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Abstract— We propose an anti-windup scheme for a class
of control problems. This class, includes networked systems,
where each node contains a subsystem and each edge comprise
a control action. The networked anti-windup control system
is proposed to address the issues caused by integrator state
saturation. We show that the suggested control scheme is input-
output stable. Furthermore, we provide a numerical method for
robust performance analysis of the suggested control system.

Index Terms—Distributed control, decentralized control,
anti-windup, structure preserving.

I. INTRODUCTION

When a system has many separate decision making units
and their control actions must be determined based on partial
(rather than total) information, it can be considered as a
distributed control system. Due to their complexity and
growing size, it is of great importance to have efficient
methods for synthesis and implementation of distributed
controllers.

An efficient approach to deal with distributed control
problem of large-scale systems is to develop scalable and
structure preserving control algorithms. Based on the concept
of positive systems, a scalable method is introduced in [1]-
[3], where it is shown that considering positive systems
simplifies the synthesis of distributed controllers. Other scal-
able approaches are shown to be efficient in [4]-[5], where
methods are suggested to design decentralized controller
based on local information. For a survey of recent works
in the area of distributed control, see [6].

In practice, all control systems deal with constraints. One
type of practically common and important constraints, is
the constraint due to control input limits, known as ac-
tuator saturation. For example, pumps have bounded flow
capacity, motors have finite speed and torque and valves
work in the range of fully open and fully closed states.
These type of physical limitations, exist in all controlled
systems, regardless of the control algorithm being centralized
or decentralized. Hence, in applications we have to encounter
with control signal constraints.

Recently, an H-infinity optimal static state feedback law
is proposed in [7], where the control law is applicable to
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linear time-invariant systems with symmetric and Hurwitz
state matrix. However, that control law is unable to remove
stationary errors in presence of constant disturbance. To
overcome that deficiency, an optimal H-infinity PI controller
is developed in [8]. Specifically, the following problem was
studied in the network context.

Consider a graph (V , E ) where V and E are the sets of
edges and nodes respectively. Associate with this graph the
following system{

ẋi = aixi(t)+∑(i, j)∈E (ui j +di)

ei = ri− xi
(1)

where xi is the state variable of the i-th subsystem with i ∈
V , ai < 0, ui j = −u ji. Moreover u, d, r and e are control-,
disturbance-, reference- and error-signals respectively.

Given the above network system, the optimal state feed-
back control law that minimizes the L2-gain from r to u
while keeping the L2-gain from d to integral of x bounded,
is given by {

ẏi j = κ(ei/ai− e j/a j)

ui j = yi j− ei/a2
i + e j/a2

j
(2)

where κ is a gain. This control algorithm is clearly a de-
centralized (proportional-integral) control law, as the control
action ui j is determined by the error (and its integral) at the
nodes i and j. In Figure 1 an example of a buffer network
with the PI control (2) is depicted.

Now again we consider system (1), but this time with
constraint on the control signal. Then the plant can be
described as{

ẋi = aixi(t)+∑(i, j)∈E (sat(vi j)+di)

ei = ri− xi
(3)

where sat(.) denotes the saturation unit and v is the con-
trol signal. Here as a result of the introduced saturation,
system (3) with controller (2) exhibits integrator windup
phenomenon. To address that issue, we suggest the following
control law 

es,i j = sat(vi j)− vi j

ẏi j = κ(ei/ai− e j/a j)+ f es,i j

vi j = yi j− ei/a2
i + e j/a2

j

(4)

where y is the integrator state, f is the anti-windup feedback
gain and es is the saturation error and defined as the differ-
ence between the output of saturation unit and the control
signal, that is es = sat(v)− v. The saturation error is zero
whenever the control signal v is within the saturation limits
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Fig. 1. A buffer network with distributed PI control (2), where xi is the level in the buffer i and ui j is the control signal between the buffers i and j. The
unlinked arrows illustrate where the connections are to the rest of the network.
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Fig. 2. A buffer network with distributed PI control equipped with the proposed anti-windup scheme (4). The unlinked arrows illustrate where the
connections are to the rest of the network.

and is nonzero otherwise. When integrator windup happens,
control signal will be saturated and hence the anti-windup
becomes activated. Therefore, the saturation error signal is
fed to the integrator state through the anti-windup gain f .
This prevents the integrator from winding up. The rate at
which the controller output is affected by the anti-windup
feedback loop, is determined by the anti-windup feedback
gain, f , where 1/ f can be interpreted as the time constant
of the anti-windup feedback loop. It is worth mentioning that
the control signal vi j is determined by the errors at the nodes
i and j and by the saturation error of the neighbouring nodes.
Hence, this control algorithm is a decentralized control law.
An example of a buffer network with the anti-windup control
scheme (4) is illustrated in Figure 2.

The outline of the paper is as follows. We summarize the
notations in section II. In section III, we propose an anti-
windup scheme is to address the problem of control signal
saturation for a class of dynamic state-feedback control
systems. Besides showing input-output stability, a numerical
robust performance analysis is given in that section. In
section IV, we provide a basic numerical example to show
an application of the results. Concluding remarks is given in
section V.

II. NOTATION

Let L2 be the set of square integrable functions u :
[0,∞) −→ R and L2e the set of functions u : [0,∞) −→ R
that need only be square integrable on finite intervals. An
operator H : Lm

2e−→Ln
2e is said to be bounded if the operator

norm

‖H‖= sup{‖H(u)‖
‖u‖

: u ∈ Lm
2 ,u 6= 0}

is finite. We say an operator H is casual, if PT H = PT HPT
where PT is the past projection operator which leaves a

function unchanged on the interval [0,T ], and gives the value
zero everywhere else. Corresponding transfer function of
a linear time-invariant operator H is represented by Ĥ(s).
Furthermore, Fourier transformation of a signal v is denoted
by v̂. Moreover, the scalar saturation operator is denoted by
δ .

For a matrix M ∈Rn×m, pseudo-inverse and spectral norm
of M is denoted by M† and ‖M‖ respectively.

III. RESULTS

In this section, we first give a summary of the main result
of [8] to build the ground for the rest of this paper.

Consider the system depicted in Figure 3, with

P̂(s) = (sI−A)−1B (5)

where K̂ is the controller, A is the state matrix and assumed
to be symmetric and negative definite, and B is a full
rank matrix. The optimal state feedback control law that
minimizes the L2-gain from r to u while keeping the L2-
gain from d to integral of x bounded by τ ≥

√
‖BT A−4B‖,

is given in [8], in the form of a distributed PI controller

K̂(s) = Kp +
1
s

Ki (6)

with the following gains

Kp = κBT A−2 (7)

Ki =−κBT A−1 (8)

where κ is the gain below

κ =

∥∥∥∥1
τ
(A−1B)†

∥∥∥∥ . (9)

We can see that due to the particular form of the controller
gain matrices Kp and Ki, if matrix A is diagonal then the
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sparsity pattern of the controller will be similar to the sparsity
pattern of BT . This property leads to scalability characteristic
of the controller, specially when B is the incidence matrix
describing structure of the network.

K̂(s)

P̂(s)+

+
−

û

d̂

r̂

x̂

Fig. 3. Block diagram of the system described in (5)-(6), with process
disturbance d̂, reference input r̂, control signal û, plant output x̂, controller
K̂ and process P̂.

When it comes to the controller realization, depending on
the size of B ∈ Rn×m, there are two interpretations based
on the number of integrators. In the associated graph of the
system, n and m correspond to the number of the nodes and
the edges respectively. In the case that BT has more rows
than columns (m ≥ n), it is better to describe the controller
realization as the following

u(t) = κBT A−2e(t)−κBT A−1
∫ t

0
e(ξ )dξ

hence, we need to have n integrator in the controller. On the
other hand, if BT has more columns than rows (n = m+1),
it is more efficient to consider the following realization of
the controller

u(t) = κBT A−2e(t)−
∫ t

0
κBT A−1e(ξ )dξ

that is, we need to have m integrators in the controller in this
case.

With the above described realization of the controller, we
always have the minimal number of the integrators. In this
paper for simplicity, we consider the second realization of
the controller which corresponds to a tree-structured graph.

As already mentioned, in presence of integrator in the
control law, windup problem is likely to happen. To avoid
the negative effects of integrator windup, the following anti-
windup scheme is proposed.

w = ∆(v)
es = w− v
e = r− x
ẏ = Kie+Fes

v = y+Kpe

(10)

where v is the control signal, w is the output of the saturation
unit, es is the saturation error and defined as es = w− v,
e is the error signal, and Kp and Ki are given by (7) and
(8) respectively. Moreover, F is the anti-windup gain matrix
and ∆ is a nonlinear casual operator, consisting of scalar
saturation elements δi acting on the signal vi

∆ =

δ1
. . .

δn

 (11)

The anti-windup control system is illustrated in Figure 4.
The rest of this section, is devoted to show the stability

and evaluate the performance of the anti-windup scheme.

Kp

Ki

+∆

+

+F

∫

P +

+

−x

e

es

y
−+

r

d vw

Fig. 4. The proposed anti-windup control, with saturation block ∆, anti-
windup gain matrix F , proportional gain Kp, integral gain Ki, and the
integrator state defined as y. This anti-windup model is similar to the well-
known back calculation anti-windup scheme.

A. Stability analysis

To show input-output stability of the feedback system in
Figure 4, we use circle criterion in integral quadratic con-
straint (IQC) framework, this will facilitate the performance
analysis in the end of this section. To use that approach,
we state the control system in Figure 4, with the following
feedback configuration{

v = Gw+d2

w = ∆(v)+d1
(12)

where d1 and d2 are interconnection noise and G is a casual
linear time-invariant operator with the transfer function

Ĝ(s) = (F + sI)−1(F−κBT A−2B) (13)

and ∆ is a nonlinear operator with bounded gain defined in
(11). The interconnection (12), is graphically demonstrated
in Figure 5. We say that the feedback system in (12) is stable
if there exist a constant C > 0 such that∫ T

0
(|v|2 + |w|2)dt ≤C

∫ T

0
(|d1|2 + |d2|2)dt

for any T ≥ 0.

∆

G+

+

w

v

d1

d2

Fig. 5. Studied feedback configuration. d1 and d2 belong to L2e and
represent interconnection noise. G and ∆ are linear and nonlinear casual
operators respectively.

Input-output stability of the proposed anti-windup control
system follows from stability of the feedback interconnection
in (12).
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Theorem 1. Let A ∈ Rn×n be a symmetric and negative
definite matrix, B∈Rn×m be a full-rank matrix and κ be the
gain defined in (9). Consider the feedback system described
by (10)-(13). If the anti-windup gain matrix is F = f I with
f > 0, then the feedback interconnection is input-output
stable.

Proof: It is straightforward to verify that the IQC below∫
∞

−∞

[
v̂( jω)
ŵ( jω)

]∗
Π

[
v̂( jω)
ŵ( jω)

]
dω ≥ 0

with the multiplier

Π =

[
0 I
I −2I

]
holds for any ŵ = ∆(v̂). If[

Ĝ( jω)
I

]∗
Π

[
Ĝ( jω)

I

]
< 0 ∀ω ∈ R (14)

holds, then input-outpout stability of (12) follows [9]. Sub-
stituting Π into inequality (14), gives

Ĝ( jω)∗+ Ĝ( jω)−2I < 0 ∀ω ∈ R

replacing Ĝ( jω) from (13), yields

f I−κBT A−2B
f + jω

+
f I−κBT A−2B

f − jω
−2I < 0 ∀ω ∈ R

after simplification we get

− f κBT A−2B−ω
2I < 0 ∀ω ∈ R

which is obviously true, since BT A−2B is a positive definite
matrix. Hence the theorem is proved.

B. Robust performance analysis

To evaluate robust performance of the system, we use the
method described in [10]. To do so, we need to reconfigure
the system to the linear fractional transformation (LFT), il-
lustrated in Figure 6. The equivalent algebraic representation
can be written as 

[
z
v

]
= G

[
e
w

]
w = ∆(v)

(15)

where G is a stable LTI system, ∆ is the saturation block, z is
the controlled variable and e is the exogenous input. One of
the most common performance indices in robust analysis is
the L2-gain of the system. As we want to investigate robust
L2-performance of the system, we consider its corresponding
IQC below ∫

∞

0
(|z(t)|2− γ

2|e(t)|2)dt ≤ 0

To show that the system has robust L2-gain γ , it is sufficient
to show that the following frequency domain inequality (FDI)
holds [

Ĝ( jω)
I

]∗
M
[

Ĝ( jω)
I

]
≤ 0 (16)

G

∆

e

w

z

v

Fig. 6. Graphical illustration of the linear fractional transformation in
relation (15).

for ω≥ 0, where Ĝ is the transfer function of operator G and

M =


I 0 0 0
0 Π11 0 Π12
0 0 −γ2I 0
0 Π∗12 0 Π22


with Π11 = 0, Π12 = τI, Π12 =−2τI, and τ > 0.

To investigate the robust performance of the anti-windup
control system, we consider two cases. First, the map from
the reference input r to the control signal v, and then, the
map from the disturbance d to the integrator state y. In the
first case z = v and e = r and in the later case, z = y and
e = d. To carry out the analysis, next we find what the map
G is for each case. The transfer matrix of the first case is

Ĝ1(s) = (sI +F)−1
[

sK̂ F− sK̂P
sK̂ F− sK̂P

]
and the the map for the second case is found to be

Ĝ2(s) = (sI +F)−1
[
(FKp−Ki)P F +(FKp−Ki)P
−sK̂ F− sK̂P

]
To find γ , one way is to verify the FDI in (16). Instead,
in a more efficient way, we can use Kalman-Yakubovich-
Popov (K-Y-P) lemma [11], to find the corresponding linear
matrix inequality (LMI) and then verify it. To do so, we
should have the corresponding state space description of
the transfer matrices Ĝ1(s) and Ĝ2(s). Assume that Ĝ(s) =
C̃(sI− Ã)−1B̃+ D̃. Then according to K-Y-P lemma, if M is
a real matrix and (16) is satisfied, then there exists a real
matrix P = PT such that the following LMI holds

M̃+

[
ÃP+PÃ PB̃

B̃T P 0

]
≤ 0 (17)

where

M̃ =

[
C̃ D̃
0 I

]T

M
[
C̃ D̃
0 I

]
hence we can claim that the system has robust L2-gain γ .

It should be noted that, when we deal with large systems,
the LMI in (17) gets large and it cannot be verified efficiently.
However, there are methods suggested in the literature such
as in [12] to help efficiently validating the LMI’s that have
sparsity pattern. This issue of scalability could be addressed
either by introducing efficient methods to verify the LMI’s
or by finding an analytic upper bound for L2 performance
of the system. This is left as a future research direction.
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Fig. 7. State variables in response to the reference input r =[
1(t)−1(t−50) 0 0 0

]T for the system with and without anti-
windup scheme and the linear case.

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

u
12

without anti-windup
with anti-windup
linear system

0 10 20 30 40 50 60 70 80 90 100

time (s)

-1

-0.5

0

0.5

1

u
13

without anti-windup

with anti-windup

linear system

0 10 20 30 40 50 60 70 80 90 100

time (s)

-1

-0.5

0

0.5

1

u
14

without anti-windup
with anti-windup
linear system

Fig. 8. Control signals in response to the reference input r =[
1(t)−1(t−50) 0 0 0

]T for the system with and without anti-
windup scheme and the linear case.
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Fig. 9. State variables in response to the load disturbance d = (1(t)−
1(t−50))

[
1 −1 0 0

]T for the system with and without anti-windup
control and the linear case.

IV. EXAMPLE AND DISCUSSION

Consider a buffer system with four buffers connected in
star configuration (see Figure 1). The following state space
model 

ẋ1
ẋ2
ẋ3
ẋ4

= A


x1
x2
x3
x4

+B

u12
u13
u14

+


d1
d2
d3
d4

 (18)

with

A =−diag([1,2,4,8]), B =


1 1 1
−1 0 0
0 −1 0
0 0 −1


describes the dynamics of the levels in the buffers, where xi is
the level (difference with some steady state) in the buffer i, di
is the disturbance to the buffer i, and ui j is the control signal
between the buffers i and j. We want to attain a specific level
in each of the buffers while disturbance is being rejected to
a certain extent.

To evaluate performance of the system with the anti-
windup controller, a simulation is carried out and the results
are illustrated in Figures 7 to 10. In each case, a square
signal (1(t)−1(t−50)) is applied to the system to evaluate
the systems behaviour when the applied signal changes.
In Figures 7 and 8, it can be seen that in response to a
reference change, the system without anti-windup control,
exhibits overshoot and undershoot as a result of control
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Fig. 10. Control signals in response to the load disturbance d = (1(t)−
1(t−50))

[
1 −1 0 0

]T for the system with and without anti-windup
control and the linear case.

signal saturation. In Figures 9 and 10, we can see for the
system without anti-windup, there is a considerable amount
of delay before the control signal returns within the saturation
range. Hence there is a delay in the response of state
variables to the change of disturbance input. However, the
the system with anti-windup control, doesn’t exhibit this
behaviour and recover quickly from being saturated.

Now we compare the L2-gain of the anti-windup control
system with the linear case in [8]. To do so, consider the map
from the reference input r to the control signal v (the signal
which goes to the plant). For the specific example provided
in here, in the linear case, L2-gain of the system is 5.16,
while for the anti-windup control system, an upper bound
to the same performance measure is larger and found to be
9.01. To find the upper bound of L2-gain for the nonlinear
case, a minimization over f is carried out.

It is not surprising that there is a gap between upper
bound of L2-gain of the anti-windup system and L2-gain
of its linear counterpart. However, the method that we used
could be conservative and this issue could be addressed
by using a family of multipliers in the IQC method. That
is, instead of choosing a single multiplier, we could have
solved an optimization problem over a family of multipliers
which satisfy the IQC defined by saturation (∆), to find a
better linear combination of valid multipliers. In this way,
the mentioned gap would be smaller.

Similarly for the map from the disturbance d to the
integrator state y, the upper bound of the L2-gain is evaluated

for this numerical example. For that case, the upper bound
is found to be 4.25. Existence of the upper bound of the L2-
gain, shows that for the worst case disturbance, the integrator
state and therefore the control signal will remain bounded.

V. CONCLUSIONS AND FUTURE WORKS

We proposed an anti-windup scheme for a class of net-
worked control systems. The suggested anti-windup con-
trol system addresses the control signal saturation problem
caused by the integrator windup. As this work is built upon a
structure preserving PI controller, the proposed anti-windup
scheme is also structure preserving. Moreover, using circle
criterion for a special yet important class of anti-windup
control systems, we showed that the system is input-output
stable. Furthermore, we presented a numerical method for
robust performance analysis.

Generalizing the proof of stability and providing a closed
form expression for the L2-gain of the system can be done in
the next line of research. Moreover, a design criterion for the
anti-windup gain can be found using robust analysis, which
is also left as a future research direction.
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