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Abstract— In this paper, we develop a distributed algorithm
for multiple agents aiming to solve an optimization problem.
The communication among the agents is governed by an undi-
rected graph. In our algorithm, each agent uses an independent
step-size and the upper bound of steps are independent from
network topologies. The step-sizes depend on local objective
functions. We present an algorithm that even with different step
sizes guarantees convergence of the agent states to a common
point. With such step range, the states of each agent converge to
a common optimal point at a linear rate O(κ−k) where 0< κ < 1
and k is the number of iterations. As compared to existing
approaches, we only need the local cost function of each agent
is convex rather than strongly convex. Finally, the numerical
examples are given to validate the theoretical results obtained.

Index Terms— Distributed optimization; Multi-agent sys-
tems; Independent step-size.

I. PROBLEM FORMULATION AND ALGORITHM

A. Proposed algorithm

Notation. The notation used here is standard except where
otherwise stated. We use a capital letter to define a matrix
and a lowercase bold letter to define a vector. The n× n
unit matrix is represented by I. The n-dimensional vectors
of all of the elements are 1 is represented by 1n. We use
Rn and Rn×m to define the n-dimensional space and the
n×m real matrices, respectively. For any vector x, xi is
its ith element. Similarly, Ai is the ith row, and Ai j is the
(i, j)th component of any a matrix A. For a given matrix G
and vector x, we denote the G-matrix norm ∥x∥2

G = ⟨x,Gx⟩.
If G is positive definite, we have ∥x∥2

G > 0. In order to
simplify the representation, we use A ≥ 0 to indicate that
A is Positive Semi-Definite (PSD) and A > 0 to explain
that matrix A is Positive Definite (PD). The maximum and
minimum eigenvalues of matrix A are defined as λmax(A) and
λmin(A). The minimum non-zero eigenvalue of matrix A is
defined by λ̃min (A). diag{x1,x2, ...,xn} is the diagonal matrix
with the ith diagonal entry xi. ∥·∥ denotes the Euclidean
norm. The gradient vector of a function f is denoted as ∇ f .

B. Problem formulation

Consider an undirected graph defined as G (V ,E ), where
V ={1,2,3, ...,n} is a set of n nodes, representing agents
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and E ⊆ V ×V is a set of edges composed with ordered
pair (i, j), i, j ∈V , where agent i and agent j exchange
information with each other. Define an adjacency matrix
A = [ai j] of graph G with ai j > 0 if (i, j) ∈ E and ai j = 0
otherwise.

In this paper, we consider distributed optimization prob-
lems of multi-agent systems, where the cost function is a
summation of local cost functions of all agents. Suppose that
agent i is assigned with the states variable xi ∈Rm, and each
agent has a local cost function fi, ∀i ∈ V . Agent i needs to
exchange information with its neighbors such that the states
of all agent ultimately converge to a common optimum point.
The optimization problem model is represented as

min f (x) =
n

∑
i=1

fi(x), (1)

where the function fi: Rd → R is convex differentiable with
the Lipschitz continuous gradients and known only by agent
i. Suppose that the optimal solution set of Problem (1) is
nonempty.

In this section, a distributed gradient optimization algo-
rithm with an independent step size is proposed for multi-
agent systems to solve problem (1). Before proposing the
algorithm, let’s start with some assumptions and properties
which are used for our results.

Assumption 1: The graph G is an undirected and con-
nected graph. The adjacency matrix A= [ai j]∈Rn×n satisfies
A = AT , 1T

n A=1 and A≥ 0.
One way to make sure that A ≥ 0 is true is to design

the mixing matrix A to be strictly diagonally dominant.
Following Assumption 1, we define a stochastic matrix Ā =
1
3 I+ 2

3 A. It follows from Assumption 1 that Ā≥ I
3 .

Assumption 2: The local cost function fi of agent i is
closed convex, and the gradient ∇ fi, i ∈ V is Lipschitz
continuous with a positive constant Li and satisfies

∥∇ fi(xi)−∇ fi(yi)∥ ≤ Li ∥xi−yi∥ ,∀xi,yi ∈ Rd .

Following Assumption 2, we define the gradient collection
∇ f (x) ∆

= [∇ f1(x1); . . . ;∇ fn(xn)]
T for x ∆

= [x1; . . . ;xn]
T . For

∀x,y ∈ Rnd , it follows from the convex function f (x) that,

∥∇ f (x)−∇ f (y)∥2
L−1 ≤ ⟨x−y,∇ f (x)−∇ f (y)⟩ ,

where L = diag{L1, · · · ,Ln}.
We are in the position to propose the following distributed
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algorithm to solve problem (1) with independent step size:

xk+1
i =

n

∑
j=1

āi jxk
i −αiyk

i ,

yk+1
i = ∇ fi(xk+1

i )−β
k+1

∑
t=0

n

∑
j=1

(ai j− āi j)xt
j. (2)

In order to better simplify the expression, we write (2) in a
compact form. Let the weights ai j and ai j be the elements
of the matrices A and Ā, i.e., A = [ai j] and Ā =

[
ai j

]
.

Let xk, ∇ f (xk) be a collection of states and gradients of
all agents in time k, i.e., xk ∆

=
[
xk

1;xk
2; . . . ;xk

n
]T , ∇ f (xk)

∆
=[

∇ f1(xk
1);∇ f2(xk

2); . . . ;∇ fn(xk
n)
]T . Then the algorithm (2) is

rewritten by

xk+1 = Āxk−Dyk,

yk+1 = ∇ f (xk+1)−β
k+1

∑
t=0

(
A− Ā

)
xt . (3)

Where A and Ā are doubly stochastic matrices and D =
diag{α1, · · · ,αn}. αi is the step size of agent i.

Remark 1: During the iteration, agent i receives the
weighting states ai jxk+1

j , and ai jxk
j from its neighbors. Each

agent choose their own step size αi, and αi is allowed to
be different. In the proposed algorithm, the constant β is
chosen such that (2In−βD)(In−A)≥ 0. In order to get an
exact optimal solution, we use difference values of gradient.
The second equation of algorithm (3) is an accurate gradient
estimate. It modifies the impact of the independent step size
with the cumulative state information.

II. MAIN RESULTS

In this section, we present the linear convergence result
of the proposed algorithm (3). With the appropriate step
size, the algorithm converges to the optimal solution of the
problem (1).

For simplicity, we define the auxiliary sequence qk =

∑k
r=0 xr and q∗= lim

k→∞
qk.

Lemma 1: () Suppose that Assumptions 1-2 hold, x∗ is
solution of the problem (1) if the following properties are
satisfied,

(A− Ā)x∗ = 0,

1T ∇ f (x∗) = 0. (4)
In Lemma 1, we give the optimal condition of the proposed

algorithm, that is, the state of the optimal solution. Next,
we give the relationship between the state variables and the
optimal solution.

Lemma 2: Suppose that Assumptions 1-2 hold. The
quadruple sequence {xk,x∗,qk,q∗} satisfies the following
property,

M(xk+1−x∗)+D−1Ā(xk+1−xk)

=β (A− Ā)(qk+1−q∗)− (∇ f (xk)−∇ f (x∗)), (5)

where M = D−1(I− Ā+βD(A− Ā)).

In fact,M is also written as

M = D−1(I− Ā+βD(A− Ā))

= D−1(
2(I−A)

3
+

βD
3

(A− I))

=
1
3

D−1(2I−βD)(I−A), (6)

then matrix M is positive definite by the definition of constant
β in remark (1).

Next, we state the important results in this paper. We first
establish a relationship between qk, q∗, xk and x∗.

Based on qk, q∗, xk and x∗, we define the following
notations to simplify calculation:

uk =

[
xk

qk

]
, u∗ =

[
x∗
q∗

]
,G =

[
N 0
0 βU

]
,

where N = D−1Ā and U = Ā−A.
Theorem 1: Suppose that Assumptions 1-2 hold and each

agent updates their states according to (3), then the sequence
{uk} satisfies

0≤
∥∥∥uk−u∗

∥∥∥2

G
−
∥∥∥uk+1−u∗

∥∥∥2

G
(7)

and the step size αi satisfies

αi < 2
/

3Li. (8)
Remark 2: It is noted that the positive definite matrix

is important to analyze the convergence of the designed
algorithm in [1]. By the property of a positive definite
matrix, we define a non-negative matrix norm. The method
is also used in our proof. In Theorem 1, the sequence

{
uk
}

converges to u∗ with the G-matrix norm. The algorithm (3)
is used for an independent step size. When proving the
convergence of the proposed algorithm, we need that the
gradient of cost function is Lipschitz continuous and the
strong convex assumption is not needed.

Next, The convergence rate result is given in the theorem.
Theorem 2: Suppose that Assumptions 1-2 hold. The it-

erative sequences uk satisfies∥∥∥uk−u∗
∥∥∥2

G
≥ (1+η)

∥∥∥uk+1−u∗
∥∥∥2

G
, (9)

where

η = min
{

c1

c3c4
,

c2

c3c5

}
, (10)

and

c1 =
βλ̃min(U)λ̃min(U2)

λmax(U2)
+2λ̃min(M),

c2 = λmin(D−1Ā−L
/

2),

c3 =
λmax(U)

βλ̃min(U2)
,

c4 = 4λmax(M2)+4Lmax +λmax(P),

c5 = 4λmax(PPT )+4Lmax.

That is,
{

uk
}

converges to {u∗} at R-linear rate.
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Remark 3: It is worth mentioning that there are many
algorithms solving the distributed optimization problem with
the diminishing step size [2], [3], [4], [5]. The rates of con-
vergence are usually slower than their similar algorithms in
the centralized optimization. The diminishing step αk = k−1/2

gives rise to the convergence rate O( lnk√
k
) [2]. The distributed

nesterov method has a faster convergence rate O( lnk
k ) with

the diminishing step size αk = k−1/3 [4]. There are strict
restrictions of the diminishing step size, which needs the con-
dition of non-summation and square-summation. In order to
accelerate the convergence rate, a constant step size is used.
It does not only need to use the global topology information,
but also limit the range of the step size. Comparing with
these algorithms, we relax the limit of selection range of
step sizes and consider the condition of the independent step
size. We present the linear convergence rate of our algorithm
in Theorem 2.

III. NUMERICAL EXAMPLE

In this section, we consider the decentralized sensing
problems to study the convergence rate of our algorithm with
least-squares problem in a directed graph. Each agent has
its own cost function (Cix− ci)

2, which is only known by
itself. In the simulation, we use five sensors to cooperatively
estimate a parameter x. We use nodes instead of sensors and
consider distributed optimization problem with a network of
5 agents. The agents exchange informations with a undirected
graph G in the following example described in Figure 1. This
optimization problem is modeled as follows,

x∗← argmin
x∈R

f (x) =
n

∑
i=1

fi (x) ,

where fi (x) = ∥Cix− ci∥2
2 ,Ci ∈ Rni×p,ci ∈ Rni , f or i =

1,2, . . . ,n.

Fig. 1. An directed and connected graph for the agents in the numerical
example.

In order to illustrate that our proposed algorithm has a
rapid convergence speed. Similarly, we consider a group
of five agents, exchanging information among the agents is
described via an undirected and connected graph as Figure

0 50 100 150 200 250 300
10

−10

10
−5

10
0

10
5

10
10

DGD with α
k
 = 0.3/k

0.5

The proposed with α=0.2, c=α/2

EXTRA  with α=0.2

The proposed with independent step

Fig. 2. Comparison of DGD and the proposed algorithm (3). Our algorithm
has a faster convergence rate.

1 shows. Utilizing the same mixing matrices, the proposed
algorithm (3) is compared with DGD [6] and EXTRA [1].
The simulation result is shown in Figure 2. Let DGD use
the diminishing step size. At the beginning of execution,
the convergence rate of DGD is close to linear. But as time
goes on, the step size decreases and the rate of convergence
slows down. When the same constant step is used, the
proposed algorithm (3) is better performed comparing with
the EXTRA. Our algorithm can use the independent step
size. The rate of convergence is accelerated by changing the
step size of each agent.

IV. CONCLUSION

In this paper, a distributed optimization algorithm is pro-
posed to solve optimization problem of a multi-agent system
with independent step size. We show that the proposed
algorithm (3) for the distributed optimization problem (1)
converges geometrically to to a common optimal point when
each agent uses a different constant step size. Moreover, we
also give an accurate convergence rate related to the step size.
When the convergence of the algorithm is given, we only
use the Lipschitz continuous of the cost function without
the assumption of strong convexity. Finally, the theoretical
results have ultimately been testified by mean of a numerical
simulation example. Through a comparison, it has been
demonstrated that the algorithm we have established is faster
convergent than the DGD and EXTRA.
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