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Abstract— The paper studies the problem of the H2 (LQG)
optimal control of LTI plants under irregular communication
interruptions between the sensor- and actuator-side parts of the
controller. The derived optimal solution is analytic, numerically
simple, implementable, transparent, and requires no a priori
information about the interruption intervals or their statistics.
The result is generalized to incorporate a constant loop delay.

Index Terms— Networked control, H2 optimization.

I. INTRODUCTION

Networked control raises numerous challenges for the

analysis and design of feedback loops. One of them is ex-

pensive, and potentially unreliable, communication between

sensors and actuators, see [1, 2] and the references therein.

Communication problems may be accounted for as signal-to-

noise ratio constraints [3], channel capacity constraints [4],

loop delays [5], lost packets [6], etc. The setup studied in

this paper is motivated by the latter approach.

We consider the standard continuous-time H2 problem

assuming that the information flow in the controller, from

the measured plant output to the control input, may be inter-

rupted during some time intervals. This assumption is similar

to that made in [7, Ch. 4], where the setup is referred to as the

“intermittent feedback” and periodic alternations of closed-

and open-loop stretches are considered. In this paper, the

communication is allowed to be interrupted irregularly. This

results in intermittent alternations of closed- and open-loop

stretches and may be thought of as a stripped-down version

of the packets loss phenomenon in networked control. There

are other motivations for this setup, see [7, Sec. 4.5] and the

references therein. Another difference from [7, Ch. 4], which

addressed only the stabilization problem, is that the present

paper studies the closed-loop H2 performance. From this

viewpoint the setup is related to those in [6, 8]1.

The solution procedure proposed below is different from

those in the above-mentioned references. Specifically, com-

munication interruptions are treated not as time-varying pa-

rameters in the plant input and output channels, but rather as

causality constraints imposed upon analog suboptimal con-

trollers operating with no interruptions. The design procedure

is then based on imposing appropriate causality constraints
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1Papers [6, 8] et alii consider discrete-time versions of the problem, which
may be more natural in networked control. This difference, however, is
minor. The continuous-time setup is adopted below solely to simplify the
formulae, which streamlines the presentation of main ideas. Arguments of
the paper extend to discrete-time systems mutatis mutandis.
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Fig. 1. The standard H2 setup with generalized plant G

on the Youla parameter in the parametrization of all analog

suboptimal controllers. This follows the logic of [9], although

is applied to a different class of causality constraint. The

result of this treatment is an analytic solution, which pos-

sesses two important properties. First, the solution is based

on the very same gains as the standard, time-invariant, H2

solution in the uninterrupted case. This is in contrast to the

solutions in [6, 8], where the gains are time varying. Second,

the optimal controller needs to know neither the interruption

intervals in advance nor interruption statistics. The controller

architecture does not depend on the interruption schedule and

only switches one link on / off each time the communication

becomes available / unavailable. This property might appear

surprising, taking into account that the quadratic optimization

has a two-point boundary value problem in its heart.

The approach is also extended to accommodate a constant

loop delay. The presence of the delay requires a dead-time

compensation element to be added to the sensor-side part of

the controller. Otherwise, the properties remain unchanged.

Notation: The (complex-conjugate) transpose of a matrix

M is denoted by M 0 and, if M is square, tr.M/ stands for its

trace. The Frobenius norm of a matrix kMkF ´
p

tr.M 0M/.

The notation kGk2 is used for the H2 norm of a linear system

G, see Appendix for more details. The lower / upper linear-

fractional transformations of ˝ by ˚ are

Fl.˚; ˝/ ´ ˚11 C ˚12˝.I � ˚22˝/�1˚21;

Fu.˚; ˝/ ´ ˚22 C ˚21˝.I � ˚11˝/�1˚12

for appropriate partitions of ˚ .

II. PROBLEM FORMULATION AND SOLUTION

Consider the setup in Fig. 1(a) with a given generalized

plant G and a controller K. The generalized plant is assumed

to be LTI and given in terms of its state-space realization

G D

�

G´w G´u

Gyw Gyu

�

D

2

4

A Bw Bu

C´ 0 D´u

Cy Dyw 0

3

5 : (1)

We also assume that
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A1: the triple .Cy ; A; Bu/ is stabilizable and detectable,

A2: the realization .A; Bu; C´; D´u/ has no invariant zeros

on the imaginary axis and D0
´uD´u > 0,

A3: the realization .A; Bw ; Cy ; Dyw / has no invariant zeros

on the imaginary axis and DywD0
yw > 0.

The performance is quantified by the H2 norm of the system

T´w D Fl.G; K/

connecting the exogenous input w and the regulated output

´ (see Appendix for the definition of the H2 norm and its

interpretations).

A key assumption about the controller K is that the infor-

mation flow in it, from the measured output y to the control

input u, may be interrupted during some time intervals. A

schematic representation of this is shown in Fig. 1(b), where

Ks and Ka are controller parts located at its sensor and

actuator sides, respectively. Formally, consider a sequence

of time instances

0 D t0 � t1 < t2 � t3 < t4 � � � � ; lim
i!1

ti

i
> 0 (2)

and define the function

�.t/ ´

(

t if t 2 Œt2i ; t2iC1�

t2iC1 if t 2 .t2iC1; t2iC2/
D

t0 t1

t1

t2

t2

t3

t3

t4

t4

(3)

for all i 2 ZC. We assume that K W y 7! u is such that

A4: u.t/ may depend only on y.s/ for s � �.t/, 8t 2 RC.

Assumption A4 implies that the control loop is closed

in “even” intervals Œt2i ; t2iC1� and open in “odd” intervals,

.t2iC1; t2iC2/. Although this model is simplistic, it captures

the essence of interrupted communication, the halt of the

information flow from one end of the controller to the other.

At the same time, it imposes no restriction on the way in

which y.t/ is processed at the sensor side or on the waveform

of u.t/ at the actuator side. This may be reasonable in the

world where computational resources become more and more

accessible. Likewise, there is no restriction on the split of the

controller as K D KaKs in Fig. 1(b).

Remark 2.1: It should be stressed that A4 does not imply

any loss of information in y.t/. It merely says that the effect

of measurements on the control signal might be occasionally

delayed. If t2iC1 D t2i at some i , which is not ruled out by

(2), we have a sampled-data information exchange, like that

studied in [9]. If t2iC1 > t2i , the controller K behaves as a

standard analog causal system in Œt2i ; t2iC1�. O

We are now in a position to formulate the problem studied

in this paper.

OPfti g: Given the generalized plant (1), satisfying A1–3, and

the sequence fti g as in (2), design a controller K

satisfying A4, which internally stabilizes the system

and minimizes kT´wk2.

The solution of OPfti g, much like of its conventional

analog counterpart, is based on the stabilizing solutions to

the following two algebraic Riccati equations:

A0X C XA C C 0
´C´ � C 0

uCu D 0; (4a)

where Cu ´ .D0
´uD´u/�1=2.B 0

uX C D0
´uC´/, and

AY C YA0 C BwB 0
w � ByB 0

y D 0; (4b)

where By ´ .YC 0
y C BwD0

yw /.DywD0
yw /�1=2. Solutions are

said to be stabilizing if the matrices A C BuF and A C LCy

are Hurwitz, where

F ´ �.D0
´uD´u/�1.B 0

uX C D0
´uC´/;

L ´ �.YC 0
y C BwD0

yw/.DywD0
yw/�1:

Stabilizing solutions to (4) exist iff A1–3 hold and are unique

and positive semi-definite then, see [10, Cor. 12.10].

The main result of the paper, whose proof is postponed to

Section III, is then formulated as follows:

Theorem 2.1: The optimal performance in OPfti g is

kT´wk2
2 D 0 C lim

i!1

1

t2i

i
X

j D1

Z hj

0

Z s

0

kCueAt Byk2
F

dtds; (5)

where hj ´ t2j � t2j �1 > 0 is the duration of the j th inter-

ruption and

0 ´ tr.B 0
wXBw / C tr.C´YC 0

´/ C tr.XAY C YA0X/ (6)

is the optimal performance in the conventional continuous-

time H2 problem. A (non-unique) controller attaining (5) is

POx.t/ D A Ox.t/ C Buu.t/ � L.y.t/ � Cy Ox.t// (7a)

u.t/ D F e.ACBuF /.t��.t// Ox.�.t// (7b)

and it is stabilizing iff either A is Hurwitz or there is ˛ > 0

such that supi2N
.t2i � t2i�1/ � ˛. O

Some remarks are in order:

Remark 2.2 (implementation): To implement the optimal

controller in (7) we need to run the Kalman filter (7a) at the

sensor side Ks and two copies of the control signal generator

(7b), one at the sensor side to produce u for (7a) and one at

the actuator side Ka to generate the actual control signal. To

that end, the sensor side needs to know interruption intervals

in real time, which might not suit some protocols. O

Remark 2.3 (periodic interruptions): One may think of

scenarios, where interruptions are periodic. For example, this

would be the case if a communication channel is shared

by several processes under round-robin scheduling. Periodic

scenario corresponds to the choice

tj D

(

j

2
hc C j

2
hi if j is even,

j C1

2
hc C j �1

2
hi if j is odd,

where hc > 0 and hi > 0 are the durations of the connection

and interruption intervals, respectively. In this case, the

optimal performance is

kT´wk2
2 D 0 C

1

hc C hi

Z hi

0

Z s

0

kCueAtByk2
F dtds

and the optimal controller is unique (because kT´wk2 is then

a norm, not a semi-norm). O
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III. PROOF OF THEOREM 2.1

To simplify the exposition, we assume throughout this sec-

tion that D0
´uD´u D I and DywD0

yw D I . These assumptions

are a matter of scaling the signals u and y in Fig. 1 and

can thus be made without loss of generality. Under these

assumptions F D �Cu and L D �By .

A. All suboptimal analog controllers

Controllers satisfying A4 constitute a subset of the set of

causal continuous-time controllers K W y 7! u, i.e. such that

u.t/ may depend only on y.s/ for s � t . This suggests that

controllers for OPfti g can be designed by imposing additional

(causality) constraints on a parametrization of suboptimal

causal controllers. This line of reasonings is followed below.

Form the system

J D

2

4

A C BuF C LCy �L Bu

F 0 I

�Cy I 0

3

5 ; (8)

where F and L are the LQR and Kalman filter gains defined

after (4). The following result parametrizes all suboptimal

time-varying analog controllers:

Lemma 3.1: Let A1–3 hold. Then all stabilizing continu-

ous-time linear controllers for the setup in Fig. 1(a) can be

parametrized as Fl.J; Q/, where Q is any stable, possibly

time-varying, linear system. Moreover, if Q 2 H2, then

kT´wk2
2 D 0 C kQk2

2;

where 0 is as defined in Theorem 2.1. O

Proof (outline): It is essentially a version of the proof

of [9, Lem. A.1]. There is one delicate point missed there

though. Namely, the proof of the main result requires a

switch from systems operating on the semi-axis RC to those

operating on the whole axis R. This step is normally done

silently and changes nothing in the LTI case. However, it

is not obvious for time-varying Q’s. Nonetheless, it can be

worked out using the property that Hankel operators asso-

ciated with systems of interest are always Hilbert-Schmidt

operators and are thus in the null-space of the H2 norm

(as mentioned in the Appendix). Details, which are quite

technical, will be reported elsewhere.

If no other constraints (apart from the standard causality)

are imposed on K, Lemma 3.1 readily yields the solution

to the problem of minimizing kT´wk2. Indeed, any choice

verifying kQk2 D 0 yields an optimal causal K. In the LTI

case, this condition is satisfied by the unique Q D 0. This

choice is not unique if Q is allowed to be time varying.

However, the resulting controllers under these choices do

not satisfy A4 in general. To end up with an admissible K,

additional constraints on Q should be imposed.

B. Communication interruptions as constraints on Q

A (sufficiently) broad class of linear controllers K W y 7! u

acting on the semi-axis RC ´ .0; 1/ can be described by

the kernel representation

u.t/ D

Z

RC

k.t; s/y.s/ds (9)

s

t

0

0

(a) Causal K

s

t

0

0

t1

t1

t2

t2

t3

t3

t4

t4

t5

t5

(b) K satisfying A4

Fig. 2. Impulse responses of analog systems in the time domain.

for an associated distribution k.t; s/ (impulse response). The

class of causal analog controllers corresponds then to kernels

that satisfy k.t; s/ D 0 whenever s > t . The impulse response

may be visualized as shown in Fig. 2(a), where the unshaded

area represents zero values (the lower triangular structure in

this case). It is readily seen that the kernels of controllers

satisfying A4 may be visualized as depicted in Fig. 2(b).

Our goal in this part is to apprehend the constraint, which

A4 imposes on Q. It is known [10, Lem. 10.4 (c)] that for J

in (8) the mapping Q 7! K is bijective, with

K D Fl.J; Q/ () Q D Fu.J �1; K/ (10)

for all causal Q’s. Thus, we may be interested to understand

how the “white triangles” in Fig. 2(b) are transformed by

Fu.J �1; K/. Arguably, a natural approach to do that is via

considering the relation between Q and K in the lifted

domain, in line with the reasonings in [9].

The lifting transformation associated with a sequence of

time instances fti g maps an analog signal �.t/ into an

equivalent sequence of functions f M�Œi �g so that at each i 2 ZC

M�Œi �.�/ D �.ti C �/; 8� 2 Œ0; tiC1 � ti /

see Fig. 3, which visualizes the idea. Any continuous-time

Fig. 3. Lifting transformation with nonuniform time axis partition.

system can then be lifted by lifting its input and output

signals, resulting in a discrete-time system with infinite-

dimensional i / o spaces. Specifically, controller (9) can be

rewritten in the lifted domain as

MuŒi �.�/ D
X

j 2ZC

Z tjC1

tj

k.ti C �; s/y.s/ds

D
X

j 2ZC

Z tjC1�tj

0

k.ti C �; tj C �/ MyŒj �.�/d�

µ
�

X

j 2ZC

MkŒi; j � MyŒj �
�

.�/: (11)
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(a) MK satisfying A4

j

i
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4

(b) Corresponding MQstat

Fig. 4. Impulse responses of analog systems in the lifted domain.

This relation describes a discrete linear system, denote it
MK, whose kernel (impulse response) MkŒi; j � at each .i; j /

is an integral operator mapping functions on Œ0; tj C1 � tj / to

functions on Œ0; tiC1�ti /. In terms of the kernels in Fig. 2, this

transformation may be viewed as merely chopping the t- and

s-axes into pieces according to fti g. Then, the continuous-

time kernel in Fig. 2(b) transforms to the lifted kernel as

shown in Fig. 4(a). The latter can be thought of as a form of

system matrix as in [11, Sec. 4.1]. The “diagonal” element
MkŒi; i � of the lifted kernel, which is an integral operator on

Œ0; tiC1 � ti /, is referred to as the i th feedthrough term of MK.

The advantage of representing K in the lifted domain, with

the lifted grid as in (2), stems from the fact that A4 in the

lifted domain reads as the condition that

MkŒi; i � D 0 whenever i is odd: (12)

This condition is easier to deal with. In particular, it fits well

into the LFT framework in (10). Indeed, define

R ´ J �1 D

2

4

A �Bu L

�Cy 0 I

F I 0

3

5 :

Because the lifted MR and MK are causal, we have that

MqŒi; i � D Fu. MrŒi; i �; MkŒi; i �/; 8i 2 ZC:

Therefore, (12) holds true iff

MqŒi; i � D Fu. MrŒi; i �; 0/ D Mr22Œi; i � whenever i is odd: (13)

In other words, A4 pre-specifies the odd feedthrough terms

of the lifted version of Q and this is the only constraint

imposed by it.

To formalize the constraint above, define the lifted system
MQstat W M� 7! M� as the system whose impulse response verifies

MqstatŒi; j � D

(

Mr22Œi; i � if j D i and is odd

0 otherwise
(14)

This kernel can be visualized as depicted in Fig. 4(b) (the

nonzero diagonal blocks are triangular because R22 is causal,

so the feedthrough terms of its lifting are causal, as operators

on Œ0; tiC1�ti /, too). This MQstat is a static system, in the sense

that M�Œi � depends only on M�Œi �. Them the following result

summarizes the arguments above:

Lemma 3.2: MK D Fl. MJ ; MQ/ is the lifting of a controller

satisfying A4 iff MQ D MQstat C MQ0, where Qstat is determined

via (14) and MQ0 is the lifting of a any causal system such

that Mq0Œi; i � D 0 whenever i is odd. O

C. The optimal Q, its H2 norm and stability

The constraint on admissible Q’s in Lemma 3.2 is given

in the lifted domain and not readily usable. Transforming

it back to the time domain will be discussed later on.

But we start this part with one important property of the

characterization of Lemma 3.2, which can be understood

already in the lifted domain. Namely, it is readily seen that

the kernels of MQstat and MQ0 do not overlap. Hence, the

kernels of their time-domain counterparts, Qstat and Q0, do

not overlap either. It then follows from (23) that Qstat is

orthogonal to any admissible Q0. Thus, for every Q resulting

in a controller, satisfying A4, we have that

kQk2
2 D kQstatk

2
2 C kQ0k2

2: (15)

This property leads us to the following result:

Lemma 3.3: Any Q0 2 H2 so that kQ0k2 D 0 is optimal

for OPfti g, rendering kT´wk2
2 D 0 C kQoptk

2
2. O

Proof: Follows by combining Lemma 3.1 with (15).

The non-uniqueness of Q0 in Lemma 3.3, which is the

reason for the non-uniqueness of the optimal controller in

Theorem 2.1, stems from the fact that the kernel of the H2-

norm is nontrivial in the time-varying case. For the sake

of simplicity, in what follows we consider only the trivial

choice, Q0 D 0, which yields Q D Qstat.

Our next step is to convert MQstat defined by (14) back to the

time domain. To this end, note that R22.s/ D F.sI � A/�1L

and it is causal, so that its kernel

r22.t; s/ D F eA.t�s/L 1.t � s/;

where 1.t/ is the Heaviside step function. It then follows

from (11) that Mr22Œi; i � W M�Œi � 7! M�Œi � acts according to

M�Œi �.�/ D

Z tiC1�ti

0

F eA.���/L1.� � �/M�Œi �.�/ d�

D F

Z �

0

eA.���/L M�Œi �.�/ d�:

But this is the very response of the reset system

(

Pxr.t/ D Axr.t/ C L�.t/; xr .ti / D 0

�.t/ D F xr .t/;
(16)

in the time domain. Then, taking into account (14), Qstat

in the time domain is also described by (16), but only in

the “odd” intervals, Œt2iC1; t2iC2/. In the “even” intervals,

Œt2i ; t2iC1/, the output of Qstat should be �.t/ D 0. A compact

representation of these dynamics, which makes use of the

function �.t/ defined by (3), is

(

Pxstat.t/ D Axstat.t/ C L�.t/; xstat.�.t// D 0

�.t/ D F xstat.t/
(17)

with convention that the algebraic condition on xstat overrules

the differential equation at time intervals where they conflict.
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Our next step is to calculate kQstatk2. Using (24) and

taking T D t2i we have:

kQstatk
2
2 D lim

i!1

1

t2i

Z t2i

0

Z 1

0

kqstat.t; s/k2
F

dtds

D lim
i!1

1

t2i

2i
X

j D1

Z tj

tj�1

Z 1

0

kqstat.t; s/k2
F

dtds

D lim
i!1

1

t2i

i
X

j D1

Z t2j

t2j�1

Z t2j

0

kr22.t; s/k2
F dtds

D lim
i!1

1

t2i

i
X

j D1

Z t2j

t2j�1

Z t2j

s

kF eA.t�s/Lk2
F

dtds;

whence (5) follows by straightforward variable changes.

Finally, Qstat is a reset system (and zero in “even” in-

tervals), so its stability is guaranteed if the “odd” intervals

are uniformly bounded. This guarantees the stability of the

closed-loop system and this is exactly what Theorem 2.1

claims. If A is Hurwitz, even this is not required.

D. The optimal K

To derive the resulting controller, we may plug (17) into

the dynamics of J W
�

y
�

�

7!
�

u
�

�

. Denoting the state vector

of the latter by xJ , we have that K W y 7! u verifies„
�

PxJ

Pxstat

�

D

�

A C BuF C LCy BuF

�LCy A

� �

xJ

xstat

�

C

�

�L

L

�

y

u D
�

F F
�

�

xJ

xstat

�

with the algebraic condition as in (17). Applying the simi-

larity transform
�

I 0
I I

�

and denoting xa ´ xJ C xstat, we get„
�

PxJ

Pxa

�

D

�

A C LCy BuF

0 A C BuF

� �

xJ

xa

�

�

�

L

0

�

y

u D
�

0 F
�

�

xJ

xa

�

and the algebraic condition xa.�.t// D xJ .�.t//. It is readily

seen that xJ � Ox, where the latter is the state of the

Kalman filter (7a). Then, the control signal during the “even”

intervals, where �.t/ D t , is u.t/ D F Ox.t/. Because xa is

not controllable via y, during the “odd” intervals, where

�.t/ D t2i�1, we have that

u.t/ D F e.ACBuF /.t�t2i�1/ Ox.t2i�1/; 8t 2 Œt2i�1; t2i /:

Combining these intervals we end up with (7b).

This completes the proof of Theorem 2.1.

IV. INCORPORATING LOOP DELAYS

This section presents the extension of the result of Theo-

rem 2.1 to the situation when the information transfer from

u to y in the controller is delayed. Specifically, introduce the

assumption

A5: u.t/ may depend only on y.s/ for s � �.t/ � � for a

given � > 0

and define the problem OP�
fti g as the version of OPfti g, where

A4 is replaced with A5.

J�

e
��s

˘�

Q

y

�

u

�

Fig. 5. All suboptimal dead-time controllers

The main result of this section, whose proof is outlined in

÷IV-A, is the following generalization of Theorem 2.1:

Theorem 4.1: The optimal performance in OP�
fti g is

kT´wk2
2 D 0 C

Z �

0

kCueAtByk2
F dt

C lim
i!1

1

t2i

i
X

j D1

Z hj

0

Z s

0

kCueA.tC�/Byk2
F dtds; (18)

where hj ´ t2j � t2j �1 is the duration of the j th interruption

and 0 is given by (6), and this performance is an increasing

function of � . A (non-unique) controller attaining (18) is

POx.t/ D A Ox.t/ C e�A� Buu.t C �/ � L.y� .t/ � Cy Ox.t// (19a)

u.t/ D F e.ACBuF /.t��.t//eA� Ox.�.t/ � �/; (19b)

where the “compensated” output

y� .t/ D y.t/ C Cy

Z t

t��

eA.t���s/Buu.s C �/ds: (19c)

The control law (19) is stabilizing iff either A is Hurwitz or

there is ˛ > 0 such that supi2N
.t2i � t2i�1/ � ˛. O

Remark 4.1 (implementation): To implement the optimal

controller (19) we need to run the Kalman filter (19a) and

the “dead-time compensator” (19c) at the sensor side Ks and

two copies of the control signal generator (19b), one at the

sensor side to produce u for (19a) and (19c) and one at the

actuator side Ka to generate the actual control signal. Both

u.t C �/ and y� .t/ in (19a) are based on the control signal

in the time interval Œt; t C��. But u itself, see (19b), depends

on the �-delayed version of Ox, so the implementation of all

components of Ks is causal. Then the information transfer

from Ks to Ka involves both the delay and interruptions. O

A. Proof of Theorem 4.1 (outline)

Assume again that D0
´uD´u D I and DywD0

yw D I . As

in the delay-free case, the first step in solving OP�
fti g is

to parametrize all suboptimal solutions of an uninterrupted

version of the controller. In this case, such a parametrization

can be found in [12, IV-A], which considers the H2 control

of time-delay systems. While [12] studies only time-invariant

controllers, its arguments extend to time-varying controllers

seamlessly. All suboptimal solutions to the non-interrupted

version of OP�
fti g can be expressed in the form depicted in
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Fig. 5, where

J� D

2

4

A C BuF C eA� LCy e�A� �eA� L Bu

F 0 I

�Cy e�A� I 0

3

5 (20)

and ˘� is the LTI system having the transfer function

˘� .s/ D Cy

Z �

0

eA.t��/e�st dtBu: (21)

The latter is an entire function of s, bounded in Re s > 0, so

it is stable. The impulse response of ˘� has support in Œ0; � �.

The performance attainable by any such controller is

kT´wk2
2 D 0 C

Z �

0

kCueAtByk2
F dt C kQk2

2:

The next step is to express A5 in terms of Q. To this end,

denote by QK the delay-free part of the controller in Fig. 5,

so that K D QKe��s. Then the mapping Q 7! QK is bijective,

with the inverse Q D Fu.R� ; QK/, where

R� ´ J �1
� C

�

˘� 0
0 0

�

:

Repeating the arguments of ÷÷III-B and III-C, the optimal

choice of Q under communication interruptions is built on

the .2; 2/ sub-block of this R� , which is that of J �1
� . Hence,

the optimal Q D Qstat, where Qstat is described by
(

Pxstat.t/ D Axstat.t/ C eA� L�.t/; xstat.�.t// D 0

�.t/ D F xstat.t/
(22)

These dynamics differ from (17) only by the factor eA� , so

its norm is exactly the last term in the right-hand side of (18).

The fact that the resulting kT´wk2 is an increasing function of

� follows by the very fact that as � increases, the restriction

imposed by A5 on the controller becomes more severe.

The optimal controller (19) is then derived by the argu-

ments of ÷III-D. Just note that the second term in the right-

hand side of (19c) is exactly the output of e�s˘� u. Finally,

the stability conditions for (22) are not different from those

of (17). This completes the proof of Theorem 4.1.

V. CONCLUDING REMARKS

The paper has studied the standard continuous-time H2

problem under irregular and unknown a priori communica-

tion interruptions in the controller. A closed-form solution

has been derived and the optimal attainable performance has

been characterized. The solution is transparent and computa-

tionally simple. In particular, it is based on the same Riccati

equations and optimal gains as the uninterrupted version of

the problem. It has also been shown how to incorporate a

constant loop delay. The presence of such a delay adds a

predictor block to the sensor-side part of the controller, but

does not alter computational procedures.

Immediate extensions include the H1 performance, which

can also be treated in line with the approach in [9], and

the coordination of homogeneous agents, like in the setup

of [13]. A discrete version of the problem, which is more

practical in networked systems, can be treated similarly.

REFERENCES

[1] P. Antsaklis and J. Baillieul, Guest Eds., “Special issue on technology
of networked control systems,” Proc. IEEE, vol. 95, no. 1, 2007.

[2] J. Lunze, Ed., Control Theory of Digitally Networked Dynamic Sys-

tems. Berlin: Springer-Verlag, 2014.
[3] J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg, “Feedback

stabilization over signal-to-noise ratio constrained channels,” IEEE

Trans. Automat. Control, vol. 52, no. 8, pp. 1391–1403, 2007.
[4] G. Como, B. Bernhardsson, and A. Rantzer, Eds., Information and

Control in Networks, ser. Lecture Notes in Control and Inform. Sci.
London: Springer-Verlag, 2014, vol. 450.

[5] A. Seuret, L. Hetel, J. Daafouz, and K. H. Johansson, Eds., Delays

and Networked Control Systems. Springer-Verlag, 2016.
[6] L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry,

“Foundations of control and estimation over lossy networks,” Proc.

IEEE, vol. 95, no. 1, pp. 163–187, 2007.
[7] E. Garcia, P. J. Antsaklis, and L. A. Montestruque, Model-Based

Control of Networked Systems. Boston: Birkhäuser, 2014.
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APPENDIX

H2 SPACE FOR TIME-VARYING LINEAR SYSTEMS

This Appendix collects properties of linear time-varying

causal systems with square integrable impulse responses,

relevant for the developments in this paper. Some definitions

can be found in [14], others are adopted from their better

studied time-invariant counterparts.

Let G W w 7! ´ be a linear causal system on the semi-axis

RC described by its kernel representation

´.t/ D

Z 1

0

g.t; s/w.s/ds;

where the distribution g.t; �/ is the impulse response (kernel)

of G. In the causal case g.t; s/ D 0 whenever s > t . With

some abuse of notation, we say that G 2 H2 if the Frobenius

norm of its kernel kg.�; s/kF 2 L2.RC/, 8s 2 RC. The set of

all G 2 H2 is a vector space, referred to as H2. It can be

endowed with the degenerate inner product

hG1; G2i2 D lim
T !1

1

T

Z T

0

Z 1

0

tr.g0
2.t; s/g1.t; s// dtds; (23)

rendering H2 a degenerate Hilbert space with the (semi) norm

kGk2 D

�

lim
T !1

1

T

Z T

0

Z 1

0

kg.t; s/k2
F dtds

�

1=2

: (24)

This is a semi-norm as kGk2 D 0 6H) G D 0. In particular,

it can be shown that all bounded Hilbert-Schmidt operators,

like the Hankel operators associated with BIBO-stable LTI

systems, have zero H2 norm.
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