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Strong input-to-state stability for infinite dimensional linear systems

Robert Nabiullin! and Felix L. Schwenninger?

Abstract— In this talk we study the notions of strong input-to-
state stability and strong integral input-to-state stability in the
setting of linear systems with an unbounded control operator.
It is known that if the system is exponentially stable, then it is
(strong) integral input-to-state stable if and only if it is infinite-
time admissible with respect to inputs in an Orlicz space.
Without the exponential stability those conditions are no longer
equivalent. Still, the Orlicz space inifnite-time admissibility is
sufficient for a system to be strong integral input-to-state stable.

Index Terms— input-to-state stability, integral input-to-state
stability, infinite-dimensional systems

I. INTRODUCTION

The input-to-state stability (ISS) for PDE systems is a
comparatively new research topic. It started with [1] and we
also refer to [2], [3], [4], [5], [6], [7], [8] for the current state
of research in this area. One of the questions people study is
how ISS is related to other stability notions such as integral
input-to-state stability (iISS). In infinite dimensional setting
the situation is not fully clear, not even for linear systems,
see [9].

In this talk we present results recently obtained in [10]. Let
us consider linear control systems of the form

&(t) = Ax(t) + Bu(t), 2(0) =mz9, t>0, (1)

where A generates a Cy-semigroup (7T'(¢));>0 and B is a
(possibly unbounded) control operator. For linear systems
given by (1) ISS allows to jointly describe the stability of the
semigroup (7'(¢)):>o together with the stability of the map
u — z(t) with respect to some space Z of input functions,
for fixed ¢ > 0. The more general notion of strong ISS (sISS)
was recently introduced in [11], see also [8]. It generalizes
ISS as now the exponential stability of the semigroup is
replaced with strong stability.

One of the main results in [9] is the equivalence between
integral ISS with respect to L and ISS with respect to
some Orlicz space Fg. As the system is linear, Fg-ISS is
equivalent to admissibility with respect to E'3. In contrast to
this L°°-siISS is implied by E3-sISS but not the other way
around.

The equivalence fails to hold true since, unlike in the relation
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between ISS and iISS, we have to distinguish between
“finite-time admissibility” and “infinite-time admissibility”,
as the latter is strictly stronger here.

II. DEFINITIONS

We study systems (A, B) given by (1) where A is the
generator of a Cy-semigroup (7'(t));>0 on a Banach space
X, U is another Banach space and B € L(U,X_1). The
space X _1 is defined to be the completion of X with respect
to the norm given by |z||_; := ||(A — A) ™'z, where X is
some element of p(A), the resolvent set of A. The operator A
has a unique extension A_; € £(X, X_1) which generates
a Cp-semigroup (T_1(t));>0 on X_; which is an extension
of (T(t))e=o0-

We recall the definitions of Young functions and Orlicz
spaces. The Orlicz spaces generalize the usual LP spaces.
A function ®: [0,00) — R is called a Young function if

O(t) = /0/90(5) ds, t>0,

where the function ¢: [0,00) — R has the following prop-
erties: ¢ is right-continuous and nondecreasing, ¢(0) = 0,
p(s) > 0 for s > 0 and lim,_,», p(s) = co. We denote by
Ky the set of all Young functions.

Definition 2.1: Let I C R be a bounded interval and
® € Ky. The Orlicz space Eg(I,U) is the completion of
L*°(1,U) with respect to the Luxemburg norm

lulle := inf {k >0 [ a0 utw)lo) de < 1}.

Let p € (1,00). Then taking ®(s) = sP yields Fg = LP,
i.e. LP spaces are special Orlicz spaces. More details can
be found in [12] and also in the appendix of [9]. We use
the following convention: By Z(0,¢; U) we refer to either a
Lebesgue space LP(0,¢;U), with 1 < p < co or an Orlicz
spaces Eg(0,t;U), for some ® € Ky

By a (mild) solution of (1) we mean the function defined by
the variation of parameters formula

x(t) = T(t)xo +/0 T_1(t — s)Bu(s) ds, t>0. 2)

Note that in general we have x(t) € X_;.
Definition 2.2: We call the system Y% (A, B)

o Z-admissible, if for all ¢t > 0, xg € X and all u €
Z(0,t;U) it holds that z(t) € X and there exists a
constant ¢(t) such that

@) < c(@)ull zo,t0)-
for all w € Z(0,t;U), if zg = 0.
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o infinite-time Z-admissible, if the system is Z-admissible
and the optimal constants in (3) satisfy coo
sup;sq c(t) < oo.

In order to introduce (strong) input-to-state stability, we

use the following notation for the sets of comparison func-
tions.

K={peCRS,R)|u0)=0, u strictly increasing},
Ko ={0€ K| Tll)n;o 0(x) = oo},

L={yeCRS,R) | st decreas., lim ~(t) = 0},
KL={8: (RIZ =Ry |B(-t) € KVt B(s,-) € L Vs}.

Cleary we have

Definition 2.3: The system (A, B) is called

o Z-ISS, if there exist 5 € KL and p € K such that for
all t > 0, zp € X and v € Z(0,¢;U) holds z(t) € X
and

@)l < Blzoll, t) + plllull zo,0))-

o Z-iISS, if there exist 8 € KL, 0 € K, and p € K such
that for all t > 0, zp € X and v € Z(0,¢;U) holds
x(t) € X and

la(0)] < B(llzoll.£) + 6 < / M(IU(S)IIU)dS> .

The relation between integral ISS with respect to L> and
ISS with respect to Eg is one of the main results in [9].

Theorem 2.4 ([9, Thm. 3.16]): Let (T(t));>o be expo-
nentially stable. The following statements are (_aquivalent.

1) X(A, B) is L>-iISS.

2) There is a ® € Ky such that X(A, B) is Eg-ISS.
Next we introduce the strong versions of ISS and iISS.

Definition 2.5: The system X (A, B) is called

o Z-sISS, if there exist 4 € K and B: X x Ry — R
such that
1) B(z,-) e Lforall z € X, x # 0 and
2) forevery t >0, zp € X and u € Z(0,¢;U) holds
z(t) € X and

lz(®)] < Blxo,t) + plllull z0.10))-

o Z-silSS, if there exist € Ky, p € K and f: X X
R — R{ such that
1) f(z,-)e Lforall z € X, z # 0 and
2) forevery t >0, zp € X and u € Z(0,¢;U) holds
z(t) € X and

t
ool < 80 t)+0 ([ ullu(e)lo)as) .
0
It is easy to see that ISS implies sISS and iISS implies
siISS.
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III. MAIN RESULTS

We relate L°°-silSS to infinite-time admissibility with
respect to Orlicz spaces Eg.

Theorem 3.1: Suppose there is a & € Ky such that the
system X(A, B) is E-sISS. Then the system X(A, B) is
L>-silSS.

Theorem 3.2: Assume that the system (A, B) is L*°-
siISS. Then there is a & € Ky such that the system X(A, B)
is Eg-admissible. If, additionally, for the function u in (4)
holds p € Ky, then the system ¥(A, B) is E,-sISS.

Next we see that Eg-sISS and L*°-silSS are not equiv-
alent, i.e. we cannot drop the additional condition in the
second part of Theorem 3.2. Note that, in contrast to The-
orem 2.4, Theorem 3.1 and the next one show that without
exponential stability, F'g-sISS is stronger than L*°-siISS.

Theorem 3.3: Let (T'(t))i>0 be the left-shift semigroup
on X = L'(0,00). Its generator is the operator Af :=
f’ with the domain D(A) = {f € L'(0,00) | f €
W11(0,00) and f' € L'(0,00)}. Choosing U = X and
B = I we have:

1) The semigroup (T'(t)):>o strongly stable,

2) X(A, B) is L'-siISS and hence L*>°-silSS,

3) 3(A, B) is not Eg-sISS for any ® € Ky
Moreover (A, B) is not infinite-time L°°-admissible. In
particular L>°-siISS does not imply L°°-sISS.
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