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Abstract— We consider a simple model for power grids with
grounded unitary capacitors at the loads, and look at the
computation of the transfer function from generator potentials
to generator currents. We propose an alternative scheme for
computing this transfer function.

I. INTRODUCTION

Electrical networks such as power grids can be modelled
by considering dynamics over a weighted graph. The nodes
in such a graph correspond with the buses in the network,
whereas the edges represent the lines. The conductances of
the lines correspond to the weights of the edges.

In this work we are interested in exploiting the underlying
graph structure in the study of such models. For a detailed
analysis of the interconnection between such dynamics and
(algebraic) graph theory we refer to [1]. See also [6] for
relevant results on resistive circuits and graphs.

We consider two types of buses in such models: load
buses, which drain power from the grid, and generator
buses, which provide power to the grid. The associated graph
typically tends to be sparse, as seen in most benchmark
models.

In this paper we propose a scheme for computing the
transfer function from the potentials to the currents at gener-
ator buses in a power grid with grounded unitary capacitors.
Our approach makes use of computing a resolvent in an
element-wise fashion, which might perform faster compared
to traditional approaches, especially if the degree of generator
loads is low. However, we will not present any computational
comparison in this paper.

The proposed scheme makes use of the weighted Lapla-
cian matrices of the graph induced by load nodes, along
with its connected subgraphs. In particular, it makes use of
their relation to spanning tree numbers and the characteristic
polynomials of closely related matrices.
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II. PRELIMINARIES

Before being able to formulate the approach, we introduce
the dynamics and introduce some notions from graph theory.
We first describe a simple toy model for a power grid. Next
we define some standard graph operations with respect to the
node set of the graph.

A. Dynamics and Problem

Let VL and VG be the potentials at the load and generator
buses respectively, IG the outgoing current at the generator

buses, and
(
LLL LLG

LGL LGG

)
the weighted Laplacian matrix

representing the interconnection between buses over the
lines. We consider the simple dynamical system described
by

V̇L = LLLVL + LLGVG, IG = LGLVL + LGGVG,

which models a power grid where grounded capacitors of
unit capacitance are connected to the loads.

The transfer function from the potentials at the loads VG

to the outgoing currents at the loads IG is given by

HG(s) := LGG − LGL(LLL − sI)−1LLG.

The main issue is the computation of (LLL−sI)−1, which is
known as the resolvent of the linear operator LLL. A general
method for computing this rational matrix in the Laplace
variable s is by computing the spectral decomposition of the
symmetric matrix LLL [10].

Since the number of load nodes might be large, it might
be desirable to avoid computing the spectral decomposition
in favor of another approach. The scheme suggested in this
paper might fill this gap.

B. Graph Theory

Let Γ denote a weighted undirected graph with node-
set N = {1, . . . , n}. For any graph Γ let LΓ denote
its corresponding Laplacian matrix. For any S ⊂ N , the
complement of S in N is denoted by Sc.

A spanning tree of a graph Γ is a subgraph which is a
tree and contains all nodes (buses) of the original graph. To
each spanning tree we assign a weight, which is the product
of the weight of the edges (lines) in the tree. The sum over
the weights of all spanning trees is known as the weighted
spanning tree number of the graph, here denoted by t(Γ).

We let Γ\S denote the subgraph of Γ obtained by remov-
ing the nodes indexed by S ⊂ N , along with their incident
edges. In the literature Γ\S is better known as the subgraph
induced by the vertex set Sc.
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III. THE APPROACH

Let Γ be the weighted graph which describes the inter-
connection between the load nodes in our problem, and let
LΓ be the Laplacian corresponding to Γ. The weights again
correspond to the conductances of the lines. This means
that LLL = LΓ + D for some nonzero diagonal matrix
D = diag(d1, . . . , dn). In fact, we have D = diag(LLL1).

To obtain an expression for the inverse of LLL we use
the following formula, which relates a diagonal update of a
Laplacian matrix to the weighted spanning tree numbers of
the subgraphs of Γ:

L−1
LL = (LΓ + D)−1 =

adj(LΓ + D)

det(LΓ + D)

=
∑
Q⊂N

det(LΓ\Q + PT
QDPQ)

det(LΓ + D)
· t(Γ\Qc) · PQc11TPT

Qc .

(1)

where PS is the matrix obtained by removing the columns
indexed by S ⊂ N from In, the identity matrix. The matrix
PT
QDPQ is a principal submatrix of D.
The formula (1) was derived by the authors in a separate

paper [5] which is currently being prepared for submission.
As mentioned, the described method avoids computing the
spectral decomposition of the Laplacian matrix of the graph.
We observe that (LLL − sI)−1 is obtained by performing
the substitution D 7→ D − sI in (1).

Note that (LLL − sI)−1 may be computed element-
wise. We investigate the minimal amount of information we
need to compute a single element of this resolvent. More
specifically, we will investigate when such terms vanish.

We will proceed by looking at the evaluation of the factors

t(Γ\Qc) · PQc11TPT
Qc . (2)

The factor t(Γ\Qc) is nonzero if and only if the graph
induced by Q is connected. Since the graph is sparse,
the number of spanning trees and connected subgraphs is
relatively low. Note that the weighted spanning tree numbers
may be computed via Kirchhoff’s theorem, i.e. by computing
a determinant. Such determinants can be computed using
sparse LU decomposition methods. A conservative approxi-
mate of their complexity is O(n3) [9], but is hard to analyze
for general cases.

The (i, j)-th element of the matrix PQc11TPT
Qc is non-

zero if and only if i, j ∈ Q. Since the graph induced by
Q is connected if (2) is non-zero, this means that nodes i
and j should be path-connected, which is trivially satisfied
if i = j. Furthermore, the intersection over the nodes of all
paths between i and j should be contained in Q.

The denominator of (1) corresponds, after the substitution,
to the characteristic polynomial of LLL. Similarly, the nu-
merator of the same fraction corresponds to the characteristic
polynomial of a diagonal update of a principal submatrix of
LLL. Methods for computing the characteristic polynomial,
such as Danilevsky’s method [7], [8], can be used to compute
these characteristic polynomials.

IV. THE SCHEME

The advantage of (1) is that is can be computed element-
wise. The element-wise computation of (LLL − sI)−1 is,
to the authors’ knowledge, not possible for the spectral
decomposition. When considering the product with matrices
LLG and LGL, element-wise computation can be used to
accelerate the computation of HG(s).

When assuming that the degree of the generator nodes is
low, most loads are not directly connected to the generators.
This means that most of the rows of LGL are zero, and so
that we only need to know a limited number of elements of
(LLL − sI)−1.

Indeed, if we the define the boundary nodes B ⊂ N as
the set of load nodes which are connected to a generator
node, then PBcPT

BcLLG = LLG, by definition of B, and it
is sufficient to compute PBcPT

Bc(LLL − sI)−1PBcPT
Bc .

Let C be the collection of sets of nodes for which the
graph induced by this set is connected, and which contain at
least one node in B. We propose the following scheme for
computing PBcPT

Bc(LLL − sI)−1PBcPT
Bc .

Algorithm 1 Computing PBcPT
Bc(LLL − sI)−1PBcPT

Bc

INPUT: LLL ∈ Rn×n, boundary nodes B ⊂ N , sets of
nodes C inducing a connected subgraph and containing
at least one node in B

OUTPUT: A = PBcPT
Bc(LLL − sI)−1PBcPT

Bc

1: Let A = 0 ∈ Cn×n(s)
2: for all Q ∈ C do
3: Compute pQ(s), the char. poly. of LΓ\Q + PT

QDPQ

4: Compute t(Γ\Qc)
5: for all (i, j) ∈ B ×B such that i, j ∈ Q do
6: Aij ← Aij + pQ(s) · t(Γ\Qc)
7: end for
8: end for
9: Compute p∅(s), the characteristic polynomial of LLL

10: A← A/p∅(s)
11: return A

For every pair of boundary nodes (i, j) the algorithm
computes the polynomial∑

Q⊂N
i,j∈Q

det(LΓ\Q + PT
QDPQ − sI|Qc|) · t(Γ\Qc),

which, after dividing by the characteristic polynomial of
LLL, corresponds to (LLL − sI)−1

ij . We may then proceed
to compute LGL(LLL − sI)−1LLG and eventually HG(s).

The collection of sets C can be obtained by observing the
following. If S ∈ C is a singleton, then S only consists of a
boundary node, since all sets in C contain a boundary node.
Let S ∈ C be not a singleton. For any spanning tree T of
the graph induced by S, take i a leaf of T , which has at
least two leaves since S is not a singleton. Then T\i is a
spanning tree of S\i, and S\i is connected. If |S| = 2 we
can pick i such that S\i is a singleton of a boundary node,
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hence in C. If |S| > 2 we pick i such that B ∩S\i 6= ∅, and
therefore also S\i ∈ C. We may repeat removing nodes in
this fashion until we are left with a singleton.

This observation tells us that we can always remove a node
i in the graph induced by S ∈ C such that S\i ∈ C, until we
are left with a singleton of a boundary node. Inverting this
process leads to Algorithm 2, where we iteratively add nodes
to the singletons of boundary nodes to obtain all sets in C.
The algorithm ensures that every such set is appended to C
exactly once, by keeping track of certain nodes to ignore in
subsequent iterations. We will not elaborate on this here.

Algorithm 2 Computing C
INPUT: Γ = (N,E) with E ⊂ N × N the edge set,

boundary nodes B ⊂ N
OUTPUT: C

1: C ← ∅
2: function ITERATE(S, T ) . selected and ignored nodes
3: U ← {l ∈ N\(S ∪ T ) | (i, l) ∈ E for some i ∈ S }
4: W ← ∅
5: for all u ∈ U do
6: Append S ∪ {u} to C
7: ITERATE(S ∪ {u}, T ∪W )
8: W ←W ∪ u
9: end for

10: end function
11: V ← ∅
12: for all b ∈ B do
13: Append {b} to C
14: ITERATE({b}, V )
15: V ← V ∪ b
16: end for
17: return C

V. CONCLUSION

We have introduced an alternative scheme for computing
the transfer function HG(s) which exploits the sparse nature
of power grids, under the assumption that the degree of
generators is low. For this an element-wise formula for
the resolvent (LLL − sI)−1 was used. The authors are
currently working on extending this research by performing a
quantitative computational comparison between the proposed
scheme and traditional approaches.
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