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Abstract— In this paper a class of abstract dynamical systems
is considered which encompasses a wide range of nonlinear
finite- and infinite-dimensional systems. We show that the
existence of a non-coercive Lyapunov function without any
further requirements on the flow of the forward complete
system ensures an integral version of uniform global asymptotic
stability. We prove that also the converse statement holds
without any further requirements on regularity of the system.

Furthermore, we give a characterization of uniform global
asymptotic stability in terms of the integral stability properties
and analyze which stability properties can be ensured by the
existence of a non-coercive Lyapunov function, provided either
the flow has a kind of uniform continuity near the equilibrium
or the system is robustly forward complete.

Keywords: nonlinear control systems, infinite-
dimensional systems, Lyapunov methods, global asymptotic
stability.

I. INTRODUCTION

The theory of Lyapunov functions is one of the corner-
stones in the dynamical and control systems theory. Numer-
ous applications of Lyapunov theory include characterization
of stability properties of fixed points and more complex
attractors [26], [5], [14], [11], conditions for forward com-
pleteness of trajectories [1], criteria for the existence of a
bounded absorbing ball [2, Theorem 2.1.2] etc. Some of
these uses extend from finite-dimensional applications to the
infinite-dimensional case, while others rely on distinct finite-
dimensional arguments.

On the other hand numerous converse results have been
obtained which prove the existence of certain types of
Lyapunov functions characterizing different stability notions,
see e.g. [11] for an up-to-date survey of such results. Before
starting to look for a Lyapunov function it is highly desirable
to know in advance that such a Lyapunov function for a
given class of systems exists. The first results guaranteeing
existence of Lyapunov functions for asymptotically stable
systems appeared in the works of Kurzweil [13] and Massera
[16]. These have been generalized in different directions, see
[11], [19] for references.

The standard definition of a Lyapunov function V , found
in many textbooks on finite-dimensional dynamical systems,
is that it should be a continuous (or more regular) positive
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definite and proper function, i.e. a function for which there
exist K∞

1 functions ψ1,ψ2,α such that

ψ1(‖x‖)≤V (x)≤ ψ2(‖x‖) ∀x ∈ X , (1)

and such that

V̇ (x)<−α(‖x‖) ∀x ∈ X , (2)

where V̇ (x) is some sort of generalized derivative of V along
the trajectories of the system.

If V is as above with the exception that instead of (1), V
satisfies the weaker property

0 <V (x)≤ ψ2(‖x‖) , x 6= 0, (3)

then V is called a non-coercive Lyapunov function.
Noncoercive Lyapunov functions are frequently used in the

linear infinite-dimensional systems theory. There are at least
two reasons for this. On the one hand, using the generalized
Datko lemma [4], [15] one can show that the existence of
noncoercive Lyapunov functions already proves exponential
stability of a linear system (and thus it is not necessary to
look for coercive Lyapunov functions). On the other hand,
noncoercive Lyapunov functions are in a certain sense even
more natural than coercive ones. For example, a classic type
of Lyapunov functions for linear exponentially stable sys-
tems over Hilbert spaces are quadratic Lyapunov functions
constructed by solving the operator Lyapunov equation [3,
Theorem 5.1.3]. However, solutions of this equation are not
coercive in general, and hence the corresponding Lyapunov
functions are not coercive as well.

In spite of these advantages, the usage of non-
coercive Lyapunov functions was limited to linear infinite-
dimensional systems and to nonlinear time-delay systems, for
which the efficient method of Lyapunov-Krasovskii function-
als is widely used [6], [20] (Lyapunov-Krasovskii functionals
have, however, a different type of noncoercivity, see [18]
for a comparison and discussion). Recently the situation has
changed: in [19] the authors have shown that for a broad class
of forward complete nonlinear infinite-dimensional systems
existence of a non-coercive Lyapunov function ensures uni-
form global asymptotic stability (UGAS) of a system, pro-
vided the flow of the system has a certain uniform continuity
at the origin and finite-time reachability sets of the system
are bounded. On the other hand, it was demonstrated in
[19] that without these additional assumptions uniform global

1An increasing, unbounded, continuous, positive definite function from
R+ to itself that maps 0 to 0.
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asymptotic stability cannot be guaranteed, even for systems
of ordinary differential equations (ODEs). In particular, the
existence of a non-coercive Lyapunov function alone does
not ensure forward completeness of the system (in contrast to
coercive Lyapunov functions). Hence, although non-coercive
Lyapunov functions provide more flexibility for the stability
analysis of dynamical systems, further conditions have to be
verified separately. Another result of [19] is a construction
of a Lipschitz continuous non-coercive Lyapunov function
by means of an integration of the solution along trajectories.

In this paper, we continue the investigations initiated
in [19]. In our first main result (Theorem 5.2), we show
that forward complete systems possessing non-coercive Lya-
punov functions (even if they do not satisfy any further
assumptions) enjoy an “integral version” of uniform global
asymptotic stability (iUGAS), which is a weaker notion than
UGAS. Our second result (Theorem 5.5) is a converse non-
coercive Lyapunov theorem for the iUGAS property. Since
iUGAS is weaker than UGAS, a coercive Lyapunov function
does not exist for such systems in general. However, we
show (without requiring any further regularity of the flow!)
that we can construct a non-coercive Lyapunov function for
this system. The construction is motivated by [19] and based
upon classic converse theorems and Yoshizawa’s method [26,
Theorem 19.3], [7, Theorem 4.2.1]. A key tool for achieving
our main results are the characterizations of the iUGAS
property in terms of weaker stability notions, developed in
Theorem 3.7.

Relations between integral and “classic” stability notions
have been studied in a number of papers. In particular, in
[25] uniform global asymptotic stability of finite-dimensional
differential inclusions has been characterized via “integral”
uniform attractivity. A natural extension of the iUGAS notion
to the case of systems with inputs leads to the nonlinear
counterparts of L2-stability (which was originally introduced
in the context of linear systems in the seminal work [27], see
also [22]). In [23], [12] it was shown that these extensions
are equivalent to input-to-state stability for the systems of
ordinary differential equations with Lipschitz continuous
nonlinearities.

A. Notation

The following notation will be used throughout. By R+ we
denote the set of nonnegative real numbers. For an arbitrary
set S and n∈N the n-fold Cartesian product is Sn := S× . . .×
S. The open ball in a normed linear space X with radius r and
center in y∈ X is denoted by Br(y) := {x∈ X | ‖x−y‖X < r}
(the space X in which the ball is taken, will always be clear
from the context). For short, we denote Br := Br(0). The
(norm)-closure of a set S⊂ X will be denoted by S.

For the formulation of stability properties the following
classes of comparison functions are useful, see [5], [10].
The set K is the set of functions γ : R+ → R+ that are
continuous, strictly increasing and with γ(0) = 0; K∞ is the
set of unbounded γ ∈ K ; K L is the set of continuous
β : R2

+→R+, such that β (·, t) ∈K , for all t ≥ 0 and β (r, ·)
is decreasing to 0 for all r > 0.

II. PROBLEM STATEMENT

We consider abstract axiomatically defined time-invariant
and forward complete systems on the state space X which
are subject to a shift-invariant set of disturbances D .

Definition 2.1: Consider the triple Σ = (X ,D ,φ), consist-
ing of

(i) A normed linear space (X ,‖·‖X ), called the state space,
endowed with the norm ‖ · ‖X .

(ii) A set of disturbance values D, which is a nonempty
subset of a certain normed linear space.

(iii) A space of disturbances D ⊂ {d : R+→ D} satisfying
the following two axioms.
The axiom of shift invariance states that for all d ∈D
and all τ ≥ 0 the time shift d(·+ τ) is in D .
The axiom of concatenation is defined by the require-
ment that for all d1,d2 ∈ D and for all t > 0 the
concatenation of d1 and d2 at time t

d(τ) :=

{
d1(τ), if τ ∈ [0, t],
d2(τ− t), otherwise,

(4)

belongs to D .
(iv) A map φ : R+×X×D→ X , called the transition map.

The triple Σ is called a (forward complete) system, if the
following properties hold:
(Σ1) forward completeness: for every (x,d) ∈ X×D and for

all t ≥ 0 the value φ(t,x,d) ∈ X is well-defined.
(Σ2) The identity property: for every (x,d) ∈ X×D it holds

that φ(0,x,d) = x.
(Σ3) Causality: for every (t,x,d) ∈ R+×X ×D , for every

d̃ ∈ D , such that d(s) = d̃(s), s ∈ [0, t] it holds that
φ(t,x,d) = φ(t,x, d̃).

(Σ4) Continuity: for each (x,d) ∈ X × D the map t 7→
φ(t,x,d) is continuous.

(Σ5) The cocycle property: for all t,h ≥ 0, for all x ∈ X ,
d ∈D we have φ(h,φ(t,x,d),d(t + ·)) = φ(t +h,x,d).

Here φ(t,x,d) denotes the state of a system at the moment
t ∈ R+ corresponding to the initial condition x ∈ X and the
disturbance d ∈D .

We require a stronger version of forward completeness.
Definition 2.2: The system Σ = (X ,D ,φ) is called ro-

bustly forward complete (RFC) if for any C > 0 and any
τ > 0 it holds that

sup
{
‖φ(t,x,d)‖X | ‖x‖X ≤C, t ∈ [0,τ], d ∈D

}
< ∞.

In other words, a system Σ is RFC iff its finite-time reacha-
bility sets (emanating from the bounded sets) are bounded.

The condition of robust forward completeness is satisfied
by large classes of infinite-dimensional systems.

Definition 2.3: We call 0 ∈ X an equilibrium point of the
system Σ = (X ,D ,φ), if φ(t,0,d) = 0 for all t ≥ 0, d ∈D .

Note that according to the above definition disturbances
cannot move the system out of the equilibrium position.

Definition 2.4: We call 0 ∈ X a robust equilibrium point
(REP) of the system Σ = (X ,D ,φ), if it is an equilibrium
point such that for every ε > 0 and for any h > 0 there exists
δ = δ (ε,h)> 0, satisfying

t ∈ [0,h], ‖x‖X ≤ δ , d ∈D ⇒ ‖φ(t,x,d)‖X ≤ ε. (5)
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In this paper we investigate the following stability prop-
erties of equilibria of abstract systems.

Definition 2.5: Consider a system Σ = (X ,D ,φ) with a
fixed point 0. The equilibrium position 0 is called

(i) uniformly locally stable (ULS), if for every ε > 0 there
is a δ > 0 so that

‖x‖X ≤ δ , d ∈D , t ≥ 0 ⇒ ‖φ(t,x,d)‖X ≤ ε. (6)

(ii) uniformly globally asymptotically stable (UGAS) if
there exists a β ∈K L such that

x∈ X , d ∈D , t ≥ 0⇒ ‖φ(t,x,d)‖X ≤ β (‖x‖X , t). (7)

(iii) uniformly (locally) asymptotically stable (UAS) if there
exist a β ∈K L and an r > 0 such that

‖x‖X ≤ r, d ∈D , t ≥ 0 ⇒ ‖φ(t,x,d)‖X ≤ β (‖x‖X , t).

(iv) uniformly globally weakly attractive (UGWA), if for
every ε > 0 and for every r > 0 there exists a τ = τ(ε,r)
such that for all ‖x‖X ≤ r, d ∈D

∃t = t(x,d,ε)≤ τ : ‖φ(t,x,d)‖X ≤ ε.

(v) uniformly globally attractive (UGATT), if for any r,ε >
0 there exists τ = τ(r,ε) so that

‖x‖X ≤ r, d ∈D , t ≥ τ(r,ε) ⇒ ‖φ(t,x,d)‖X ≤ ε.
It is clear, that UGAS of 0 implies UGATT of 0, which in
turn implies UGWA of 0.

As we will see, in the study of non-coercive Lyapunov
functions one arrives very naturally at “integral” versions of
the notions stated above:

Definition 2.6: We call 0 ∈ X an integrally robust equi-
librium point (iREP) of the system Σ = (X ,D ,φ), if it is
an equilibrium point and there is α ∈ K such that for
every ε > 0 and for any h > 0 there exists δ = δ (ε,h)> 0,
satisfying

‖x‖X ≤ δ , d ∈D ⇒
∫ h

0
α(‖φ(s,x,d)‖X )ds≤ ε. (8)

Definition 2.7: The system Σ = (X ,D ,φ) is called α-
integrally robustly forward complete (α-iRFC), with α ∈K
if for any C > 0 and any τ > 0 it holds that

sup
x∈BC , d∈D

∫
τ

0
α
(
‖φ(t,x,d)‖X

)
dt < ∞.

Remark 2.8: Note that every forward-complete system
is automatically α-iRFC with any α ∈ K \K∞, since∫

τ

0 α
(
‖φ(t,x,d)‖X

)
< τα(+∞). On the other hand, if Σ is

RFC, then Σ is also α-iRFC with any α ∈K .
Definition 2.9: Consider a forward complete system Σ =

(X ,D ,φ). The equilibrium position 0 is called
(i) integrally uniformly locally stable (iULS) provided

there are α ∈K , ψ ∈K∞ and r > 0 so that

‖x‖X ≤ r, d ∈D ⇒
∫

∞

0
α(‖φ(s,x,d)‖X )ds≤ψ(‖x‖X ).

(9)
(ii) integrally uniformly globally stable (iUGS) provided

there are α ∈K , ψ ∈K∞ so that (9) is valid for r :=∞.

(iii) integrally uniformly globally attractive (iUGATT) pro-
vided there is α ∈K so that

∀ r > 0 : lim
t→∞

sup
x∈Br , d∈D

∫
∞

t
α(‖φ(s,x,d)‖X )ds = 0. (10)

(iv) integrally uniformly globally asymptotically stable (iU-
GAS) provided there are α ∈K and β ∈K L so that
for all x ∈ X , d ∈D , t ≥ 0 we have∫

∞

t
α(‖φ(s,x,d)‖X )ds≤ β (‖x‖X , t). (11)

Properties (9) and (10) look similar to a kind of uniform
attractivity. This similarity becomes even more apparent if
we rewrite the definition of UGATT in an equivalent form:

Lemma 2.10: Let Σ = (X ,D ,φ) be a forward complete
system. Then 0 is UGATT iff there is α ∈K so that

lim
t→∞

sup
x∈Br , d∈D

α

(∥∥φ(·+ t,x,d)
∥∥

C(X)

)
= 0 ∀r > 0, (12)

where ‖φ(·+ t,x,d)‖C(X) is the sup-norm of the “tail” of the
trajectory φ after the time t.

Proof: If 0 is UGATT, then for any α ∈K∞ and any
r,ε > 0 there exists τ = τ(r,ε) so that

‖x‖X ≤ r, d ∈D , t ≥ τ(r,ε) ⇒ ‖φ(t,x,d)‖X ≤ α
−1(ε).

Hence,

‖x‖X ≤ r, d ∈D , t ≥ τ(r,ε) ⇒ α
(
‖φ(t,x,d)‖X

)
≤ ε

and taking the limit ε→+0 we arrive at (12). The proof of
the converse implication is analogous.

Remark 2.11: Note that merely choosing a positive defi-
nite α in (12) (i.e. α ∈C(R+,R+): α(0) = 0 and α(r)> 0
for r > 0) we do not arrive at any kind of attractivity, since
the trajectory may grow to infinity, and α(‖φ(t,x,d)‖X ) may
converge to zero at the same time. E.g. consider ẋ(t) = x(t),
x(t) ∈ R, α(r) := r

r2+1 .
Analogously, one can restate the UGS property. In Theo-

rem 4.4 we will show that UGAS implies iUGAS.
Finally, it is easy to see that
Lemma 2.12: Let Σ=(X ,D ,φ) be a system. If 0 is a REP,

then 0 is an iREP with any α ∈K∞.
Proof: Pick any α ∈K∞. Since 0 is a REP of the system

Σ = (X ,D ,φ), for every ε > 0, h > 0 there is δ = δ (ε,h)> 0
such that

‖x‖X ≤ δ , d ∈D ⇒ sup
t∈[0,h]

‖φ(s,x,d)‖X ≤ α
−1(ε

h

)
.

Hence it holds that

‖x‖X ≤ δ , d ∈D ⇒
∫ h

0
α
(
‖φ(s,x,d)‖X

)
ds≤ ε,

which shows 0 is an iREP with the above α .
Recall that for h : R → R the right-hand lower Dini

derivative D+ and the right-hand upper Dini derivative D+

at a point t are defined by, see [24],

D+h(t) := lim
τ→+0

1
τ

(
h(t + τ)−h(t)

)
,

D+h(t) := lim
τ→+0

1
τ

(
h(t + τ)−h(t)

)
.

(13)
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Consider a system Σ = (X ,D ,φ) and let V : X → R be
a map. Given x ∈ X ,d ∈ D , we consider the (right-hand
lower) Dini derivative of the function t 7→ V (φ(t,x,d)) at
t = 0 denoted by:

V̇d(x) := lim
t→+0

1
t

(
V
(
φ(t,x,d)

)
−V (x)

)
. (14)

We call this the Dini derivative of V along the trajectories
of Σ.

Having introduced the main stability properties, we in-
troduce now a predominant tool to their study, which is a
Lyapunov function.

Definition 2.13: Consider a system Σ = (X ,D ,φ) and a
function V : X → R+, satisfying for each y ∈ X , each s > 0
and each d ∈D the inequalities

lim
h→+0

V
(
φ(s−h,y,d)

)
≥ V

(
φ(s,y,d)

)
(15)

≥ lim
h→+0

V
(
φ(s+h,y,d)

)
.

Assume also that the right inequality in (15) is satisfied for
s := 0 as well. The map V is called:

(i) a non-coercive Lyapunov function for the system Σ =
(X ,D ,φ), if V (0) = 0 and if there exist ψ2 ∈K∞ and
α ∈K such that

0 <V (x)≤ ψ2(‖x‖X ) ∀x ∈ X\{0}. (16)

holds and the Dini derivative of V along the trajectories
of Σ satisfies

V̇d(x)≤−α(‖x‖X ) (17)

for all x ∈ X and all d ∈D .
(ii) a (coercive) Lyapunov function if in addition there is

ψ1 ∈K∞ satisfying ψ1(‖x‖X )≤V (x) for all x ∈ X .
The following result is known:
Proposition 2.14: Let Σ = (X ,D ,φ) be a system. Then:

(i) If there exists a coercive continuous Lyapunov function
for Σ, then 0 is UGAS.

(ii) If there exists a non-coercive continuous Lyapunov
function for Σ, and if Σ is RFC and 0 is a robust
equilibrium, then 0 is UGAS.

The item (i) of Proposition 2.14 is a classic result, and item
(ii) has been shown in the paper [19], where the concept
of a non-coercive Lyapunov function for nonlinear systems
has been introduced and analyzed. There is an apparent
distinction in the results (i) and (ii), in that in item (ii)
the existence of a non-coercive Lyapunov function implies
UGAS, provided that REP and RFC hold. In case that either
REP or RFC do not hold, non-coercive Lyapunov functions
do not imply UGAS, as demonstrated by examples in [19].

This difference in the formulations of items (i) and (ii) of
Proposition 2.14 motivates the first question:

What are the stability properties, which can be inferred
from the existence of a non-coercive Lyapunov function,

without requiring any further assumptions on Σ?

On the other hand, it is well-known, that UGAS implies
existence of a coercive Lyapunov function, at least under

certain regularity assumptions on the flow of Σ. This leads
to the second problem which we analyze in this paper:

What property, which is weaker than UGAS, implies
existence of a non-coercive Lyapunov function (and at the

same time does not imply the existence of a coercive
Lyapunov function)?

In Section V we resolve both these questions by show-
ing that existence of a non-coercive Lyapunov function is
equivalent to the iUGAS property. Moreover, in Section III
we show several useful criteria for iUGAS and iUGATT,
we give “atomic decompositions” of the UGAS property in
Section IV. Furthermore, in Section V we analyze which
stability properties can be ensured by the existence of a non-
coercive Lyapunov function, provided either it only holds
that 0 is a REP or only the RFC property of Σ is known.

III. CRITERIA FOR IUGATT AND IUGAS

In this section we study “integral” stability properties start-
ing with criteria for integral UGATT and then for iUGAS.

A. Criteria for integral UGATT

First we would like to give a criterion for iUGATT in
terms of UGWA. To this end we need one more notion:

Definition 3.1: Let Σ be a forward complete system. We
say that 0 is ultimately (locally) integrally stable (iULS) if
there is α ∈K so that for any ε > 0 there exist T = T (ε)
and δ = δ (ε) so that

‖x‖X ≤ δ , d ∈D ⇒
∫

∞

T (ε)
α
(
‖φ(t,x,d)‖X

)
ds≤ ε. (18)

Now we are in a position to characterize iUGATT.
Proposition 3.2: Consider a forward complete system Σ=

(X ,D ,φ). Then 0 is iUGATT with some α ∈K if and only
if 0 is UGWA and ultimately iULS with the same α .

Proof: ⇒. Ultimate iULS of 0 (with the same weight
function α) easily follows from iUGATT. Let us show that
0 is UGWA.

Pick any R > 0 and any ε > 0. Since 0 is integrally
UGATT, there is a time τ̃ = τ̃(R,ε) so that

sup
x∈Br , d∈D

∫
∞

τ̃(R,ε)
α(‖φ(s,x,d)‖X )ds≤ 1

2
α(ε).

Assume that for some x ∈ Br, some d ∈ D and any s ∈
[τ̃(R,ε), τ̃(R,ε)+1] it holds that ‖φ(s,x,d)‖X ≥ ε . Then

1
2

α(ε) ≥
∫

∞

τ̃(R,ε)
α(‖φ(s,x,d)‖X )ds ≥ α(ε),

a contradiction. This shows that 0 is uniformly globally
weakly attractive with τ(R,ε) := τ̃(R,ε)+1.
⇐. Since 0 is ultimately iULS, there is α ∈K so that for

all ε > 0 there are δ (ε) and T (ε) so that (18) holds.
Pick any ε > 0 and r > 0. Since 0 is a uniformly globally

weakly attractive set, there is a time τ̃ = τ̃(r,ε) so that for
any x ∈ Br and any d ∈ D there is a time t̄ ∈ [0, τ̃(r,ε)) so
that ‖φ(t̄,x,d)‖X ≤ δ (ε).
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In view of the ultimate iULS property we have that

t ≥ T (ε) ⇒
∫

∞

t
α
(
‖φ(s,φ(t̄,x,d),d(t̄ + ·))‖X

)
ds≤ ε.

Due to the cocycle property it holds that∫
∞

t
α
(
‖φ(s,φ(t̄,x,d),d(t̄ + ·))‖X

)
ds

=
∫

∞

t
α
(
‖φ(s+ t̄,x,d)‖X

)
ds =

∫
∞

t+t̄
α
(
‖φ(s,x,d)‖X

)
ds.

Considering t ≥ t̄ + T (ε), it is now easy to see that 0 is
iUGATT (with the same α).

Analogously to Proposition 3.2 one can characterize the
UGATT property. We define

Definition 3.3: A nonempty set A⊂ X is called ultimately
uniformly stable if for any ε > 0 there exist T = T (ε) and
δ = δ (ε) so that

t ≥ T, ‖x‖A ≤ δ , d ∈D ⇒ ‖φ(t,x,d)‖A ≤ ε. (19)
Proposition 3.4: Consider a forward complete system Σ=

(X ,D ,φ). Then 0 is a UGATT set if and only if 0 is
ultimately uniformly stable and UGWA.

B. Characterization of iUGAS

In [19, Proposition 3.7] the following result has been
shown (the statement in [19] was somewhat different, but
the proof is exactly the same):

Proposition 3.5: Consider a forward complete system Σ=
(X ,D ,φ). If 0 is iUGS, then 0 is UGWA.

Another useful lemma is:
Lemma 3.6: Consider a forward complete system Σ =

(X ,D ,φ). Then 0 is iULS if and only if 0 is an iREP and
ultimately iULS.

Proof: ⇒. This is clear.
⇐. Since 0 is ultimately iULS, there is α1 ∈K so that

for any ε > 0 there are r = r(ε)> 0 and a time τ = τ(ε)> 0
satisfying

‖x‖X ≤ r(ε), d ∈D ⇒
∫

∞

τ

α1
(
‖φ(s,x,d)‖X

)
ds≤ ε

2
.

Now since 0 is an iREP, there is α2 ∈K so that for these
ε,τ there is a δ̃ = δ̃ (ε)≤ r(ε) so that

‖x‖X ≤ δ̃ , d ∈D ⇒
∫

τ

0
α2
(
‖φ(s,x,d)‖X

)
ds≤ ε

2
.

Define α(s) := min{α1(s),α2(s)}, s ≥ 0. Clearly, α ∈ K
and it holds that

‖x‖X ≤ δ̃ , d ∈D ⇒
∫ +∞

0
α
(
‖φ(s,x,d)‖X

)
ds≤ ε.

Without loss of generality we can assume that δ̃ is non-
decreasing. Furthermore, by construction it holds that δ̃ (0) =
0. Then it can be lowerbounded by a certain δ ∈K .

Now iULS of 0 follows by choosing ψ(s) := δ−1(s), s ∈
[0, δ̃ (+∞)).

The main result in this section is the characterization of
the notion of iUGAS:

Theorem 3.7: Consider a forward complete system Σ =
(X ,D ,φ). Then the following statements are equivalent:

(i) 0 is iUGAS.
(ii) 0 is iUGS.

(iii) 0 is iULS (with a certain α ∈K ) and 0 is UGWA.
(iv) 0 is an iREP and 0 is iUGATT.

Moreover, in item (iv) the function α can be chosen to be
equal to the α from item (iii).

Proof: (i) ⇒ (ii). Evident.
(ii) ⇒ (iii). Follows by Proposition 3.5.
(iii) ⇒ (iv). As 0 is iULS it follows that it is an iREP.

Furthermore, since 0 is UGWA and ultimately iULS with
α ∈ K , then by means of Proposition 3.2 0 is iUGATT
with the same α .

(iv) ⇒ (i). This part is omitted for reasons of space.
Remark 3.8: Note that in all the integral notions we have

assumed that the corresponding function α belongs to the
class K . If we require in the definitions that α must belong
to the class K∞, we obtain stronger versions of “integral
notions”. The difference is that every forward-complete
system is automatically α-integrally RFC with α ∈K \K∞

(see Remark 2.8), but it need not be α-integrally RFC for
all α ∈K∞.

This “breaks” the proof of the corresponding result (iv)⇒
(i) in Theorem 3.7. In order to fix the proof of Theorem 3.7
of a stronger version of this implication, in items (iii), (iv) we
need to assume in addition that the system is α-iRFC with
a certain α ∈K∞. Then after some minor modifications we
recover the characterization of iUGAS with α ∈K∞.

IV. “INTEGRAL” CHARACTERIZATION OF THE UGAS
PROPERTY

Until now we have worked nearly completely on the level
of the “integral” notions, which is almost parallel to the
world of classic notions of stability. Now we are going to
relate “integral” and “classic” worlds.

The next proposition shows that classic stability properties
can be recovered from the “integral” version combined with
either the REP or the RFC property.

Proposition 4.1: Consider a forward complete system Σ=
(X ,D ,φ). Then the following holds:
(i) If 0 is a REP and iULS, then 0 is ULS.

(ii) If 0 is a REP and iUGATT, then 0 is UGATT and UAS.
Proof: (i). Seeking a contradiction, assume that Σ is

not uniformly stable in x∗ = 0. Then there exist an ε > 0
and sequences {xk}k∈N in X , {dk}k∈N in D , and tk ≥ 0 such
that xk→ 0 as k→ ∞ and

‖φ(tk,xk,dk)‖X = ε ∀k ≥ 1.

Since 0 is iULS, there are α ∈K and ψ ∈K∞ so that
for the above ε there is a δ1 = δ1(ε)> 0 satisfying

‖x‖X ≤ δ1, d ∈D ⇒
∫

∞

0
α
(
‖φ(s,x,d‖X

)
ds≤ ψ(‖x‖X ). (20)

Without loss of generality we assume that ‖xk‖X ≤ δ1 for all
k ∈ N (otherwise we can pick a subsequence of {xk} with
this property).
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Since 0 is a REP, for the above ε there is a δ = δ (ε,1)
so that

‖x‖X ≤ δ , t ∈ [0,1], d ∈D ⇒ ‖φ(t,x,d)‖X ≤
ε

2
. (21)

Define for this δ the following quantities:

t̃k := sup{t ∈ [0, tk] : ‖φ(t,xk,dk)‖X ≤ δ},

provided the supremum is taken over a nonempty set, and
t̃k := 0 otherwise. Denote also ηk := tk− t̃k, k ∈N. There are
two possibilities.

First assume that {ηk}k∈N does not converge to 0 as k→∞.
Then there is a η∗ > 0 and a subsequence of {ηkm} so that
ηkm ≥ η∗ for all m≥ 1.

Using (20) for x := xkm , d := dkm and t := tkm , we see that

η
∗
α(δ )≤ ηkmα(δ )≤ ψ(‖xkm‖X ).

Since ψ(‖xkm‖X )→ 0 as m→ ∞, we obtain a contradiction.
Now assume that ηk→ 0 as k→∞. Then there is a k1 > 0

so that ηk1 < 1. In view of a cocycle property, we have that

φ(tk,xk,dk) = φ(ηk,φ(t̃k,xk,dk),dk(·+ t̃k)).

Since ‖φ(t̃k,xk,dk)‖X ≤ δ , by (21) we obtain
‖φ(tk,xk,dk)‖X ≤ ε

2 , which contradicts to the assumption
that ‖φ(tk,xk,dk)‖X = ε . This shows uniform stability of 0.

(ii). It is easy to see that iUGATT implies ultimate iULS.
According to Lemma 2.12, 0 is an iREP. Using Lemma 3.6
and Proposition 4.1 (i) we have that 0 is ULS.

Furthermore, by Proposition 3.2 the equilibrium point 0 is
UGWA, and Proposition 3.4 shows that 0 is UGATT. Finally,
since 0 is UGATT and ULS, then 0 is UAS as well.

In this section we show criteria for UGAS in terms of
integral stability notions. To this end we need two technical
results. The first one is Sontag’s well-known K L -lemma
[23, Proposition 7]:

Lemma 4.2: For all β ∈ K L there exist α1,α2 ∈ K∞

with

β (r, t)≤ α2(α1(r)e−t) ∀r ≥ 0, ∀t ≥ 0. (22)
The second one is a characterization of UGAS in terms of
the UGATT property from [9, Theorem 2.2]:

Proposition 4.3: Consider Σ=(X ,D ,φ). Then 0 is UGAS
if and only if Σ is robustly forward complete and 0 is a
UGATT robust equilibrium point for Σ.

The main result of this section is:
Theorem 4.4: Consider a forward complete system Σ =

(X ,D ,φ). Then the following statements are equivalent:

(i) 0 is UGAS.
(ii) Σ is RFC and 0 is a REP ∧ iUGAS.

(iii) Σ is RFC and 0 is a REP ∧ iUGATT.
(iv) Σ is RFC and 0 is a REP ∧ UGWA ∧ ultimately iULS.
(v) Σ is RFC and 0 is a REP ∧ UGWA ∧ ultimately ULS.

Proof: (i)⇒ (ii). Since 0 is UGAS, there is a β ∈K L
so that (7) holds. In view of Lemma 4.2 there are α1,α2 ∈

K∞ so that (22) holds. Set α := α
−1
2 . Then we have for any

r > 0 and any t > 0 it holds that:

sup
x∈Br , d∈D

∫
∞

t
α(‖φ(s,x,d)‖X )ds≤ sup

x∈Br

∫
∞

t
α(β (‖x‖X ,s))ds

≤
∫

∞

t
α1(r)e−sds = α1(r)e−t

and 0 is iUGAS with ψ := α1 ∈K∞ and α ∈K∞.
(ii) ⇒ (iii). Clear.
(iii) ⇔ (iv). Follows from Proposition 3.2
(iii) ⇒ (v). Follows from Proposition 4.1, item (ii).
(v) ⇒ (i). Follows from Propositions 3.4 and 4.3.
Remark 4.5 (“Atomic decompositions”): Items (iv) and

(v) of Theorem 4.4 give a decomposition of UGAS into
elementary stability notions. In some sense the notions of
UGWA, REP, RFC and ultimate ULS and their integral
counterparts iREP, ultimate iULS and (possibly) iRFC are
the “atoms” by combinations of which the other stability
notions can be constructed.

Comparing items (iv) and (v) of Theorem 4.4 to the
analogous “atomic” decompositions of iUGAS shown in
Theorem 3.7, we see that the notion of UGWA plays a
remarkable role in such characterizations, supported by the
integral variants of REP and ultimate ULS. Uniform global
weak attractivity is the common point of the worlds of classic
and integral notions, which are otherwise largely parallel.

Remark 4.6: It is worth mentioning that for the special
case of linear systems over Banach spaces without distur-
bances the notions of UGAS, iUGAS and UGWA coincide,
as can be seen from [17, Proposition 5.1].

V. NON-COERCIVE LYAPUNOV THEOREMS

In this section we relate the existence of noncoercive
Lyapunov functions to the integral stability concepts we have
introduced. It is shown that for forward complete systems
the existence of noncoercive Lyapunov functions implies
iUGAS. In the next step we treat a converse result.

A. Direct Lyapunov theorems

For the proof of direct Lyapunov theorems we need the
generalized Newton-Leibniz formula (see [21, Theorem 7.3,
p. 204-205] and the comments directly after that result):

Proposition 5.1: Suppose that F : R→ R is a function2

such that for all x ∈ R we have

lim
h→+0

F(x−h)≤ F(x)≤ lim
h→+0

F(x+h). (23)

Let g be a Perron-integrable3 function of a real variable
satisfying D+F(x)≥ g(x) for all x ∈ I. Then for all a,b > 0:
a < b it holds that

F(b)−F(a)≥ (P)
∫ b

a
g(x)dx. (24)

2In the formulation of [21, Theorem 7.3, p. 204-205] the terminology
that F is a finite function is used, which means that F(x)∈R for any x ∈R
(see [21, p. 6]).

3For a definition of Perron integrability see e.g. [21, p. 201]. The (P) in
front of the integral in (24) indicates that this is a Perron integral.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

739



Using Theorem 3.7 and Proposition 5.1, we can show that
the existence of a non-coercive Lyapunov function implies
iUGAS without any further requirements on the flow of the
system. If we additionally assume either the REP or the RFC
property, we obtain additional stability properties.

Theorem 5.2: Consider a forward complete system Σ =
(X ,D ,φ). Assume that V is a non-coercive Lyapunov func-
tion for Σ with corresponding functions α ∈K and ψ2 ∈
K∞. Then:

(i) The following statements hold:

(i-a) 0 is iUGS with this α and with ψ := ψ2.
(i-b) 0 is iUGATT with this α .
(i-c) 0 is iUGAS.

(ii) If additionally 0 is a REP, then 0 is UGATT and UAS.
(iii) If additionally 0 is a REP and Σ is RFC, then 0 is

UGAS.
Proof: (i-a). Since V is a non-coercive Lyapunov

function (with a corresponding α ∈K ), we have the decay
estimate (17). Pick any x ∈ X and any d ∈ D and define
ξ : R+→ R via ξ (t) :=−V (φ(t,x,d)).

Along the trajectory φ of Σ we have the inequality

V̇d(t+·)(φ(t,x,d))≤−α(‖φ(t,x,d)‖X ), ∀t ≥ 0. (25)

Due to the cocycle property we have

V̇d(t+·)(φ(t,x,d))

= lim
h→+0

1
h

(
V (h,φ(t,x,d),d(t + ·))−V (φ(t,x,d))

)
= lim

h→+0

1
h

(
V (φ(t +h,x,d))−V (φ(t,x,d))

)
= lim

h→+0

1
h

(
−ξ (t +h)+ξ (t)

)
= D+(−ξ (t)) =−D+

ξ (t).

With this new notation, equation (25) can be rewritten as

D+
ξ (t)≥ α(‖φ(t,x,d)‖X ), ∀t ≥ 0. (26)

In view of (15) and since lim
h→+0

−ξ (t +h) =− lim
h→+0

ξ (t +h),

we see that the inequality

lim
h→+0

ξ (t−h)≤ ξ (t)≤ lim
h→+0

ξ (t +h) (27)

is satisfied for all t > 0, and the right inequality is satisfied
for t = 0 as well.

Now we can apply Proposition 5.1 to the above inequality.
Since t 7→ φ(t,x,d) is continuous due to the continuity axiom
Σ4, the function g : t 7→ α(‖φ(t,x,d)‖X ) is continuous as
well, and thus it is Riemann integrable on any compact
interval in R+. As g is a positive function, the Riemann
and the Perron integral coincide (see [21, p. 203]). Thus in
our case the Perron integral in the formula (24) is merely a
Riemann integral.

Applying Proposition 5.1, we obtain:

ξ (t)−ξ (0)≥
∫ t

0
α(‖φ(s,x,d)‖X )ds, ∀t ≥ 0. (28)

Since ξ (0) = −V (φ(0,x,d)) = −V (x) due to the identity
axiom of Σ, the above inequality immediately implies that

V (φ(t,x,d))−V (x)≤−
∫ t

0
α(‖φ(s,x,d)‖X )ds,

which in turn shows that for all t ≥ 0 we have∫ t

0
α(‖φ(s,x,d)‖X )ds≤V (x)≤ ψ2(‖x‖X ). (29)

Taking the limit t→ ∞, we see that 0 is iUGS.
(i-b). By Proposition 3.5 and item (i) we see that 0 is

UGWA. Checking the proof of the Theorem 3.7 (implication
(iii) ⇒ (iv)) we see that 0 is iUGATT with the same α .

(i-c). Follows from items (i), (ii) and Theorem 3.7.
(ii). By the item (i-b) of this theorem, 0 is iUGATT. Now

Corollary 4.1 implies that 0 is UGATT and UAS.
(iii). By the item (i-b) of this theorem, 0 is iUGATT. The

rest follows from Theorem 4.4.
Remark 5.3: Condition (15) means that for each x ∈ X

and d ∈D the map t 7→V (φ(t,x,d)) is either continuous or
this function jumps down.

Remark 5.4: The crucial difference of Theorem 5.2 from
classic Lyapunov theorems is that we do not assume the
coercivity of a Lyapunov function. This makes it impossible
to use any kind of a comparison principle to derive the
desired UGAS stability property.

On the other hand, in contrast to the non-coercive direct
Lyapunov theorem shown in [19] we assume for item (i) of
Theorem 5.2 neither robustness of the trivial equilibrium, nor
the RFC property of the system Σ (however, we still assume
in advance the forward completeness of system Σ). Even
under such mild assumptions (and with very mild regularity
assumptions on V ) we are able to infer the iUGAS property.
We note that it is also possible to show a practical UGAS
property if in addition to the existence of V we assume RFC.
Item (ii) of Theorem 5.2 is a variation of [17, Corollary 3.10]
and is given here for completeness. Item (iii) of Theorem 5.2
is slightly stronger than [19, Theorem 4.5], where a more
direct proof of this result was given.

B. Converse non-coercive Lyapunov theorem

We proceed to the converse Lyapunov theorem.
Theorem 5.5: Consider a forward complete system Σ =

(X ,D ,φ) and let 0 be an equilibrium of Σ. Assume that Σ is
iUGS with α ∈K and ψ ∈K∞. Then for any ρ ∈K \K∞

so that ρ(r)≤ α(r) for all r ∈ R+ it holds that

V (x) := sup
d∈D

∫
∞

0
ρ(‖φ(s,x,d)‖X )ds (30)

is a non-coercive Lyapunov function for Σ, satisfying (16)
with ψ2 as above and so that (15) holds.

Before we proceed to the proof of Theorem 5.5, we
would like to stress, that in contrast to most of the con-
verse Lyapunov theorems for infinite-dimensional nonlinear
systems (as [17], [8, Section 3.4]), we do not impose any
additional regularity assumptions on the flow of the system,
in particular, we assume neither continuous dependence on
data, nor robustness of the equilibrium point, nor the RFC
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property. Theorems 5.2 and 5.5 together show that nonco-
ercive Lyapunov functions are a natural tool for analysis of
integral stability properties.

For brevity, the proof of Theorem 5.5 is only sketched.
We follow ideas from [9, Section 3.4], [17, Theorem 5.6].

Proof: (of Theorem 5.5). Pick any ρ ∈K \K∞ so that
ρ(r)≤ α(r) for all r ∈ R+. Since 0 is iUGS, it follows that

0≤V (x)≤ sup
d∈D

∫
∞

0
α(‖φ(s,x,d)‖X )ds≤ ψ2(‖x‖X ).

The properties V (0) = 0, V (x) > 0 for x 6= 0 are relatively
easy to obtain.

To compute the Dini derivative of V , fix x ∈ X and v ∈D .
In view of the cocycle property we have for any h > 0:

V
(
φ(h,x,v)

)
= sup

d∈D

∫
∞

h
ρ(‖φ(t,x, d̃)‖X )dt,

where the disturbance function d̃ is defined as

d̃(t) :=

{
v(t), if t ∈ [0,h]
d(t−h) otherwise.

Note that d̃ ∈ D due to the axiom of concatenation. Since
d̃(t) = v(t) for t ∈ [0,h], it holds that∫ h

0
ρ(‖φ(t,x,v)‖X )dt +V

(
φ(h,x,v)

)
= sup

d∈D

∫
∞

0
ρ(‖φ(t,x, d̃)‖X )dt.

Since the supremum cannot decrease, if we allow a larger
class of disturbances, it may be seen that∫ h

0
ρ(‖φ(t,x,v)‖X )dt +V

(
φ(h,x,v)

)
≤V (x). (31)

The obtained inequality may be called a variation of Bell-
man’s principle. To compute the Dini derivative of V along
trajectories we note that the inequality (31) leads to

1
h

(
V
(
φ(h,x,v)

)
−V (x)

)
≤−1

h

∫ h

0
ρ(‖φ(t,x,v)‖X )dt, (32)

which may be used (with some care) to obtain

V̇v(x)≤−ρ(‖x‖X ).

Also property (15) may be obtained using (32).

VI. CONCLUSIONS

In order to understand the implications of the existence of
non-coercive Lyapunov functions we have introduced several
integral notions of stability, which measure not pointwise
distance to the equilibrium but rather a weighted average
along trajectories. It has been shown that in a quite general
setting noncoercive Lyapunov functions characterize these
integral notions. Also the relation to standard stability no-
tions are discussed. It will be of interest to investigate how
the results obtained here carry over to questions of input-to-
state stability.
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