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Abstract— In this work, we focus on strategies to influence
the opinion dynamics of a well-connected society. We propose
a generalization of the popular voter model. This variant
of the voter model can model a wide range of individuals
including strong-willed individuals whose opinion evolution is
independent of their neighbors as well as conformist individuals
who tend to adopt the opinion of the majority.

Motivated by political campaigns which aim to influence
opinion dynamics by the end of a fixed deadline, we focus on
influencing strategies for finite time horizons. We characterize
the nature of the optimal influencing strategies as a function
of the nature of individuals forming the society. Using this, we
show that for a society consisting of strong-willed individuals,
the optimal strategy is to influence towards the end of the finite
time horizon, whereas, for a society consisting of individuals
who are affected by their peers, it could be optimal to influence
in the initial phase of the finite time horizon.

I. INTRODUCTION

Opinion dynamics have been a subject of study in various
fields including sociology, philosophy, mathematics, and
physics for a very long time [1]. In this work, we focus
on a variant of a widely studied binary opinion dynamics
model known as the voter model [2], [3]. In the voter model,
society is modeled using a graph where each individual is
a node and edges represent links between these individuals.
Each individual holds one of two possible opinions, e.g., pro-
government and anti-government. The opinions of individu-
als evolve over time. Assuming time is slotted, one individual
is chosen uniformly at random at the beginning of each time-
slot. This individual then adopts the opinion of one of its
neighbors, chosen uniformly at random. The voter model is
a useful framework to study opinion dynamics and the spread
of competing epidemics. Variants and generalizations of the
voter models have also been studied [4], [5].

Our model differs from the voter model in two key
ways. Firstly, in each time-slot, the opinion of the selected
individual evolves according to a general function of the
opinion of its neighbors. This modification to the voter model
allows us to model a variety of natures of individuals in
society. For example, we can model stubborn individuals
by making the opinion evolution of the selected individual
independent of the opinions of its neighbors and/or any
other external influence. Similarly, we can model conformist
individuals by forcing the selected individual to adopt the
opinion of the majority. Secondly, we focus on the setting
where the graph between the individuals is a complete graph.
This is justified in the presence of social media platforms like

Twitter and the abundance of publicly available poll results
on most important issues.

Use of social networks and other media outlets for political
campaigning and project marketing is on the rise. While
opinions of individuals evolve organically over time, this
evolution can be influenced by effective campaigning. Re-
source limitations like a fixed budget or limited manpower
restrict the set of feasible influencing strategies and motivate
the need to use the available resources efficiently.

In political campaigning, the goal is to influence as many
individuals as possible by the end of a fixed deadline. Mo-
tivated by this, we focus on designing influencing strategies
that maximize the number of individuals with a positive
opinion at the end of a known and finite time horizon [6].
The optimal influencing strategy is one that maximizes the
number of individuals with a favorable opinion at the end
of this time horizon. In this work, our goal is to study how
the nature of the optimal influencing strategy varies with the
nature of individuals in society.

The key takeaway from this work can be summarized as
follows. If the society consists of strong-willed individuals
who are unaffected by the opinion of their peers but are
susceptible to external influence, the optimal influencing
strategy is to influence towards the end of the finite time
horizon. Contrary to this, if individuals are heavily influenced
by their peers in addition to being susceptible to external
influence, in some cases, it is optimal to influence at the
beginning of the time horizon. Intuitively, this is because
increasing the fraction of individuals with a favorable opinion
at the beginning of the finite time horizon has a cascading
effect on the opinions of the society as a whole.

A. Related Work

Closest to our setting, [5] focuses on the voter model
and generalizes it to include external influences. The key
takeaway is that the effect of external influences overpowers
node-to-node interactions in driving the network to consensus
in the long term. In [4], the focus is on studying the effect
of stubborn agents, i.e., agents who influence others but do
not change their opinion, on the opinion dynamics of the
network. The authors also study the problem of optimal
placement of these stubborn agents to maximize the effect
on the network.

Designing optimal influencing strategies has been the
subject of study in many works including [6]–[9]. Refer to
[9] for a detailed survey of various works in this domain.
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Unlike our work, most of these works focus on the infinite
time horizon setting. In [6], the focus is on characterizing
the optimal influence strategy to maximize the spread of an
epidemic in a network. In [7], the focus is on minimizing
the cost incurred by the influencer to reach a fixed fraction
of nodes in the network. In [8], the authors propose a
general model of influence propagation called the decreasing
cascade model and analyze its performance with respect to
maximizing the spread of an idea. In [9], the focus is on
designing optimal advertising strategies in the presence of
multiple advertising channels.

A related body of work focuses on preventing the spread
of disease/viruses in networks (refer to [10]–[12] and the
references therein). Our work differs from this body of work
since we focus on strategies to increase the spread of the
favorable opinion in the network.

In [13]–[15], the focus is on analyzing the performance of
various rumor spreading strategies. These works do not focus
on finding the optimal strategies for information spread.

B. Organization

The rest of this paper is organized as follows. In Section
II, we formally define our opinion dynamics model. In
Section III, we discuss some preliminary results on stochastic
approximation which are used in the subsequent analysis.
In Section IV, we discuss our results for the setting where
individuals are unaffected by the opinion of their peers
but are susceptible to external influence. In Section V, we
present our results for the setting where individuals are
influenced by their peers in addition to being susceptible
to external influence. We conclude the paper in Section VI.
Some additional results are presented in the appendix.

II. SETTING

A. System Evolution

Consider a fixed population of N people, where each
individual has either a positive or a negative opinion on the
topic of interest. We model this as an urn with balls of two
colors (representing positive/negative opinions): Green and
Red. Time is slotted, and in each time-slot, the campaigner
decides whether to influence the opinion dynamics or not.
One ball is chosen uniformly at random in each time-slot. In
each time-slot, the system evolves as follows:

a. If the ball chosen in time-slot t is a red ball, and the
campaigner decides not to influence in this time-slot,
the red ball turns green with probability pt.

b. If the ball chosen in time-slot t is a green ball, and the
campaigner decides not to influence in this time-slot,
the green ball turns red with probability qt.

c. If the ball chosen in time-slot t is a red ball, and the
campaigner decides to influence in this time-slot, the
red ball turns green with probability p̃t.

d. If the ball chosen in time-slot t is a green ball, and the
campaigner decides not to influence in this time-slot,
the green ball turns red with probability q̃t.

Formally, let r(t) denote the number of red balls in the
urn at time t, ρr(t) = r(t)/N denote the fraction of red balls

at time t for all t ∈ [0, T ], and χ(t) denote the change in
the number of red balls in the urn at time t + 1. Then, we
have that,

r(t+ 1) = r(t) + χ(t+ 1), (1)

where, χ(t+ 1) =


−1 w.p. ρr(t)p̂t,
1 w.p. (1− ρr(t))q̂t,
0 otherwise,

p̂t =

{
pt if campaigner does not influence in time-slot t,
p̃t if campaigner influences in time-slot t,

q̂t =

{
qt if campaigner does not influence in time-slot t,
q̃t if campaigner influences in time-slot t.

B. Goal
Given a finite influencing budget of bT time-slots, where

0 ≤ b ≤ 1, the goal is to design effecient influencing
strategies which maximize the number/fraction of green balls
at the end of time-slot T .

III. PRELIMINARIES

Let Ft denote the σ-field generated by random variables
{χ(s)}1≤s≤t. The dynamics of the urn are governed by
the random variables {χ(t)}t≥1 according to the random
reinforcement scheme defined in (1). The dynamics in (1)
can be re-written as follows:

r(t+ 1) = r(t) + E
[
χ(t+ 1)|Ft

]
+
(
χ(t+ 1)− E

[
χ(t+ 1)|Ft

])
, (2)

where,
(
χ(t+1)−E

[
χ(t+1)|Ft

])
is zero-mean Martingale

difference. We analyze the difference equation above using
stochastic approximation. The theory of stochastic approx-
imation states that the solution of a difference equation
of the form xn+1 = xn + a(n)[h(xn) + Mn+1], n ≥ 0,
where h is Lipschitz, a(n)s are decreasing step-sizes and
Mn is a square-integrable Martingale difference sequence,
are close to the solutions of the ODE ẋ(n) = h(x(n)) as
n → ∞. Further, for sufficiently large n, the solutions of
the difference equation remain “close” to that of the ODE
with high probability. Explicit bounds on the probability are
provided in Corollary 14 of Chapter 4 in [16]. These results
were further extended in [17] and [18]. These results allow
us to analyze the solution of a suitable ODE to obtain an
optimal strategy for the influencing agents in the opinion
dynamics defined in (1).

As mentioned above, in (2), χ(t)−E
[
χ(t)|Ft−1

]
is a zero-

mean Martingale difference and E
[
χ(t)|Ft−1

]
is a Lipschitz

function. The corresponding ODE with constant step size
(See [19] for extensions of stochastic approximation results
to constant step-size) is given by:

ṙ(t) = E
[
χ(t)|Ft−1

]
= −r(t)

[
(p̂t + q̂t)

N

]
+ q̂t, (3)

where N is the total number of balls in the urn. In other
words,

ρ̇r(t) =
q̂t
N
− ρr(t)

p̂t + q̂t
N

. (4)
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It is worth noting that a larger step-size, scaled by some
m > 1, results in a faster convergence of the ODE, whereas
a smaller step-size would mean that the ODE trajectory will
track the difference equation (1) better.

IV. STRONG-WILLED POPULATION

In this section, we focus on a population of strong-
willed individuals whose opinion evolves independent of the
opinion of the remaining population but is susceptible to
external influence.

A. Time-invariant Adamancy

We first focus on the case where the probability of an
individual changing their opinion is independent of the time-
slot index and only depends on whether the campaigner
decides to influence in that time-slot or not. The next
assumption formally characterizes the setting.

Assumption 1 (Strong-Willed Population with Time-invari-
ant Adamancy). The system evolves according to (1) with
pt = p, qt = q, p̃t = p̃, q̃t = q̃, ∀t, with p̃ ≥ p and q̃ ≤ q.

Remark 1. We limit our interest to the case where p̃ ≥ p
and q̃ ≤ q since the goal of influencing is to maximize the
number of green balls. Given this, compared to the case
without influence, influencing should make the event that a
red ball turns green more likely and the event that a green
ball turns red less likely.

Definition 1 (Optimal Strategy). We call a strategy optimal
if the influence according to that strategy results in a larger
expected fraction of green balls at the end of time T than the
expected fraction of green balls at the end of time T using
any other influence strategy.

Throughout the paper ρr(t) denotes the solution of (4) at
time t and ρr(0) denotes the fraction of red balls at time 0.

Recall that the campaigner has a fixed influencing budget
of bT time-slots for some 0 < b < 1. We start by discussing
two influence strategies: influence in the first bT time-slots
and influence in the last bT time-slots. Recall that the
influencing agent is interested in maximizing the number of
green balls at the end of time-slot T .

Lemma 1. Let ρr(T )|first and ρr(T )|last denote the expected
fraction of red balls at the end of time-slot T under the
influence in the first bT time-slots and influence in the last
bT time-slots policies respectively. Under Assumption 1,

ρr(T )|first =
1

p+ q

(
q − e

−(p+q)(1−b)T
N

(
q − p+ q

p̃+ q̃
×(

q̃ − e
−(p̃+q̃)bT

N

(
q̃ − r(0) p̃+ q̃

N

))))
, (5)

ρr(T )|last =
1

p̃+ q̃

(
q̃ − e

−(p̃+q̃)bT
N

(
q̃ − p̃+ q̃

p+ q
×(

q − e
−(p+q)(1−b)T

N

(
q − r(0)p+ q

N

))))
.

(6)

Proof. Recall that the ODE corresponding to our system is
given by:

dρr(t)

dt
=
q̂t
N
− p̂t + q̂t

N
ρr(t),

where p̂t and q̂t are as defined in Section II. Under Assump-
tion 1 and the strategy to influence in the first bT time-slots,
we get that for the influence period [0, bT ]:

ρr(bT ) =
q̃ − e

−(p̃+q̃)bT
N

(
q̃ − ρr(0)(p̃+ q̃)

)
p̃+ q̃

.

Similarly, for the no-influence period [bT, T ], we get:

ρr(T ) =
q − e

−(p+q)(1−b)T
N

(
q − ρr(bT )(p+ q)

)
p+ q

.

Combining the two solutions, we get an expression for total
number of red balls at the end of time horizon T when the
influence strategy is to influence in the first bT time-slots,
thus completing the proof.

The proof for the strategy to influence in the last bT time-
slots follows on similar lines.

Next, we use Lemma 1 to show that, under Assumption 1,
the strategy to influence in the last bT time-slots outperforms
the strategy to influence in the first bT time-slots.

Lemma 2. Let ρr(T )|first and ρr(T )|last denote the fraction
of red balls at the end of time T when the influence strategy is
to influence in first bT slots and the last bT slots respectively.
Under Assumption 1, we have that ρr(T )|first ≥ ρr(T )|last.

Proof. From the ODE solutions computed for both the
strategies in (5) and (6), we get:

ρr(T )|first − ρr(T )|last =

(
q

p+ q
− q̃

p̃+ q̃

)
×(

1− e
−(p+q)(1−b)T

N − e
−(p̃+q̃)(b)T

N + e
−(p̃+q̃)bT−(p+q)(1−b)T

N

)
.

(7)

Since p̃ ≥ p and q̃ ≤ q, we have p̃
q̃ ≥

p
q . Hence the first term

in (7) is always positive. The second term is of the form
f(x, y) = 1+e−x−y−e−x−e−y . Note that, f(0, 0) = 0 and,
fx(x, y) = e−x(1−e−y) ≥ 0, fy(x, y) = e−y(1−e−x) ≥ 0.
Hence, f(x, y) is non-negative for x, y ≥ 0. This completes
the proof of the lemma.

In Figures 1 and 2, we compare the performance of the
two policies (influence in the first and last bT time-slots) for
different values of N , T and b. We plot the values obtained
via the ODE solutions (given by (5) and (6)) as well as results
obtained by simulating the system described by Assumption
1. We observe that the ODE solutions accurately track the
results obtained via simulations. In addition, the strategy of
influencing the last bT outperforms the strategy to influence
in the first bT time-slots.

Theorem 1 (Optimality of last bT influence strategy). Under
Assumption 1 and the ODE dynamics described in (4), the
strategy to influence in the last bT time-slots, i.e., at the end
of the finite time-horizon, is optimal.
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Fig. 1. Expected fraction of green balls at the end of time-slot T obtained
by solving the ODE and simulating the system as a function of the influence
budget b for two policies, namely, influence in the first bT timeslots and
influence in the last bT time-slots. The system under consideration satisfies
Assumption 1 with parameters p = 0.3, q = 0.6, p̃ = 0.8, q̃ = 0.1,
ρ(0) = 0.5 and T = 5000. The ODE solutions accurately track the results
obtained via simulations.
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Fig. 2. Expected fraction of green balls at the end of time-slot T obtained
by solving the ODE and simulating the system as a function of the influence
budget b for two policies, namely, influence in the first bT timeslots and
influence in the last bT time-slots. The system under consideration satisfies
Assumption 1 with parameters p = 0.3, q = 0.6, p̃ = 0.8, q̃ = 0.1,
ρ(0) = 0.5 and T = 1000. The ODE solutions accurately track the results
obtained via simulations.

Proof. Assign values 1 and 0 to each time slot depending
on whether the dynamics in that time slot is influenced
(i.e., (p̃, q̃)-dynamics) or not (i.e., (p, q)-dynamics). A binary
string of length L will correspond to an influence strategy
pattern over a time duration with L slots.

Suppose that there exists a ‘10’ sub-sequence (otherwise
the configuration of the string is of last bT type). Then by
Lemma 2, if we just consider the time window consisting of
this ‘10’ sub-sequence, we could strictly improve the target
ball count at the end of this time window by doing a local
swap and getting ‘01’. In other words, Lemma 2 implies that
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Fig. 3. Expected fraction of green balls at the end of time-slot T as a
function of the influence budget b for three policies, namely, influence in
the first bT timeslots, influence in the last bT time-slots, and influence in
each time-slot with probability b. The system under consideration satisfies
Assumption 1 with parameters p = 0.3, q = 0.6, p̃ = 0.8, q̃ = 0.1,
N = 500, ρ(0) = 0.5 and T = 5000. The strategy of influencing the last
bT outperforms the other two strategies for all values of b.

in this time window influence in the last slot is better.
The ODE solution is a monotonically increasing function

of the configuration count at the start of any time window
over which the ODE is written. If we look at the composition
of these increasing functions along the time horizon after the
small window, we get an increasing function. Thus, the local
swap also results in a global improvement i.e. larger number
of green balls at the end of time T .

Finally, this ‘10’ to ‘01’ swapping operation is clearly
a terminating (finite number of permutations) and non-
oscillating (always decrease the decimal value of the string)
algorithm. If we assume that some strategy S(6= last bT
influence strategy) is better than last bT , it has to have a 10
sub-sequence and can therefore be improved by swapping
operation and hence is not optimal. Therefore, last bT is the
optimal strategy to achieve a larger fraction of green balls at
the end of time T .

Note that the fraction of green balls is a Markov chain on
a finite state space that mixes fast. It is clear from figures 1
and 2 that the ODE solution at time T is close to the
solution of the simulated trajectory. In fact, the solutions
of the difference equation or the stochastic approximation
scheme track the solution trajectory of the corresponding
differential equation (See figure 6 in Appendix). An explicit
probabilistic bound for this in terms of T is obtained in the
Appendix using concentration inequalities.

In Figure 3, we compare the performance of three policies
(influence in the first bT time-slots, influence in the last bT
time-slots and influencing in each time-slot with probability
b) as a function of the influence budget b via simulations.
We observe that the strategy of influencing the last bT
outperforms the other two strategies.

B. Time-varying Adamancy

Next, we study the case where the probability of an indi-
vidual changing their opinion changes with time. This model
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incorporates the adamant nature of masses. The general
wisdom is that humans have the tendency to get attached
to the preferences they make early in their life. So, it gets
difficult to recast their opinion as time passes. We present a
two-phase opinion dynamics model. In the first phase called
the flexible phase, individuals are more likely to change their
opinion as compared to the second phase called the adamant
phase. More specifically, compared to the flexible phase, in
the adamant phase, the probability of an individual changing
their mind (both with and without influence) goes down by
a constant factor of η > 1. Our next assumption formally
characterizes this setting.

Assumption 2 (Strong-Willed Population with Time-varying
Adamancy). Given positive constants η > 1 and ξ < 1, the
system evolves according to (1) with

– pt = p, qt = q, p̃t = p̃, q̃t = q̃ for 1 ≤ t ≤ (1− ξ)T ,

– pt =
p

η
, qt =

q

η
, p̃t =

p̃

η
, q̃t =

q̃

η
for t > (1− ξ)T ,

such that p̃ ≥ p and q̃ ≤ q.

Our next result characterizes the structure of the optimal
policy for this setting. As discussed in Remark 1, we limit
our interest to the case where p̃ ≥ p and q̃ ≤ q.

Lemma 3. Under Assumption 2, ∃ t1, t2, where 0 ≤ t1 ≤
(1 − ξ)T and (1 − ξ)T < t2 ≤ T , such that the optimal
influencing strategy is to influence in time-slots t1 + 1, t1 +
2, . . . , (1− ξ)T and t2, t2 + 1, . . . , T .

Proof. This is direct consequence of applying Theorem 1 for
each phase of opinion dynamics.

Definition 2 (Optimal Split). Under the optimal policy
structure, a split or distribution of the slots to each phase of
influence is said to be optimal if no other split gives a higher
expected fraction of green balls at the end of time horizon
T . Optimal split is characterized by a parameter κ ∈ [0, 1]
such that the system is influenced in the last (1−κ)bT time-
slots of the fliexible phase and the last κbT time-slots of the
adamant phase.

Theorem 2. Under Assumption 2, given a constant η > 1, let

κ∗ =
1

1 + η−1

(
1 +

ξ

bη
− 2N

bT
ln η

)
. If p+ q = p̃+ q̃ = c,

for some constant c > 0 and ξ ≥ b, the optimal split is given
by:

κ =


0 if κ∗ < 0,

1 if κ∗ > 1,

κ∗ otherwise.

Proof. Without loss of generality, assume p+q = p̃+ q̃ = 1.
Since from Theorem 3, we know that advertising towards the
end of each phase is optimal, we define t1 = (1−b−ξ+κb)T ,
t2 = (1−ξ)T , and t3 = (1−κb)T, where the interval [0, t1]
is the period of zero adamance and no influence, [t1, t2] is
the period of zero adamance and advertising, [t2, t3] is the
period of adamant opinions and no influence and [t3, T ] is
the period of adamant opinions and advertising influence.
Our assumption on b and ξ ensures that the influence regime

can be completely contained in the adamant phase. Now,
from the ODE analysis, we can obtain explicit expressions
for ρr(t1), ρr(t2) and ρr(t3). This gives us:

ρr(T ) = q̃

(
1

η
− 1

η
e
−κbT
ηN + e

−ξT
ηN

(
1− e

−(1−κ)bT
N

))
+ q

(
1

η
e
−κbT
ηN − 1

η
e
−ξT
ηN + e

−ξT
ηN e

−(1−κ)bT
N

− e
−ξT
ηN e

−(1−ξ)T
N

)
+ ρr(0)e

−(1−ξ)T
N e

−ξT
ηN .

Optimizing for the optimal split parameter κ, we get:

κ∗ =
1 + ξ

bη(
1 + 1

η

) − 2N ln(η)

bT
(
1 + 1

η

) .
Since q̃ ≤ q, this is a point of minima for ρr(T ) and since
κ ∈ [0, 1], we get the expression in the theorem.

Remark 2. According to our setup κ ≤ ξ/b. As long as,
ξ/b ≥ 1, the above theorem gives the optimal split. However,
when κ∗, ξ/b < 1 and κ∗ > ξ/b, the optimal split is given
by κ = ξ/b. This means that advertising is done in the last
bT slots. This seems non-intuitive at first but notice that in
this case ξ is small and κ∗ > ξ/b means that η is also quite
small.

Notice that κ∗ is a decreasing function of η. That imme-
diately gives us the threshold values of η for transition of
the optimal κ.

Corollary 1. Under Assumption 2 with ξ ≥ b, let η1 and
η2 be such that ln(η1) = T

2N

(
b+ ξ

η1

)
and η2 log η2 =

bT
2N

(
ξ
b − 1

)
. Then, we have that,

– if η ≥ η1, the optimal strategy is to influence in the
final bT time-slots of the flexible phase,

– if η1 > η > η2, the optimal strategy is to influence in
the final (1−κ)bT time-slots of the flexible phase and
the final κbT time-slots of the adamant phase, where
κ is as defined in Theorem 2,

– if η ≥ η2, the optimal strategy is to influence in the
final bT time-slots of the adamant phase.

In Figure 4, we compare the performance of three policies,
namely, influence in the last bT time-slots of the flexible
phase (Phase 1), influence in the last bT time-slots of
the adamant phase (Phase 2) and influence according to
the split characterized in Theorem 2) as a function of the
parameter η defined in Assumption 2. We observe that the
strategy characterized in Theorem 2 outperforms the other
two strategies for all values of η considered. For small values
of η, the optimal policy is very close to the policy to influence
in the last bT time-slots of the adamant phase and for large
values of η, the optimal policy is very close to the policy
to influence in the last bT time-slots of the flexible phase.
For intermediate values of η, the optimal policy outperforms
both policies.

The key takeaway from this section is that if individuals
are unaffected by the opinion of their peers and the effect

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

138



10
0

10
1

10
2

10
3

η

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F
ra
ct
io
n
o
f
g
re
en

b
a
ll
s
a
t
T

Influence last bT of Phase 1

Influence last bT of Phase 2

Optimal influence

Fig. 4. Expected fraction of green balls at the end of time-slot T as
a function of the influence budget b for three policies, namely, influence
in the last bT time-slots of the flexible phase (Phase 1), influence in the
last bT time-slots of the adamant phase (Phase 2) and influence according
to the split characterized in Theorem 2) as a function of the parameter η
defined in Assumption 2. The system satisfies Assumption 2 with parameters
p = 0.1, q = 0.6, p̃ = 0.9, q̃ = 0.1, b = 0.3, N = 1000, ρ(0) = 0.5 and
T = 5000. The strategy characterized in Theorem 2 outperforms the other
two strategies for all values of η considered.

of external influence is time-invariant, the optimal influence
strategy is to influence at the end of the finite time-horizon.
In the case where the external influence becomes ineffective
over time, influencing at the end of the finite time-horizon
can be strictly sub-optimal.

V. POPULATION AFFECTED BY PEER PRESSURE

We now focus the task of influencing a population where,
in the absence of external influence, individuals are affected
by the opinions of their peers. More specifically, in the
absence of external influence, the probability of an individual
changing their opinion increases with the fraction of the pop-
ulation holding the contrary opinion. The next assumption
formally characterizes this setting.

Assumption 3 (Population Affected by Peer Pressure). The
system evolves according to (1) with

– pt = p0(1 − ρr(t))γ , qt = q0(ρr(t))
γ , with constants

γ > 0 and 0 ≤ p0, q0 ≤ 1,
– p̃t = 1, q̃t = 0.

Remark 3. The assumption p̃t = 1, q̃t = 0 corresponds to
an extremely strong external influence where if influenced, a
red ball turns green with probability 1 and a green ball never
changes its color. This assumption is made for mathematical
tractability.

In the analytical results in this section, we consider two
special cases, namely, γ = 1 and γ = 2. We use simulations
to explore the performance of influencing strategies for other
values of γ. We first present our results for γ = 1.

Throughout this section, ρr(T )|first and ρr(T )|last denote
the fraction of red balls at the end of time T when the
influence happens in the first bT and the last bT slots
respectively.

Theorem 3. Under Assumption 3 with γ = 1,

– if p0 > q0, the optimal strategy is to influence in the
first bT time-slots of the finite time-horizon,

– if p0 < q0, the optimal strategy is to influence in the
last bT time-slots of the finite time-horizon,

– if p0 = q0, the performance of all policies which
influence in bT out of the T time-slots in the finite
horizon perform equally well.

Proof. Let β = p0 − q0. We have the following ODEs
corresponding to the stochastic approximation schemes.

– Without influence:
dρr(t)

dt
=
−(p0 − q0)

N
ρr(t)(1− ρr(t)). (8)

– With Influence:
dρr(t)

dt
=
−ρr(t)
N

. (9)

From (8) and (9), for the first bT influence strategy, we have:

ρr(bT ) = ρr(0)e
−bT
N & ρr(T ) =

1

1 +

(
e
bT
N

ρr(0)
− 1

)
e
β(1−b)T

N

.

(10)

Similarly, for the last bT strategy, we get:

ρr(T ) =
1

e
bT
N +

(
1

ρr(0)
− 1

)
e
β(1−b)T+bT

N

. (11)

Notice that for β = 0, final fraction of red balls ρr(T ) is
same for both the strategies. For β 6= 0, the result follows
from (10) and (11) the monotonicity argument.

Our next result shows that for γ = 2, for a specific set
of initial states, influencing in the first bT slots is a better
strategy than influencing the last bT slots.

Proposition 1. Under Assumption 3 with γ = 2, if the
fraction of red balls at the beginning of time-slot 1 is less
than half, the strategy of influencing in the first bT time-slots
strictly outperforms the strategy of influencing in the last bT
time-slots.

Proof. The ODEs for influence and no-influence regimes are
given by:

– Without influence:
dρr(t)

dt
=
−ρr(t)(1− ρr(t))2

N
. (12)

– With influence:
dρr(t)

dt
=
−ρr(t)
N

. (13)

Since ρr(0) < 1
2 , for ρr(t) ∈ [0, 1/2], ∃c1 > 0, c2 > 0

such that 3ρr(t)
2−2ρr(t)
c1N

< −ρr(t)(1−ρr(t))2
N < 3ρr(t)

2−2ρr(t)
c2N

.
In particular, the bounds hold for c1 = 2 and c2 = 2.5.

Now, for the strategy to influence in the first bT time-slots,
we have: ρr(bT ) = ρr(0)e

−bT
N for the first bT time slots and

dρr(t)
dt < 3ρr(t)

2−2ρr(t)
c2N

for t ∈ ((1− b)T, T ], and therefore,

1−
2
3

ρr(T ) <

(
1− 2

3

)
ρr(bT )e

2(1−b)T
c2N . Substituting b = 1/2
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Fig. 5. Expected fraction of green balls at the end of time-slot T as a
function of the influence budget b for a set of policies indexed by k of
various values of γ. Policy k corresponds to the strategy of influencing
in a block of bT time-slots from k to k + bT − 1. The system satisfies
Assumption 3 with parameters p0 = 0.1, q0 = 0.4, p̃ = 0.1, q̃ = 0.01,
b = 0.2, N = 100, ρ(0) = 0.35 and T = 5000. We observe that for
the set of parameters considered, influencing towards the end of the time
horizon outperforms the other policies for γ = 0, 1. For higher values of
γ, influencing towrds the end of the time horizon is not necessarily optimal.

and denoting x := T
N , we get: ρr(T )first <

2

3−(3−4ex/2)e
x
c2

.

For the policy with influence in last bT slots, we have:
ρr(T ) = ρr((1 − b)T )e

−bT
N for the last bT time slots and

dρr(t)
dt > 3ρr(t)

2−2ρr(t)
c1N

for t ∈ (0, (1− b)T ].
For b = 1/2 and x, this implies ρr(T )last >

2e−x/2

3+ex/c1
. Then,

for c1 = 2, c2 = 2.5, standard arguments imply 2e−x/2

3+ex/c1
>

2

3−(3−4ex/2)e
x
c2

. Hence, we have: ρr(T )|last > ρr(T )|first.

In Figure 5, we compare the performance of multiple
policies (indexed by k) for different values of γ. Policy k
corresponds to the strategy of influencing in a block of bT
time-slots from k to k+ bT − 1. We observe that for the set
of parameters considered, influencing towards the end of the
time horizon outperforms the other policies for γ = 0, 1.
For higher values of γ, influencing towrds the end of the
time horizon is not necessarily optimal.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a variant of the voter model
which can be used to model variation in the nature of
the individuals in society. We evaluate the performance
of campaigning strategies as a function of the nature of
individuals when the goal is to maximize the fraction of
individuals with a favorable opinion at the end of a known
finite time-horizon.

We conclude that if individuals are unaffected by the
opinion of their peers and the effect of external influence
is time-invariant, influencing at the end of the finite time-
horizon is optimal. In the case where individuals are affected
by the opinion of their peers and/or external influence
becomes ineffective over time, influencing at the end of the
finite time-horizon can be strictly sub-optimal.

Possible extensions of this work include modeling the
connections between individuals in the society using a graph
such that individuals susceptible to being influenced by

others are only influenced by their neighbors in this graph.
Another direction worth exploring is allowing for hetero-
geneity in the nature of individuals in the same society.

VII. ACKNOWLEDGEMENTS

This work was supported in part by an Indo-French grant
on “Machine Learning for Network Analytics". The work
of Neeraja Sahasrabudhe was also supported in part by the
DST-INSPIRE Faculty Fellowship from the Govt. of India.
The work of Sharayu Moharir was supported in part by a
seed grant from IIT Bombay.

REFERENCES

[1] H. Xia, H. Wang, and Z. Xuan, “Opinion dynamics: A multidis-
ciplinary review and perspective on future research,” International
Journal of Knowledge and Systems Science (IJKSS), vol. 2, no. 4,
pp. 72–91, 2011.

[2] R. A. Holley and T. M. Liggett, “Ergodic theorems for weakly
interacting infinite systems and the voter model,” The annals of
probability, pp. 643–663, 1975.

[3] P. Clifford and A. Sudbury, “A model for spatial conflict,” Biometrika,
vol. 60, no. 3, pp. 581–588, 1973.

[4] E. Yildiz, D. Acemoglu, A. E. Ozdaglar, A. Saberi, and A. Scaglione,
“Discrete opinion dynamics with stubborn agents,” 2011.

[5] J. Majmudar, S. M. Krone, B. O. Baumgaertner, and R. C. Tyson, “The
voter model and jump diffusion.” arXiv preprint arXiv:1511.04160,
2015.

[6] K. Kandhway and J. Kuri, “How to run a campaign: Optimal control
of sis and sir information epidemics,” Applied Mathematics and
Computation, vol. 231, pp. 79–92, 2014.

[7] B. Kotnis, A. Sunny, and J. Kuri, “Incentivized campaigning in social
networks,” IEEE/ACM Transactions on Networking, 2017.

[8] D. Kempe, J. M. Kleinberg, and É. Tardos, “Influential nodes in a
diffusion model for social networks.” in ICALP, vol. 5. Springer,
2005, pp. 1127–1138.

[9] S. Eshghi, V. M. Preciado, S. Sarkar, S. S. Venkatesh, Q. Zhao,
R. D’Souza, and A. Swami, “Spread, then target, and advertise in
waves: Optimal capital allocation across advertising channels,” arXiv
preprint arXiv:1702.03432, 2017.

[10] E. Asano, L. J. Gross, S. Lenhart, and L. A. Real, “Optimal control of
vaccine distribution in a rabies metapopulation model.” Mathematical
biosciences and engineering: MBE, vol. 5, no. 2, pp. 219–238, 2008.

[11] U. Ledzewicz and H. Schättler, “On optimal singular controls for
a general sir-model with vaccination and treatment,” Discrete and
Continuous Dynamical Systems, vol. 2, pp. 981–990, 2011.

[12] A. A. Lashari and G. Zaman, “Optimal control of a vector borne
disease with horizontal transmission,” Nonlinear Analysis: Real World
Applications, vol. 13, no. 1, pp. 203–212, 2012.

[13] F. Chierichetti, S. Lattanzi, and A. Panconesi, “Rumor spreading in so-
cial networks,” in International Colloquium on Automata, Languages,
and Programming. Springer, 2009, pp. 375–386.

[14] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Gossip algorithms:
Design, analysis and applications,” in INFOCOM 2005. 24th Annual
Joint Conference of the IEEE Computer and Communications Soci-
eties. Proceedings IEEE, vol. 3. IEEE, 2005, pp. 1653–1664.

[15] B. Pittel, “On spreading a rumor,” SIAM Journal on Applied Mathe-
matics, vol. 47, no. 1, pp. 213–223, 1987.

[16] V. S. Borkar, “Stochastic approximation,” Cambridge Books, 2008.
[17] S. Kamal, “On the convergence, lock-in probability, and sample

complexity of stochastic approximation,” SIAM J. Control Optim.,
vol. 48, no. 8, pp. 5178–5192, 2010.

[18] G. Thoppe and V. S. Borkar, “A concentration bound for stochastic ap-
proximation via alekseev’s formula,” arXiv preprint arXiv:1506.08657,
2015.

[19] B. Kumar, V. S. Borkar, and A. Shetty, “Bounds for tracking er-
ror in constant stepsize stochastic approximation,” arXiv preprint
arXiv:1802.07759, 2018.

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

140



VIII. APPENDIX

In this section, we use Concentration inequalities for
Martingales to obtain a concentration results for fraction of
red balls at the end of time horizon for the first bT strategy.
The result for the strategy to influence in the last bT time-
slots follows via similar arguments. Throughout this section,
x

y
≈ z means |x − z| ≤ y. We use the following notation:

α = p+q
N , α̃ = p̃+q̃

N and α̂t =
p̂t+q̂t
N . Note that for the first

bT influence strategy:

α̂t =

{
α̃ for t ∈ [0, bT ]

α for t ∈ (bT, T ].
(14)

Proposition 2. Given ε > 0, there exists δ = δ(ε, T ) such
that:

P

(∣∣∣r(T )
N
−M(T )

∣∣∣ < ε

)
≥ 1− δ,

where, M(T ) = q
p+q

[
1− (1− α)(1−b)T

]
+ (1 −

α)(1−b)T
[

q̃
q̃+p̃

(
1− (1− α̃)bT

)
+ r(0)

N (1− α̃)bT
]
.

Proof. We know that E
[
r(t+1)|Ft

]
= r(t)

[
1−α̂t

]
+ q̂t. Let

Pr =
r∏

k=0

(1 − α̂k), P−1 = 1, and X(t) = r(t)
Pt−1

−
t−1∑
r=0

q̂r
Pr
.

X(t) is a Martingale with respect to Ft. Define Y (t) :=
PTX(t). Clearly, Y (t) is also a martingale. In fact, Y (t) is a
bounded martingale with −1−q̂t ≤ Y (t+1)−Y (t) ≤ p̂t+1.
Assume that p̂s + q̂s = p̂ + q̂ for all s ∈ [0, t]. Then, by
Azuma-Hoeffding inequality, given ε > 0, we have:

P (|Y (t)− Y (0)| > ε) ≤ 2 exp

(
−ε2

2t(p̂+ q̂ + 2)2

)
.

Henceforth, for sake of simplicity, we write that with prob-

ability at least 1 − 2 exp

(
−ε2

2t(p̂+q̂+2)2

)
, Y (t)

ε
≈ Y (0).

From this, we get that with probability at least 1 −

2 exp

{
−ε′2
(
1−α̂t

)2t
2t(p̂+q̂+2)2

}
,

r(t)
ε′

≈
t−1∑
r=0

Pt−1
q̂r
Pr

+ Pt−1r(0), (15)

where ε′ := ε/Pt. Using (14) and (15) for the first bT
influence strategy, given ε1, ε2 > 0, we get:

• With probability at least 1− 2 exp

{
−ε̃21N

2
(
1−α̃
)2bT

2bT (p̃+q̃+2)2

}
,

r(bT )

N

ε̃1≈ q̃

q̃ + p̃

(
1− (1− α̃)bT

)
+
r(0)

N
(1− α̃)bT ,

(16)

where ε̃1 = ε1/PbT .

• With probability at least 1−2 exp

{
ε̃22N

2
(
1−α
)2(1−b)T

2(1−b)T (p+q+2)2

}
,

r(T )

N

ε̃2≈ q

p+ q

(
1− (1− α)(1−b)T

)
+
r(bT )

N
(1− α)(1−b)T , (17)
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Fig. 6. Expected fraction of green balls at the end of time-slot t for the
ODE and for the simulation of the model under Assumption 1, for both the
policies, namely, influence in the first bT timeslots and influence in the last
bT time-slots. The parameters are p = 0.3, q = 0.6, p̃ = 0.8, q̃ = 0.1, b =
0.3, T = 1000, N = 100. The ODE solution tracks the simulation in both
cases.

where ε̃2 = ε/P(1−b)T .

Combining (16) and (17) and using the union

bound, we get for δ = 2 exp

{
−ε̃21N

2
(
1−α̃
)2bT

2bT (p̃+q̃+2)2

}
+

2 exp

{
−ε̃22N

2
(
1−α
)2(1−b)T

2(1−b)T (p+q+2)2

}
, with probability at least 1− δ:

r(T )

N

∣∣∣∣
first

ε
≈ q

p+ q

[
1− (1− α)(1−b)T

]
+ (1− α)(1−b)T

[
q̃

q̃ + p̃

(
1− (1− α̃)bT

)]
+ (1− α)(1−b)T

[
r(0)

N
(1− α̃)bT

]
.

Remark 4. Note that δ also depends on p, q, p̃, q̃, b. In a
large urn scenario, i.e. where α, α̃ are small (1− α)bT can
be approximated as e−αbT . This gives us an approximate
solution M(t) to the ODE corresponding to the stochastic
approximation scheme. The proposition claims that the r(T )
obtained via simulation of the actual stochastic process is
close to M(T ) with high probability (Figure 6). In fact for
any t such that 0 < t < bT or (1 − b)T < t < T , using
the same concentration inequality, we get that r(t) is close
to M(t) with a probability at least 1− δ, where δ = δ(ε, t).

For a constant b and large time horizon T ,
r(T )

N

∣∣∣∣
first

= q
p+q ,

which is the stable fixed point of the ODE (4).
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