
Graph learning for regularized low-rank matrix completion

Shuyu Dong1, P.-A. Absil2 and K. A. Gallivan3

Abstract— Low rank matrix completion is the problem of
recovering the missing entries of a large data matrix by using
the low-rankness assumption. Much attention has been put
recently to exploiting correlations between the column/row
entities, through side information or data adaptive models,
to improve the matrix completion quality. In this paper, we
propose a novel graph learning algorithm and apply it to the
learning of a graph adjacency matrix from a given, incomplete
data matrix, in a way such that the weighted graph edges encode
pairwise similarities between the rows/columns of the data
matrix. Subsequently we present a graph-regularized low-rank
matrix completion method. Experiments on synthetic and real
datasets show that this regularized matrix completion approach
achieves significant improvement for the matrix completion
task.

I. INTRODUCTION

Low rank matrix completion, often formulated as a rank
minimization or a low-rank matrix factorization problem,
arises in applications such as recommender systems [1]–[3].
Recent works (e.g. [4]) also considered low-rank methods
for forecasting and imputation of high-dimensional time
series such as traffic occupancy and electricity consumption
data. For some applications, in addition to the low-rank
assumption, regularization methods exploiting other prop-
erties of the data are needed since data often come with
structure. Graphs are often useful for modeling the structure
of discrete input spaces and, in particular, for capturing the
correlations or pairwise similarities between the columns
and/or rows of a matrix. Regularization approaches based
on graph information (e.g. [3]–[5]) consist of introducing a
graph-based Dirichlet energy function

‖X‖2L
∆
= Tr(XTLX) (1)

or ‖XT ‖2L′ = Tr(XL′XT), where X ∈ Rm×n is the
sought low-rank complete matrix and L ∈ Rm×m and L′ ∈
Rn×n are given graph Laplacian matrices that carry the
graph information of the discrete space of row, respectively
column, indices of X . This energy function (1) is involved
in several existing and closely related methods for matrix
completion. Kalofolias et al. [5] proposed the following rank

*This work was supported by the Fonds de la Recherche Scientifique
– FNRS and the Fonds Wetenschappelijk Onderzoek – Vlaanderen under
EOS Project no 30468160, and by “Communauté française de Belgique -
Actions de Recherche Concertées” (contract ARC 14/19-060).

1Shuyu Dong and 2P.-A. Absil are with the Department of Mathematical
Engineering, ICTEAM, Université catholique de Louvain, B-1348 Louvain-
la-Neuve, Belgium {shuyu.dong,pa.absil}@uclouvain.be

3K. A. Gallivan is with the Department of Mathematics, 208 Love
Building, 1017 Academic Way, Florida State University, Tallahassee FL
32306-4510, USA kgallivan@fsu.edu

minimization problem using the matrix nuclear norm (‖ · ‖∗)

min
X∈Rm×n

γ‖X‖∗+‖PΩ(X−M)‖2F+
γr
2
‖X‖2L+

γc
2
‖XT ‖2L′ ,

(2)
whereM is the incomplete data matrix, Ω is the index subset
of the observed entries and PΩ is the mask projector on
observed entries. In [5], the Laplacian matrices L and L′

(for the columns and rows respectively) are constructed by
an ε-neighborhood graph model, for which pairwise distances
between rows/columns are computed based on the known
entries of the matrix, PΩ(M). On the other hand, Rao et
al. [3] considered adding ‖U‖2L and ‖HT ‖2L′ to a (low-
rank) matrix factorization problem with U and H such
that PΩ(UHT) ≈ PΩ(M). In [3], the construction of
L and L′ is essentially based on side information which, for
datasets of user ratings (MovieLens and other social network
ratings) is either directly available from the connectivity
between the users of the social network or can be obtained
by collecting user features such as age (numeric), gender
(binary) and occupation. More precisely, in the latter case,
two column/row indices are connected if their associated user
features are sufficiently close. Within these approaches, the
graph Laplacian matrix is involved in the following way:
by taking Tr(XTLX) as a regularization term, we assume
that the m row indices of X are modeled by the nodes of
a weighted graph G = (V, E ,W) and that the correlation
or similarity between any pair (i, j) of row vectors of X
is encoded by the edge (Wij ≥ 0) connecting them. As
we will show in Section IV, given the graph Laplacian(
L = Diag(W1) − W

)
associated with G, minimizing

Tr(XTLX) has the effect of promoting solutions such that
their columns are smooth on the graph G. In other words,
the distance separating (Xit)t=1,..,n and (Xjt)t=1,..,n is
expected to be small if the pair nodes (i, j) is strongly con-
nected. Intuitively, in applications with the aforementioned
users-ratings data as well as traffic occupancy data (Section
VI-B), where the matrix to be recovered has a certain pattern
of correlations between its columns/rows, graph-regularized
low-rank solutions are expected to be more favorable than
other non-regularized low-rank solutions of the same rank.

The question is how we can obtain an appropriate graph
Laplacian from data. This question arises as an important
problem itself. Specifically, we focus on how to obtain a
useful graph Laplacian from an incomplete data matrix.

In this paper, we consider recovering a partially observed
matrix M ∈ Rm×n by solving a problem of the following
form, for r � min (m,n) :

minimize
X∈Mr

`Ω(X;M) + βTr(XTLX), (3)

23rd International Symposium on Mathematical Theory of Networks and Systems
Hong Kong University of Science and Technology, Hong Kong, July 16-20, 2018

460

where Mr = {X ∈ Rm×n : rank(X) = r} is the set of
m× n real-valued matrices of a fixed rank, Ω ⊂ [[m]]× [[n]]
is the index set of the observed entries, `Ω (X;M) is a
data fidelity term restricted to Ω and Tr(XTLX) is the
additional regularizer for X depending on a graph Laplacian
matrix L ∈ Rm×m, which needs to be inferred. As our main
purpose is to learn an appropriate graph Laplacian matrix
from the incomplete data and to investigate the subsequent
graph-based regularization, the low-rank assumption can
certainly be imposed in ways other than using Mr.

We tackle the question of finding L for (3) by solving a
graph learning problem in the context of matrix completion.
We refer to graph learning [6]–[8] as the idea of learning a
graph Laplacian matrix from data samples, which consists of
minimizing Tr(XTLX) as a function of L for a given data
matrix X and certain constraints on the Laplacian matrix
variable. One obvious difficulty for graph learning in the
context of matrix completion is the lack of fully accessible
data, since the missing values of M themselves need to be
recovered. To address this difficulty, we propose to learn
a graph Laplacian matrix in an off-line manner (without
alternating with the matrix completion iterations) by solving
the following type of problems

minimize
L∈L

Tr(γML) +R(L), (4)

where L is the set (7) of all graph Laplacian matrices, M is
the incomplete matrix, R(L) is a regularization term to be
specified in Section III-B and γM ∈ Rm×m is a Gram matrix
that must be computed (see Sections IV,VI-B) depending on
the choice of a kernel function.

Our main contributions are as follows. First, since M is
only partially observed, building a Gram matrix γM fromM
is a nontrivial step to solving problem (4). In Section IV, we
propose a computationally efficient method that constructs
γM from a low-rank approximation to M . This low-rank
approximation does not require any extra computation as
it corresponds to the initialization step of our proposed
algorithm for matrix completion (3). In our problem setting
(4), the trace function Tr(γML) is seen as an extension of
Tr(XTLX) in the sense that the covariance term XXT

in Tr(XTLX) = Tr(XXTL) is replaced by the more
general Gram matrix γM . We will show that this extension
is essential for the successful application to real data in
our experiments (see Section VI-B). Second, in contrast
to previous formulations for graph learning, we present a
nonconvex formulation for problem (4), whose non-convexity
comes from a spherical constraint that preserves the scale of
the graph edge weights. Then we propose a simple, efficient
algorithm which shows comparable performance (see Section
VI-A) for graph learning compared to the state-of-the-art [7].

By solving problem (4) as a preliminary step for prob-
lem (3), our approach differs with [5] in the sense that the
Laplacian matrix is not directly constructed from pairwise
distances using any specific graph model. Moreover, unlike
in [3], our approach does not use any side information, since
we are interested in applications where no side information

is available, as it is the case for the real-data application we
present (see Section VI-B) in this paper.

II. NOTATION

For an integer m > 0, the index set {1, ..,m} is denoted by
[[m]]. The matrix entries and column vectors of X ∈ Rm×n
are denoted by Xij and X(j) respectively. The row vectors
of X are denoted by XT

(i) or (Xit)t=1,..,n. The diagonal
matrix and the vector of diagonal entries of X are denoted
by Diag(X) and diag(X) respectively. The unit vector in
the i-th direction and the vector of all-ones and all-zeros
are denoted by ei,1 and 0 respectively. The Euclidean
inner product of two vectors u,v ∈ Rn is denoted and
defined by 〈u,v〉 = uTv. The Frobenius matrix norm of a
matrix X is denoted and defined as ‖X‖F =

√
Tr(XTX).

Throughout the paper, G = (V, E ,W) or simply G denotes
an undirected graph with nonnegative edge weights. V and E
denote the set of graph nodes and edges respectively and W
is an associated weighted adjacency matrix. W ≥ 0 means
element-wise non-negativity. We denote by Sq−1 and Sq−1

+

the unit sphere in Rq and its intersection with the nonnegative
orthant of Rq respectively.

III. GRAPH LEARNING: PRELIMINARIES

A. The graph Laplacian matrix and Dirichlet semi-norm
For any undirected and positively weighted graph G =

(V, E ,W) with m nodes, the weighted graph adjacency
matrix W ∈ Rm×m satisfies

W = W T ,W ≥ 0 and diag(W) = 0, (5)

where the zero diagonal entries of W signify the absence
of self-loops in G. We consider the combinatorial graph
Laplacian matrix defined as

L
∆
= Diag(W1)−W . (6)

Denote by L the set of all such graph Laplacian matrices.
From (5-6), we have

L ∆
= {L ∈ Rm×m : (∀i 6= j) Lij = Lji ≤ 0,L1 = 0}.

(7)

As all constraints on L are linear, L is a closed, convex
subset of Rm×m. L is positive semi-definite because for any
vector x ∈ Rm,

SL(x)
∆
= xTLx =

1

2

∑
(i,j)∈E

Wij(xi − xj)2 ≥ 0. (8)

For this reason, the graph Laplacian matrix induces a Dirich-
let semi-norm (e.g. [9]) for m-dimensional real vectors,
defined as ‖x‖L =

√
SL(x).

Intuitively, this definition says that for a given graph
structure G endowed with L, ‖x‖L tends to be small if x
is smooth on G, in the sense that the function values of x
over the neighborhood of any node evolve slowly/smoothly.
The Dirichlet energy function (1) is related to this semi-norm
through

Tr(XTLX) =

n∑
t=1

‖X(t)‖2L.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

461

Thus the usage of this energy function in [3]–[5] is ba-
sically motivated by the idea of considering the matrix
columns/rows as real functions defined on the column/row
index set V, with a properly defined graph structure W such
that (1) acts as a “smoothness promoting” regularization that
captures the structural information of the discrete domain of
column/row indices, which is otherwise lost in the Frobenius
matrix norm.

B. Graph learning: related work

The problem of learning a graph Laplacian matrix from
data samples, introduced by [6], is formulated as follows

minimize
L∈L:Tr(L)=θ

Tr(XTLX) + β‖L‖2F , (9)

where X is a given data matrix, the feasible set L is given
by (7) and the parameter θ > 0 maintains the trace of L at a
fixed level. More precisely, [6] proposed to learn X and L
in an alternating way by solving

min
X,L∈L:Tr(L)=θ

‖Y −X‖2F + αTr(XTLX) + β′‖L‖2F ,

where Y is the matrix containing noisy data samples and
columns of X are modeled as i.i.d. samples of the following
sparse Gaussian Markov random fields (GMRF, e.g. [10])

X ∼ N (0, L̄†), (10)

where L̄† is the Moore-Penrose pseudoinverse of the hidden
matrix L̄. With the sparsity constraint (via Tr(L) = θ and
the regularizer β′‖L‖2F) on L, problem (9) can be seen as a
special instance of the sparse inverse covariance estimation
problem (e.g. [11], [12]).

More recently, [7] proposed to reformulate problem (9)
into optimization problems with the weighted adjacency
matrix W by using the following property:

Property 1 ([7]). Given G = (V, E ,W) of m nodes and a
data matrix X ∈ Rm×n. Let Z be the Euclidean pairwise
distance matrix of X’s rows, i.e. , Zij

∆
= ‖XT

(i) −X
T
(j)‖

2
2.

Then Tr(XTLX) = 1
2 Tr(ZW), where L is the graph

Laplacian matrix associated with G.

As a result, problems for graph Laplacian learning like (9)
can be transformed into

minimize
W=WT ,W≥0
diag(W)=0

1

2
Tr(ZW) + β

(
‖W1‖22 + ‖W ‖2F

)
, (11)

which has a more convenient feasible set than the set (7)
of graph Laplacian matrices. Moreover, as explained in [7],
Tr(ZW) is already a sparsity promoting function because
of the positiveness of (Zij) and (Wij), thus the equality
constraint Tr(L) =

∑
i,j |Wij | = θ need not be included. Al-

ternatively, [7] also considered replacing the `2 norm-based
regularizer ‖W1‖22

(
acting effectively on vertex degrees

di =
∑m
j=1Wij

)
by the log barrier function −

∑m
i=1 log(di)

to have

minimize
W=WT ,W≥0
diag(W)=0

1

2
Tr(ZW)− γ1T log (W1) +β‖W ‖2F . (12)

A good property of this formulation is that solutions to this
problem of any sparsity level (determined by the parameters
γ, β ≥ 0) are always connected graphs because of the log
barrier function that prevents any vertex from being isolated
with degree zero.

IV. GRAPH LEARNING FROM INCOMPLETE DATA

In this section, we consider learning a graph Laplacian
matrix L from data samples with missing entries, which
is a preliminary step for the regularized matrix completion
problem (3).

As shown in Section (III-B), learning a graph Laplacian L
from (fully accessible) data samples consists in minimizing
the Dirichlet energy Tr(XTLX) as a function of L such that
the columns of X are smooth real functions on the graph
associated with L. However, in the context of problem (3),
we only have an incomplete data matrixM which has a large
proportion of missing values at entries in Ωc. To address
this difficulty, we make use of an inexpensive low-rank
approximation to M by defining M̂ ∆

= U0S0V
T

0 , where
{U0, S0, V0} are rank-r matrix factors of the zero-filled
matrix ofM . More precisely, {U0, S0, V0} = r-SVD(M0),
where

M0 =

{
Mij if (i, j) ∈ Ω
0 otherwise. (13)

We will see (Section V) that M̂ comes without any extra
computation since this r-SVD estimate corresponds to the
initialization step of our matrix completion algorithm, as
it is for many other low-rank matrix completion methods.
Moreover, to remedy the loss of information in M̂ (of rank
r � min (m,n)), we propose to extend the definition of the
objective function Tr(XTLX) = Tr(XXTL) by replacing
the sample covariance termXXT with a more general Gram
matrix, that is, a generalized kernel matrix of the row features
of X.

More precisely, the data at our disposal consists of M̂ ’s
row vectors M̂T

(1), ..,M̂
T
(m) ∈ X ⊂ Rn. Since the Euclidean

inner product is not necessarily adapted for the geometry
underlying our data samples distributed in X , we adopt
the idea of feature mappings in kernel-based methods by
considering a feature space F endowed with the Euclidean
inner product and a feature map Φ : X → F , and then
carrying out graph learning in F . The feature mapping with
Φ is realized implicitly, as in most kernel-based methods, by
defining a generalized Gram matrix γ ∈ Rm×m such that

[γ
M̂

]ij = k
(
M̂T

(i),M̂
T
(j)

)
= 〈Φ(M̂T

(i)),Φ(M̂T
(j))〉 , (14)

where k : X × X → R is a given (positive semi-definite)
kernel function. In particular, the sample covariance estimate
M̂M̂T corresponds to the trivial case where the kernel
function reduces to the Euclidean inner product k(xi,xj) =
xTi xj .

With the generalization (14), we have the following ker-
nelized formulation of problem (9)

minimize
L∈L:Tr(L)=θ

Tr(γ
M̂
L) + β‖L‖2F . (15)

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

462

In a similar way as done for Property 1, we show that

Proposition 1. Given a undirected weighted graph G =
(V, E ,W) of m nodes and a (positive semi-definite) Gram
matrix γ ∈ Rm×m. Let ζ ∈ Rm×m be defined by

ζ = diag(γ)1T + 1diag(γ)T − 2γ. (16)

Then we have Tr(γL) = 1
2 Tr(ζW), where L is the graph

Laplacian associated with G.

Proof. see Appendix VII-B.

This enables us to transform (15) into an optimization
problem with the graph adjacency matrix W :

minimize
W=WT ,W≥0
diag(W)=0

1

2
Tr(ζ

M̂
W) + β

(
‖W1‖22 + ‖W ‖2F

)
,

where ζ
M̂
∈ Rm×m is obtained from the constructed Gram

matrix γ
M̂

via (16). Similarly, the kernelized formulation of
(12) is

minimize
W=WT ,W≥0
diag(W)=0

1

2
Tr(ζ

M̂
W)− γ1T log (W1) + β‖W ‖2F .

(17)
These problems can effectively be solved by using the
primal-dual algorithm of [7]. Note that choosing a kernel
function for computing γ

M̂
and then ζ

M̂
is a separate topic

from solving the problem. In the rest of this section, we
treat ζ

M̂
(or ζ in Section IV-A) as input data and focus on

solving the W -related graph learning problems in a fixed-
scale manner.

A. Fixed-scale graph learning

In the formulation (17), the scale of W depends on the
input data and the parameters. Instead, we propose to control
it directly by a fixed-scale approach where the graph learning
objective function is minimized over a spherical space {W :
‖W ‖F = θ} instead of the nonnegative orthant. This drives
us to consider in particular the following problem

minimize
W=WT

1

2
Tr(ζW)− γ1T log (W1)

s.t. W ≥ 0, diag(W) = 0, ‖W ‖F = θ.
(17b)

Next, we show that our main problem (17b) is equivalent
to a constrained minimization problem on a hypersphere via
half-vectorization: the feasible set of (17b) has the structure
of the nonnegative orthant of a sphere, i.e., the intersection
of the unit sphere Sq−1 with the nonnegative orthant of the
vector space:

Sq−1
+

∆
=
{
w ∈ Rq : ‖w‖2 = 1,w ≥ 0

}
, (18)

where q = m(m−1)/2. Indeed, any graph adjacency matrix
satisfying (5) can be written

W =
∑

i,j∈[[m]],i>j

WijE(i,j), (19)

where Wij ≥ 0 and E(i,j) = eie
T
j + eje

T
i . In other words,

(Wij)i,j∈[[m]],i>j constitute the nonnegative coordinates of

W in the linear subspace spanned by
{
E(i,j) : i, j ∈

[[m]], i > j
}
, which has dimension q = m(m − 1)/2.

Naturally, there exists a bijective half-vectorization map l
(the same technique can be found in [6], [7]) that vectorizes
the strict lower triangular part of W such that wl(i,j) =
Wij(= Wji). Hence l induces a bijection between the
feasible set of (17b) and{

w ∈ Rq : ‖w‖2 =
θ√
2
,w ≥ 0

}
.

Therefore, we can identify the feasible set of (17b) with Sq−1
+

(18) by setting the scale parameter θ to
√

2, without loss of
generality. The underlying half-vectorized formulation is

minimize
w∈Sq−1

+

fγ(w)
∆
= 〈~ζ,w〉 − γ1T log (Aw), (17c)

where ~ζ ∈ Rq denotes the half-vectorization of ζ ∈ Rm×m
and A denotes the linear application that maps the graph
adjacency coordinates to the graph’s vertex degree vector
A : Rq → Rm : w → d = W1.

B. Constrained optimization on the sphere

The feasible set Sq−1
+ is a closed subset of the sphere,

hence a closed and nonconvex set of Rq. We propose to solve
problem (17c) with a projected gradient algorithm. Define the
Euclidean projection on Sq−1

+ as the following operator

PSq−1
+

(
x
)

= argmin
w∈Sq−1

+

‖w − x‖2,∀x ∈ Rq. (20)

The following result provides a closed-form solution for (20):

Proposition 2. For all x ∈ Rq :

PSq−1
+

(
x
)

=

{
x+/‖x+‖2 if x /∈ Rq−
ei, with i = argmax{xi} otherwise,

(21)
where x+ = (max{xi, 0})i=1,..,q and Rq− = {x : xi ≤
0,∀i ∈ [[q]]}.

Proof. We follow the same proof as for (Lemma 1 of [13])
which solves minw∈Sq−1

+
〈w, b〉 . It suffices to identify our

problem as the case where b = −x.

While the Euclidean projection on convex sets is unique,
this is not the case with the nonconvex set Sq−1

+ . Indeed,
for x ∈ Rq, there can be several points w ∈ Sq−1

+

minimizing ‖w−x‖2 : this happens in fact only if x ∈ Rq−
and if x admits multiple maximal coefficients. In this last
case, one solution is chosen arbitrarily. The closed-form
expression (21) requires very lightweight computations thus
provides a way to carrying out simple projected gradient-
based iterations on Sq−1

+ . We propose to solve problem (17c)
with the following algorithm:

Algorithm 1 (GL-SPH) Projected gradient over Sq−1
+ with

backtracking line search

Input: ζ ∈ Rm×m; γ > 0;σ, β ∈]0, 1[,M,K ≥ 1.
Output: w ∈ Sq−1

+ .
1: Initialization: w = w0.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

463

2: for k ∈ {0, 1, ..,K} do
3: Stopping-criterion:
4: if ‖PSq−1

+

(
wk −∇fγ(wk)

)
−wk‖2 ≤ ε then

5: stop.
6: end if
7: Backtracking line search: t← 1.
8: while True do
9: Set trial point: w+ = PSq−1

+

(
wk − t∇fγ(wk)

)
.

10: if Line search criterion attained then
11: break; (turn to line 15)
12: end if
13: Set t← βt.
14: end while
15: PGD update: wk+1 = w+.
16: end for

In line 10 of Algorithm 1, the line search criterion is

fγ(w+) ≤
max

0≤j≤min{k,M−1}
fγ(wk−j) + σ 〈∇fγ(wk),w+ −wk〉 .

(22)

The backtracking line search (line 7-14) is simplified from
nonmonotone gradient projection algorithms as proposed by
[14]. The initialization step (line 1) corresponds to gener-
ating a random graph (w.r.t. an arbitrary graph type) and
initializing w0 with the graph’s edge weights. Similar to
the algorithm of [7], Algorithm 1 has a per-iteration time
complexity of O(m2), where m is the size of the graph.
Note that even without any extra structural priors (other than
the sparsity of graph edges) for learning the graph, this basic
algorithm has a much lower computational complexity than
basic methods (e.g. [11], [12]) for sparse inverse covariance
estimation, which normally amount to O(m3).

Using proper choices for the parameter α (problem (17b)),
empirical tests on synthetic data show that this algorithm
converges to local minimum of the problem in a comparable
amount of time as required by the state-of-the-art method [7].
Graphs learned by this algorithm are evaluated in Section VI-
A.

V. GRAPH-REGULARIZED LOW-RANK MATRIX
COMPLETION

In this section, we illustrate the use of the learned graph
Laplacian matrix L for the type of problems (3) as introduced
in Section I. Specifically, considering the recent work of [15]
for robust matrix completion (RMC) as a starting point, we
target an instance of (3) with the following loss function

‖PΩ(X −M)‖1
∆
=

∑
(i,j)∈Ω

|Xij −Mij |.

In fact, [15] proposed to solve the matrix completion problem
by minimizing a smooth approximation to the `1-norm based

loss (for a small δ):

Fδ(X)
∆
=

∑
(i,j)∈Ω

√
δ2 + (Xij −Mij)2

︸ ︷︷ ︸
`M,Ω(X)

+α‖X‖2Ωc

=
∑

(i,j)∈Ω

(√
δ2 + (Xij −Mij)2 − αX2

ij

)
+ α‖X‖2F

on the set of fixed-rank matrices

Mr = {X ∈ Rm×n : rank(X) = r}.

The reason for introducing the approximate function
`M ,Ω(X) as the data fidelity term is two-fold: (i) to make
it more robust to outliers in PΩ(M) as is the `1-norm
minimization and (ii) to have a smooth and differentiable ob-
jective function at the same time. The Riemannian conjugate
gradient descent is used to minimize Fδ(X) over the matrix
manifold Mr. We refer to [15] for more details regarding
this problem setting as well as the underlying optimization
method.

By adding the graph Dirichlet energy function to Fδ , our
main problem (3) writes

minimize
X

Fδ,L(X)
∆
= Fδ(X) + βTr(XTLX)

subject to X ∈Mr,
(23)

which can be solved by using the same Riemannian gradient-
based algorithm of [15]. Note, however, the gradient of Fδ,L
needs to be computed differently at each iteration due to the
additional regularization term Tr(XTLX).

At a feasible iterate X ∈ Mr, the Euclidean gradient of
Fδ,L is

∇Fδ,L(X) = S + 2α(I +
β

α
L)X, (24)

where S = ∇`M ,Ω(X) ∈ Rm×n has the following sparse
form

Sij =

{
Xij−Mij√

δ2+(Xij−Mij)2
− 2αXij if (i, j) ∈ Ω

0 otherwise.
(25)

Subsequently, our algorithm for solving problem (23) is
obtained by changing the Euclidean gradient function in
(Algorithm 1 (RMC)) of [15] to ∇Fδ,L(X) (24). Note that
in [15], the Riemannian gradient-based algorithm handles
the matrix variable X ∈ Mr implicitly, in the form of a
tuple of rank-r factors (U,Σ, V) ∈ St(r,m) × GL(r) ×
St(r, n) such that X = UΣV T . Here St(r,m),St(r, n)
are the (orthogonal) Stiefel manifold of Rm×r and Rn×r
respectively and GL(r) is the set of invertible r × r real-
valued matrices. Practically, the replacement of ∇Fδ(X)
by ∇Fδ,L(X) (24-25) occurs in the computation of the
Riemannian gradient (i.e. the orthogonal projection on the
tangent space, see (6) in [15]), which consists of low-
complexity matrix multiplications involving U,Σ, V (all
rank-r matrices) and ∇Fδ,L(X). Hereafter, we refer to this
adapted algorithm as Algorithm RMC-REGL.

The following scheme combines our proposed graph learn-
ing method (Section IV) with Algorithm RMC-REGL:

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

464

Algorithm 2 (GL+RMC-REGL) Graph learning and regu-
larized matrix completion

Input: Subscripts Ω = {(il, jl) : l = 1, .., k}, observed
matrix entries PΩ(M) and rank value r. Parameters
γ, α, β.

Output: Matrix estimation X̂ (and W,L).
1: Initialization: M̂ or (U0,S0,V0)← r-SVD(M0).
2: Compute: γ

M̂
and ζ

M̂
.

3: Graph learning: W,L ← GL-SPH(ζ
M̂
, γ). (Algo-

rithm 1)
4: X̂ ← RMC-REGL(PΩ(M),Ω, r,L, α, β).

In line 2, the Gram matrix γ
M̂

is computed via (14),
depending on the choice of a kernel function. The com-
putation of ζ

M̂
is given by (16). In our experiments (Sec-

tion VI-B) with traffic occupancy data in the form of high-
dimensional time series, we use the Gaussian kernel function
kσ(xi,xj) = e−‖xi−xj‖22/2σ

2

for the computation of γ
M̂
.

VI. NUMERICAL EXPERIMENTS

In the first part of this section, we evaluate the performance
of our graph learning method on fully observed synthetic data
and compare it with the state-of-the-art method [7]. In the
second part, we apply the graph learning method on incom-
plete matrices from real data and compare matrix completion
qualities of our graph-regularized matrix completion method
with its baseline method [15].

A. Graph learning on synthetic data

The synthetic data is composed of graph signals generated
via Gaussian Markov random fields (10) on several types
of graphs: given a graph Ggt = (V, Egt,Wgt) as ground
truth, i.i.d. data samples are generated from the multivariate
Gaussian model (10) associated with Ggt. For this purpose,
graphs of three different types are randomly generated using
the GSP toolbox [16]. These graph types are (i) Community
graphs: networks that have a clear partitioning pattern with
closely connected clusters or subgraphs. Every node has
typically much more connections with nodes of the same
cluster than nodes of other clusters, (ii) Sensor networks:
the nodes V are embedded in the 2-dimensional square [0, 1]2

and uniformly distributed. The edge weights are then defined
by Wij = Zij1{Zij≥T}, where Zij = exp

(
−‖Vi−Vj‖

2
2

2σ2

)
and

(iii) Erdős-Rényi graphs: a random graph model as proposed
by [17].

The quality of the learned graphs is assessed by relative
errors (see `1,2 (edge/degree), Table I) of W in terms of
`1 and `2 norm-based distances to the ground truth Wgt.
In addition, qualities of the edge/non-edge classification are
evaluated by the F-measure (harmonic mean of precision and
recall scores of the learned edges E w.r.t. Egt, Appendix VII-
A). Particularly, the F-measure is computed from both hard
(1{W ∗ > 0}) and soft (1{W ∗ > ε}) thresholded results.

Our proposed method (Algorithm 1) is compared to the
state-of-the-art [7] and baseline (k-NN with RBF-Gaussian
weighted edges) methods. For all graph types, the number

of nodes is set to m = 300 and number of samples used
for graph learning is n = 2000. The scores are obtained
by running 20 times the same experiment with optimal
parameters for each method.

TABLE I: Evaluation of graph learning on synthetic data

Metric Baseline (kNN) [7] GL-SPH

Community

`2 (edge) 0.6490 0.4590 0.4861
`1 (edge) 0.6655 0.3893 0.4067
`2 (degree) 0.3145 0.0738 0.0953
`1 (degree) 0.2668 0.0553 0.0766

F-measure(0) 0.7710 0.1967 0.8860
F-measure(ε) 0.7710 0.8654 0.8860

Sensor

`2 (edge) 0.5919 0.3524 0.3330
`1 (edge) 0.7268 0.3729 0.3409
`2 (degree) 0.3884 0.1386 0.1356
`1 (degree) 0.3502 0.1254 0.1154

F-measure(0) 0.8209 0.2894 0.7399
F-measure(ε) 0.8209 0.5570 0.7399

Erdős-Rényi

`2 (edge) 1.1371 0.6863 0.7249
`1 (edge) 1.2863 0.6850 0.6932
`2 (degree) 1.6320 0.0951 0.1627
`1 (degree) 0.6780 0.0805 0.1512

F-measure(0) 0.3497 0.1563 0.7240
F-measure(ε) 0.3497 0.6874 0.7240

Table I shows that the proposed method has performances
close to those of the state-of-the-art method [7] in terms of
relative errors (Appendix VII-A). This is expected since the
objective function (17b) is not fundamentally different from
the one proposed in [7]. Our method also performs very well
in (hard-thresholded) edge classifications (F-measure(0)). For
all graph types tested, both algorithms learned graphs that are
closer to the ground truths than those constructed with the
baseline (k-NN) method.

B. Graph learning and regularized matrix completion

We apply Algorithm 2 to a dataset obtained from the UCI
repository [18]: the PeMS Traffic occupancy data. The Traffic
dataset (link) is a matrix of size 963 × 10, 560 containing
traffic occupancy rates (between 0 and 1) recorded across
time by m = 963 sensors placed along different car lanes
of the San Francisco bay area freeways. The recordings are
sampled every 10 minutes covering a period of 15 months.
The column index set corresponds to the time domain and the
row index set corresponds to geographical points (sensors),
which are referred to as the spatial domain. We are interested
in learning graphs in the spatial domain. Unlike the case with
data from social networks or any other kind with useful meta-
data, there is no obvious way to find any side information
for the Traffic dataset that may help constructing a spatial-
domain graph. This further enhances the need to learn a
graph instead of constructing one for the spatial domain.

In the following experiments for matrix completion, the
data matrix is only observed in the form of PΩ(M), on
a uniformly sampled index subset Ω ⊂ [[m]] × [[n]] for a
chosen sampling ratio |Ω|

mn . We use Algorithm 2 to produce
a recovered matrix X̂ from the observed matrix entries
(Ω, PΩ(M)) and evaluate the quality of X̂ by (i) the Root
Mean Squared Error (RMSE), (ii) the normalized RMSE

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

465

(NRMSE) [4] and (iii) the normalized deviation (ND) [4]
on the whole index set

(
[[m]] × [[n]]

)
and/or the test set Ωc.

See Appendix VII-A for definitions of these metrics. In the
graph learning step (line 3, Algorithm 2), different values
of γ (problem (17b)) results in graphs of different sparsity
levels (or edge densities), which can be measured by the
average vertex degree

(∑m
i,j=1Wij/m

)
. Figure 1 shows

how the learned graphs with different edge densities influ-
ence the regularized matrix completion step (RMC-REGL,
Algorithm 2): each curve corresponds to the NRMSE scores
of recovered matrices obtained by using different values of
γ (problem (17b)) and a fixed value of β (problem (23)).

0 50 100 150 200 250 300 350 400 450 500

Average vertex degree

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
R

M
S

E

Matrix Completion qualities: NRMSE

RMC-regL(β1)
RMC-regL(β2)
RMC-regL(β3)
RMC

Fig. 1: Matrix completion scores (NRMSE) by Algorithm
RMC-REGL compared to the baseline method RMC [15]
(black dashed line). X-axis: edge densities of the learned
graphs

(
for γ = 5.10−5 ∼ 5.10−3

)
.

TABLE II: Matrix completion scores on data with different
sampling ratios.

|Ω|/mn RMC [15] GL+RMC-REGL

RMSE
(all/test entries)

4% 0.0641 / 0.0653 0.0278 / 0.0281
6% 0.0476 / 0.0489 0.0254 / 0.0256
8% 0.0402 / 0.0415 0.0247 / 0.0249
10% 0.0394 / 0.0410 0.0243 / 0.0245
20% 0.0285 / 0.0298 0.0236 / 0.0237
30% 0.0259 / 0.0269 0.0235 / 0.0236
40% 0.0278 / 0.0305 0.0234 / 0.0236

NRMSE

4% 1.2371 0.5311
6% 0.9250 0.4848
8% 0.7847 0.4716
10% 0.7753 0.4639
20% 0.5643 0.4490
30% 0.5086 0.4477
40% 0.5767 0.4468

ND

4% 0.4694 0.2356
6% 0.3146 0.1992
8% 0.2543 0.1865
10% 0.2334 0.1776
20% 0.1783 0.1617
30% 0.1639 0.1588
40% 0.1662 0.1578

Using masked Traffic data with different sampling ratios
as input data, we report matrix completion scores of Algo-
rithm 2 after performing grid search for optimal values of
the aforementioned parameters γ, α, β. Table II shows the
scores in comparison with the baseline [15].

In addition to matrix completion scores, the quality of the
recovered data as multivariate time series is also assessed.

We first evaluate the Root Relative Squared Error (RRSE,
see Appendix VII-A) for each of the m (univariate) time
series X̂T

(i), i ∈ [[m]] and then examine the overall imputation
quality by computing the average and standard deviation (see
Table III) of the RRSEs over all m nodes.

TABLE III: Mean/Std∗ of RRSEs over all univariate time
series in X̂.

|Ω|/mn RMC [15] GL+RMC-REGL

RRSE∗

4% 0.9411 / 0.6376 0.5773 / 0.1121
6% 0.6627 / 0.4437 0.5278 / 0.1156
8% 0.5772 / 0.3439 0.5131 / 0.1164
10% 0.5533 / 0.3467 0.5043 / 0.1190
20% 0.5049 / 0.1946 0.4920 / 0.1188
30% 0.4961 / 0.1463 0.4901 / 0.1201
40% 0.4947 / 0.1786 0.4886 / 0.1196

The RRSE is a normalized quantity relative to the em-
pirical standard deviation of the time series. Intuitively,
any random Gaussian time series with the same mean and
standard deviation will typically have a RRSE close to 1
(black dashed line in Figure 2).

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Sampling ratio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
e
a
n
 a

n
d
 S

td
 o

f
R

R
S

E
s

RMC

RMC-regL

Multivariate Gaussian

Fig. 2: Mean/Std of RRSEs at different sampling ratios: the
average and standard deviation are computed over all rows
of X̂.

As shown in Figure 2, the time series (i.e. rows of X̂)
recovered by the graph-regularized method typically have
better RRSE scores than those recovered by the baseline
method. Moreover, the variance of these RRSE scores is
reduced. At very low sampling ratios (e.g. 4%) in particular,
the graph-regularized method is still able to recover all
matrix rows with non-trivial (much lower than 1) qualities.

VII. CONCLUSIONS
We investigated a graph-regularized approach to low-rank

matrix completion by proposing to learn graphs from an
inexpensive low-rank approximation to the incomplete data
matrix. Without any side information or specific graph-
construction models, we formulated a fixed-scale graph
learning problem as a constrained optimization problem
over the unit-norm hypersphere and proposed an efficient
projected gradient algorithm. Our framework for graph-
regularized matrix completion (GL+RMC-REGL) showed
superior performance for missing value imputation of high-
dimensional time series compared to the matrix completion
method without graph-regularization.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

466

APPENDIX

A. Evaluation and metrics

The metrics used to evaluate a learned graph w.r.t. the
ground truth (wgt) are: (1) Relative error of edge weights,
for ξ = 1, 2, ‖w − wgt‖ξ/‖wgt‖ξ; (2) Relative error of
degree weights: ‖A(w − wgt)‖ξ/‖Awgt‖ξ and (3) the F-
measure: harmonic mean of the precision and recall scores
of 1{W ∗ > 0} w.r.t. 1{Wgt > 0}.

The metrics used to assess a recovered matrix X̂ are: (1)
the Root Mean Squared Error (RMSE) defined as

RMSE(S) =

√ ∑
(i,j)∈S

(X̂ij −Mij)2/|S|,

where S = [[m]] × [[n]] or Ωc; (2) the normalized RMSE
(NRMSE) on the test set, defined as

NRMSE =

√∑
(i,j)∈Ωc(X̂ij −Mij)2/|Ωc|∑

(i,j)∈Ωc |Mij |/|Ωc|

and (3) the normalized deviation (ND) defined as

ND =

∑
(i,j)∈Ωc |X̂ij −Mij |∑

(i,j)∈Ωc |Mij |
.

The Root Relative Squared Error (RRSE) of an univariate
time series x = (xt)t=1,..,T w.r.t. x? is defined as

RRSE =

√√√√ T∑
t=1

(
xt − x?t

)2
/

T∑
t=1

(
x?t − x̄?

)2
,

where x̄? denotes the mean value of the time series x?.

B. Proposition 1

Proof. For any Gram matrix γ ∈ Rm×m, the symmetry
of γ yields Tr(γL) =

∑m
i,j=1 γijLij . Moreover, we know

from the definition of the graph Laplacian (6) that for
i ∈ [[m]], Lii = di, where d = W1 and for i, j ∈
[[m]], i 6= j, Lij = −Wij . Hence Tr(γL) =

∑m
i=1 γiiLii +∑

i 6=j γijLij equals

diag(γ)Td− Tr(γW)

=
1

2

(
diag(γ)Td+ dT diag(γ)

)
− Tr(γW)

=
1

2
Tr
{
ddiag(γ)T + diag(γ)dT

}
− Tr(γW).

=
1

2
Tr
{
W1diag(γ)T + diag(γ)1TW

}
− Tr(γW).

Finally, by identifying ζ with 1diag(γ)T + diag(γ)1T −
2γ, we have Tr(γL) = 1

2 Tr(ζW). Note that for this

identification of ζ to work, we simply used the fact that
Tr(W1diag(γ)T) = Tr(1diag(γ)TW) in the last equa-
tion above. For the first equation above, we notice that∑
i 6=j γijLij = −

∑
i 6=j γijWij = −

∑m
i,j=1 γijWij =

−Tr(γW), since diag(W) = 0 (Section III-A) for graphs
without self-loops.

REFERENCES

[1] J. Bennett and S. Lanning. The Netflix Prize. KDD Cup and Workshop,
pages 3–6, 2007.

[2] N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-Margin
Matrix Factorization. Advances in Neural Information Processing
Systems, 17:1329–1336, 2005.

[3] N. Rao, H.-F. Yu, P. Ravikumar, and I. S. Dhillon. Collaborative
Filtering with Graph Information: Consistency and Scalable Methods.
In Advances in Neural Information Processing Systems 28, pages
2107—-2115. 2015.

[4] H.-F. Yu, N. Rao, and I. S. Dhillon. Temporal Regularized Matrix Fac-
torization for High-dimensional Time Series Prediction. In Advances
in Neural Information Processing Systems 29, pages 847–855, 2016.

[5] V. Kalofolias, X. Bresson, M. Bronstein, and P. Vandergheynst. Matrix
Completion on Graphs. In NIPS2014 - Robustness in High Dimension,
2014.

[6] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst. Learning
Laplacian Matrix in Smooth Graph Signal Representations. IEEE
Transactions on Signal Processing, 64(23):6160–6173, 2016.

[7] V. Kalofolias. How to Learn a Graph from Smooth Signals. In
A. Gretton and C. C. Robert, editors, Proceedings of the 19th Interna-
tional Conference on Artificial Intelligence and Statistics, volume 51
of Proceedings of Machine Learning Research, pages 920–929, Cadiz,
Spain, 2016. PMLR.

[8] H. E. Egilmez, E. Pavez, and A. Ortega. Graph Learning from Data
under Structural and Laplacian Constraints. 2016.

[9] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains. IEEE Signal Processing Magazine, 30(3):83–98, 2013.

[10] J. Lindström. Gaussian Markov Random Fields. pages 1–6, 2014.
[11] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance

estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.
[12] O. Banerjee, L. El Ghaoui, and A. D’Aspremont. Model Selection

Through Sparse Maximum Likelihood Estimation for Multivariate
Gaussian or Binary Data. The Journal of Machine Learning Research,
9:485–516, 2008.

[13] J. Zhang, H. Liu, Z. Wen, and S. Zhang. A Sparse Completely Positive
Relaxation of the Modularity Maximization for Community Detection.
2017.

[14] E. G. Birgin, J. M. Martı́nez, and M. Raydan. Nonmonotone Spectral
Projected Gradient Methods on Convex Sets. SIAM Journal on
Optimization, 10(4):1196–1211, 2000.

[15] L. Cambier and P.-A. Absil. Robust Low-Rank Matrix Completion
by Riemannian Optimization. SISC, Siam Journal on Scientific
Computing, 38(5):1–25, 2015.

[16] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Van-
dergheynst, and D. K. Hammond. GSPBOX: A toolbox for signal
processing on graphs. ArXiv e-prints, aug 2014.

[17] E. N. Gilbert. Random Graphs. The Annals of Mathematical Statistics,
30(4):1141–1144, 1959.

[18] M. Lichman. UCI Machine Learning Repository, 2013.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

467

