
Strong input-to-state stability for infinite dimensional linear systems

Robert Nabiullin1 and Felix L. Schwenninger2

Abstract— In this talk we study the notions of strong input-to-
state stability and strong integral input-to-state stability in the
setting of linear systems with an unbounded control operator.
It is known that if the system is exponentially stable, then it is
(strong) integral input-to-state stable if and only if it is infinite-
time admissible with respect to inputs in an Orlicz space.
Without the exponential stability those conditions are no longer
equivalent. Still, the Orlicz space inifnite-time admissibility is
sufficient for a system to be strong integral input-to-state stable.

Index Terms— input-to-state stability, integral input-to-state
stability, infinite-dimensional systems

I. INTRODUCTION

The input-to-state stability (ISS) for PDE systems is a
comparatively new research topic. It started with [1] and we
also refer to [2], [3], [4], [5], [6], [7], [8] for the current state
of research in this area. One of the questions people study is
how ISS is related to other stability notions such as integral
input-to-state stability (iISS). In infinite dimensional setting
the situation is not fully clear, not even for linear systems,
see [9].
In this talk we present results recently obtained in [10]. Let
us consider linear control systems of the form

ẋ(t) = Ax(t) +Bu(t), x(0) = x0, t ≥ 0, (1)

where A generates a C0-semigroup (T (t))t≥0 and B is a
(possibly unbounded) control operator. For linear systems
given by (1) ISS allows to jointly describe the stability of the
semigroup (T (t))t≥0 together with the stability of the map
u 7→ x(t) with respect to some space Z of input functions,
for fixed t > 0. The more general notion of strong ISS (sISS)
was recently introduced in [11], see also [8]. It generalizes
ISS as now the exponential stability of the semigroup is
replaced with strong stability.
One of the main results in [9] is the equivalence between
integral ISS with respect to L∞ and ISS with respect to
some Orlicz space EΦ. As the system is linear, EΦ-ISS is
equivalent to admissibility with respect to EΦ. In contrast to
this L∞-siISS is implied by EΦ-sISS but not the other way
around.
The equivalence fails to hold true since, unlike in the relation
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between ISS and iISS, we have to distinguish between
“finite-time admissibility” and “infinite-time admissibility”,
as the latter is strictly stronger here.

II. DEFINITIONS

We study systems Σ(A,B) given by (1) where A is the
generator of a C0-semigroup (T (t))t≥0 on a Banach space
X , U is another Banach space and B ∈ L(U,X−1). The
space X−1 is defined to be the completion of X with respect
to the norm given by ‖x‖−1 := ‖(λI −A)−1x‖, where λ is
some element of ρ(A), the resolvent set of A. The operator A
has a unique extension A−1 ∈ L(X,X−1) which generates
a C0-semigroup (T−1(t))t≥0 on X−1 which is an extension
of (T (t))t≥0.
We recall the definitions of Young functions and Orlicz
spaces. The Orlicz spaces generalize the usual Lp spaces.
A function Φ: [0,∞)→ R is called a Young function if

Φ(t) =

∫ t

0

ϕ(s) ds, t ≥ 0,

where the function ϕ : [0,∞) → R has the following prop-
erties: ϕ is right-continuous and nondecreasing, ϕ(0) = 0,
ϕ(s) > 0 for s > 0 and lims→∞ ϕ(s) = ∞. We denote by
KY the set of all Young functions.

Definition 2.1: Let I ⊂ R be a bounded interval and
Φ ∈ KY . The Orlicz space EΦ(I, U) is the completion of
L∞(I, U) with respect to the Luxemburg norm

‖u‖Φ := inf

{
k > 0

∣∣∣ ∫
I

Φ(k−1‖u(x)‖U ) dx ≤ 1

}
.

Let p ∈ (1,∞). Then taking Φ(s) = sp yields EΦ = Lp,
i.e. Lp spaces are special Orlicz spaces. More details can
be found in [12] and also in the appendix of [9]. We use
the following convention: By Z(0, t;U) we refer to either a
Lebesgue space Lp(0, t;U), with 1 ≤ p ≤ ∞ or an Orlicz
spaces EΦ(0, t;U), for some Φ ∈ KY .
By a (mild) solution of (1) we mean the function defined by
the variation of parameters formula

x(t) = T (t)x0 +

∫ t

0

T−1(t− s)Bu(s) ds, t ≥ 0. (2)

Note that in general we have x(t) ∈ X−1.
Definition 2.2: We call the system Σ(A,B)

• Z-admissible, if for all t > 0, x0 ∈ X and all u ∈
Z(0, t;U) it holds that x(t) ∈ X and there exists a
constant c(t) such that

‖x(t)‖ ≤ c(t)‖u‖Z(0,t;U). (3)

for all u ∈ Z(0, t;U), if x0 = 0.
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• infinite-time Z-admissible, if the system is Z-admissible
and the optimal constants in (3) satisfy c∞ :=
supt>0 c(t) <∞.

In order to introduce (strong) input-to-state stability, we
use the following notation for the sets of comparison func-
tions.

K = {µ ∈ C(R+
0 ,R

+
0 ) | µ(0) = 0, µ strictly increasing},

K∞ = {θ ∈ K | lim
x→∞

θ(x) =∞},

L = {γ ∈ C(R+
0 ,R

+
0 ) | γ str. decreas., lim

t→∞
γ(t) = 0},

KL = {β : (R+
0 )2 → R+

0 | β(·, t) ∈ K ∀t, β(s, ·) ∈ L ∀s}.

Cleary we have

KY ( K∞ ( K.

Definition 2.3: The system Σ(A,B) is called

• Z-ISS, if there exist β ∈ KL and µ ∈ K∞ such that for
all t ≥ 0, x0 ∈ X and u ∈ Z(0, t;U) holds x(t) ∈ X
and

‖x(t)‖ ≤ β(‖x0‖, t) + µ(‖u‖Z(0,t;U)).

• Z-iISS, if there exist β ∈ KL, θ ∈ K∞ and µ ∈ K such
that for all t ≥ 0, x0 ∈ X and u ∈ Z(0, t;U) holds
x(t) ∈ X and

‖x(t)‖ ≤ β(‖x0‖, t) + θ

(∫ t

0

µ(‖u(s)‖U )ds

)
.

The relation between integral ISS with respect to L∞ and
ISS with respect to EΦ is one of the main results in [9].

Theorem 2.4 ([9, Thm. 3.16]): Let (T (t))t≥0 be expo-
nentially stable. The following statements are equivalent.

1) Σ(A,B) is L∞-iISS.
2) There is a Φ ∈ KY such that Σ(A,B) is EΦ-ISS.

Next we introduce the strong versions of ISS and iISS.
Definition 2.5: The system Σ(A,B) is called

• Z-sISS, if there exist µ ∈ K and β : X × R+
0 → R+

0

such that
1) β(x, ·) ∈ L for all x ∈ X , x 6= 0 and
2) for every t ≥ 0, x0 ∈ X and u ∈ Z(0, t;U) holds

x(t) ∈ X and

‖x(t)‖ ≤ β(x0, t) + µ(‖u‖Z(0,t;U)).

• Z-siISS, if there exist θ ∈ K∞, µ ∈ K and β : X ×
R+

0 → R+
0 such that

1) β(x, ·) ∈ L for all x ∈ X , x 6= 0 and
2) for every t ≥ 0, x0 ∈ X and u ∈ Z(0, t;U) holds

x(t) ∈ X and

‖x(t)‖ ≤ β(x0, t)+θ

(∫ t

0

µ(‖u(s)‖U )ds

)
. (4)

It is easy to see that ISS implies sISS and iISS implies
siISS.

III. MAIN RESULTS

We relate L∞-siISS to infinite-time admissibility with
respect to Orlicz spaces EΦ.

Theorem 3.1: Suppose there is a Φ ∈ KY such that the
system Σ(A,B) is EΦ-sISS. Then the system Σ(A,B) is
L∞-siISS.

Theorem 3.2: Assume that the system Σ(A,B) is L∞-
siISS. Then there is a Φ ∈ KY such that the system Σ(A,B)
is EΦ-admissible. If, additionally, for the function µ in (4)
holds µ ∈ KY , then the system Σ(A,B) is Eµ-sISS.

Next we see that EΦ-sISS and L∞-siISS are not equiv-
alent, i.e. we cannot drop the additional condition in the
second part of Theorem 3.2. Note that, in contrast to The-
orem 2.4, Theorem 3.1 and the next one show that without
exponential stability, EΦ-sISS is stronger than L∞-siISS.

Theorem 3.3: Let (T (t))t≥0 be the left-shift semigroup
on X = L1(0,∞). Its generator is the operator Af :=
f ′ with the domain D(A) = {f ∈ L1(0,∞) | f ∈
W 1,1(0,∞) and f ′ ∈ L1(0,∞)}. Choosing U = X and
B = I we have:

1) The semigroup (T (t))t≥0 strongly stable,
2) Σ(A,B) is L1-siISS and hence L∞-siISS,
3) Σ(A,B) is not EΦ-sISS for any Φ ∈ KY .

Moreover Σ(A,B) is not infinite-time L∞-admissible. In
particular L∞-siISS does not imply L∞-sISS.
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