂t
=− ∂x1

∂z
+

1

Pe1

∂2x1

∂z2
+BTBCe−

γx1
1+x1 (1 + x2)

+ βT (u− x1) + δ(z − 0)((1− r)x1f + rx1(1))

∂x2

∂t
=− ∂x2

∂z
+

1

Pe2

∂2x2

∂z2
−BCe−

γx1
1+x1 (1 + x2)

+ δ(z − 0)((1− r)x2f + rx2(1))
(15)

with boundary condition:

TABLE I: Parameter values used in Eq. 15

Parameter Values Parameter Values
Pe1 1 r 0.1
Pe2 1 x1f 0
BT 2.5 x2f 1
BC 0.1 γ 7
βT 2

z = 0: z = L:
∂x1
∂z

= Pe1x1
∂x1
∂z

= 0
∂x2
∂z

= Pe2x2
∂x2
∂z

= 0

where:

Pe1 =
ρcpvL

k

Pe2 =
vL

DA

(16)

The values of parameters used in Eq. 15 are reported
in Table I. The objective of this problem is to force the
temperature to the state x1(z, t) = 0.

In this section, DEIM is exploited to reduce computational
burden. Since both equations in Eq. 15 contain the same
term BCe−

γx1
1+x1 (1 +x2), we use DEIM algorithm to reduce

the computational cost in evaluating this term. To simplify
the notation, we represent this term by f0. To apply DEIM,
nonlinear snapshots of f0 are collected from open loop
process with initial condition x1(z) = 0.3 and x2(z) = 0.3.
Process evolution based on DAPOD only and DAPOD &
DEIM are compared in Fig. 1 and Fig. 2. The error of
observer is displayed in Fig. 3. We observe that the error
introduced by DEIM algorithm is negligible. The numbers
of basis functions for x1 and x2 are provided in Fig. 4 The
time used in simulating the processes is displayed in Table
II

TABLE II: Simulation time

DAPOD number of nonlinear basis functions DEIM & DAPOD

83s

3 82s
5 79s
8 79s

12 80s

VI. CONCLUSIONS

In this paper, we propose to use DAPOD/DEIM com-
bination to reduce the computational cost in controlling
dissipative distributed parameter system. By evaluating the
performance of the proposed method in a tubular reactor
with recycle example, we conclude that using DEIM can
reduce the computational cost and has negligible impact on
the performance of the controller and observer compared
with systems using DAPOD only.
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(a) (b)

Fig. 1: The spatialtemporal profile of x1 based on
(a)DAPOD; (b)DAPOD & DEIM.

(a) (b)

Fig. 2: The spatialtemporal profile of x2 based on
(a)DAPOD; (b)DAPOD & DEIM.
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Fig. 3: The error of observer for (a)x1; (b)x2.
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Fig. 4: The number of basis functions for (a)x1; (b)x2.
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