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Abstract— This paper discusses the dissipativity of trans-
formed systems induced by generalized orthonormal basis
functions. The dissipativity includes both passivity and the
finite system gain property. We prove that the transformed
system preserves the dissipativity and shares a common storage
function when the original continuous-time system is dissipative.
The results further illuminates the properties of this class of
system transformation.
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I. INTRODUCTION

A number of continuous-discrete conversion methods for
linear systems are available. For example, the c2d command
in MATLAB includes the zero-order hold, first-order hold,
impulse-invariant mapping, Tustin approximation, and zero-
pole matching equivalents methods [1]. Each method focuses
on some properties of the input-output relation, and should
be selected in accordance with applications.

The lifting technique [2] is proposed in the context of
robust control for sampled-data systems. A discrete-time
system is constructed from a continuous-time system where
the input and output spaces are “lifted” to functional spaces
and the input-output relation is preserved. The idea is ex-
tended in [3] using the orthogonal complement of the shift
invariant space generated by an inner function to calculate
Hankel singular values and vectors, which are useful for
the H∞ sensitivity minimization problem and the rational
approximation problem for a class of infinite dimensional
systems.

When the inner function is rational, the transformation
derived in [3] is equivalent to the so called Hambo system
transform (see [4]), when the orthogonal complement of
the shift invariant space of the inner function is finite-
dimensional and is equipped with an orthonormal basis. The
basis of the orthogonal complement is extended to a basis of
the whole signal space, consisting of so-called generalized
orthonormal basis functions. The properties and applications
of the Hambo system transform are discussed in [5], [6], [7],
[8], and its relation with the lifting technique is discussed in
[9].

A discretization technique is also investigated in the
area of mechanics. The variational approach to discrete
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mechanics is summarized in a review paper [10], where the
discretization of Lagrangian and Hamiltonian mechanics and
integration algorithms are discussed. In [11], the technique
is applied to the identification problem of mechanical sys-
tems, and it was shown that the mid-point rule applied to
linear systems yields the Tustin transform, which preserves
passivity.

The notion of dissipativity includes passivity as a special
case and is discussed extensively in [12], [13], [14]. The
notion of passivity is useful in analyzing the stability of
feedback systems when the forward and the feedback paths
are both passive. Standard methods for continuous-discrete
conversion do not in general preserve passivity (see e.g. [15],
[16], [17]), the question arises whether the system transfor-
mation in [3] and the Hambo transform in [4] preserve it
instead.

In this paper, we shall show that the system transformation
induced by the orthogonal complement of a shift invariant
space and the Hambo system transform preserve dissipativ-
ity. Furthermore, we show that the continuous-time system
and the transformed discrete-time system share a common
storage function.

Here, Z+ denotes the set of nonnegative integers, and R
the set of real numbers. For a complex number s, s denotes
its complex conjugate. For a matrix or a vector, T denotes
the transposition.

II. PRELIMINARIES
A. Signal Spaces

The space of square integrable functions of time 0 < t <
∞ is denoted as L2(0,∞). The norm of u ∈ L2(0,∞) is
defined as

∥u∥ :=

√∫ ∞

0

|u(t)|2 dt .

The Hardy space H2 is the space of analytic functions on
the right half place with the norm

∥û∥ := sup
σ>0

√
1

2π

∫ ∞

−∞
|û(σ + jω)|2 dω .

The spaces L2(0,∞) and H2 can be identified with each
other via the Fourier transform.

A function ϕ is called inner if it is analytic and bounded in
the right half plane, and it satisfies |h(jω)| = 1 for almost
all ω. The space ϕH2 is called a shift invariant subspace,
and its orthogonal complement S := H2⊖ϕH2 is important
because the following equation holds:

H2 = ⊕∞
k=0ϕ

kS . (1)
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It follows from (1) that every û ∈ H2 can be written as

û =

∞∑
k=0

ϕkûk , ûk ∈ S , (2)

which means that H2 is identified with ℓ2S(Z+), the space
of square summable sequences taking values in S.

B. System Transformation

Consider a continuous-time state space realization of a
transfer function h(s),

d

dt
x = Ax+Bu,

y = Cx+Du,
(3)

where A ∈ Rn×n is assumed to be a stable matrix. To avoid
clumsy notation, we assume that the system (3) is single-
input single-output. When an input u ∈ L2(0,∞) is applied
to (3) with zero initial condition then the output y satisfies
y ∈ L2(0,∞). In the frequency domain, the equality ŷ = hû
holds, where û, ŷ ∈ H2.

When H2 is identified with ℓ2S(Z+), the commutative
diagram (4) defines the map hD.

H2 h−−−−→ H2y y
ℓ2S(Z+)

hD−−−−→ ℓ2S(Z+)

(4)

We are interested in how the map hD is characterized. The
following result is in [9, Proposition 1 p. 523].

Proposition 1: Consider the map h : H2 → H2 defined
by the continuous-time state equation (3). Let ϕ be an inner
function such that ϕ and its paraconjugate ϕ∼ defined by
ϕ∼(s) := ϕ(−s) are analytic at the spectrum of A. Then the
map hD : ℓ2S(Z+) → ℓ2S(Z+) defined by the commutative
diagram (4) coincides with the input-output relation of the
discrete-time state equation{

ξt+1 = Aξt +Bût,

ŷt = Cξt +Dût,
(5)

where A : Rn → Rn, B : S → Rn, C : Rn → S , D : S →
S are defined by

Aξ := ϕ∼(A)ξ ,

Bû :=
1

2π

∫ ∞

−∞

(
ϕ∼(A) (jωI +A)

−1
B

−ϕ(jω) (jωI +A)
−1

B
)
û(jω)dω ,

(Cξ) (s) :=
(
C (sI −A)

−1

−ϕ(s)C (sI −A)
−1

ϕ∼(A)
)
ξ ,

(Dû) (s) := h(s)û(s)− ϕ(s)C (sI −A)
−1

Bû .

C. Generalized Orthonormal Basis Functions

If an inner function ϕ(s) is rational of degree nϕ, then the
space S = H2 ⊖ ϕH2 is nϕ dimensional. Let

ϕ(s) = Dϕ + Cϕ (sI −Aϕ)
−1

Bϕ, (6)

where Aϕ ∈ Rnϕ×nϕ , be a balanced realization of ϕ(s). Then
[4] showed that an orthonormal basis of the space S can be
constructed from the elements of

v̂(s) :=
[
v̂1(s) · · · v̂nϕ

(s)
]
:= Cϕ (sI −Aϕ)

−1
. (7)

If ϕ(s) is a first order rational inner function

ϕ(s) :=
λ− s

λ+ s
, λ > 0 , (8)

then

v̂(s) =

√
2λ

λ+ s
(9)

is an orthonormal element in S. An orthonormal basis of
H2 is given by

{
v̂, ϕv̂, . . . , ϕkv̂, . . .

}
, which is called the

Laguerre basis.
When nϕ > 1, an orthonormal basis of H2 is constructed

similarly from the basis of S = H2 ⊖ ϕH2 by multiplying
ϕ(s) sequentially as follows:{

v̂1, . . . , v̂nϕ
, ϕv̂1, . . . , ϕv̂nϕ

,

. . . , ϕkv̂1, . . . , ϕ
kv̂nϕ

, . . .
}
, (10)

which is called generalized orthonormal basis functions.
When the subspace S = H2 ⊖ ϕH2 is equipped with

a basis, then S is identified with Rnϕ . Thus, the system
(A,B,C,D) defined in Proposition 1 can be described by
a discrete-time system whose input-output map h̃D satisfies
the commutative diagram shown below:

H2 h−−−−→ H2y y
ℓ2S(Z+)

hD−−−−→ ℓ2S(Z+)y y
ℓ2Rnϕ (Z+)

h̃D−−−−→ ℓ2Rnϕ (Z+)

(11)

Via the commutative diagram (11), the transformed system
(5) described by the operators A, B, C, and D is now
identified with the discrete-time linear system realizing h̃D:{

ξt+1 = Ãξt + B̃ũt ,

ỹt = C̃ξt + D̃ũt .
(12)

The system matrices (Ã, B̃, C̃, D̃) are defined in the follow-
ing proposition (see [9, Theorem 3 p. 525] for the proof). For
this, define X and Y as the unique solutions to the Sylvester
equations

AX +XAT
ϕ +BBT

ϕ = 0 , (13)

AT
ϕY + Y A+ CT

ϕC = 0 , (14)

respectively.
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Proposition 2: Consider the stable continuous-time sys-
tem (3). Let (6) be a minimal balanced realization of a
rational inner function ϕ(s). Let X and Y be defined by
the Sylvester equations (13) and (14), respectively. Then the
system matrices of (12) are given by

Ã = ϕ∼(A) ,

B̃ = X ,

C̃ = Y ,

D̃ = h∼(AT
ϕ ) .

Remark 1: When the inner function is first order and is
given by (8), the matrices in Proposition 2 are as follows:

Ã = (λI +A) (λI −A)
−1

,

B̃ =
√
2λ (λI −A)

−1
B,

C̃ =
√
2λC (λI −A)

−1
, (15)

D̃ = h(λ) = D + C (λI −A)
−1

B .

III. DISSIPATIVITY

In this section we summarize the relevant results on
dissipative linear dynamical systems with quadratic supply
rates. See [13], [14] for more detail.

Consider a continuous-time system described by a minimal
realization 

d

dt
x = Ax+Bu ,

y = Cx+Du ,
(16)

and consider the following quadratic functional of the output
and the input:

S(u, y) =
[
uT yT

] [R ST

S Q

] [
u
y

]
, (17)

where R = RT , S, Q = QT are matrices of appropriate
dimensions.

Definition 1: The system (16) is dissipative with respec-
tive to the supply rate (17) if there exists a storage function
V (x) such that for every (x, u, y) trajectory satisfying (16)
it holds that

V̇ (x) ≤ S(u, y), (18)

where V̇ (x) is the derivative along the trajectory of (16).
It can be shown (see [14, Theorem 8.4.1 p. 210]) that if V
is a storage function, then there exists a symmetric matrix
P = PT ∈ Rn×n such that V (x) = xTPx.

Definition (18) and V (x) = xTPx are equivalent with the
following matrix inequality:[

ATP + PA− CTQC(
PB − CT (S +QD)

)T
PB − CT (S +QD)

−
(
DTQD +

(
DTS + STD

)
+R

)] ≤ 0 (19)

The transfer function of a system dissipative with respect
to the supply rate (17) with R = 0, Q = 0, and S = I
is called positive-real; in that case it can be proved (see

[14, Corollary 8.5.1]) that there exists a nonnegative storage
function, i.e. P ≥ 0. An analogous result (see [14, Corollary
8.5.2]) holds when a system has the finite system gain
property, i.e. when it is dissipative with respect to the supply
rate R = I , Q = −I , and S = 0. In such case its transfer
function is called bounded-real.

The notion of dissipativity can be extended to systems
written by discrete-time state equations (see e.g. [18] for the
nonlinear case or [19]); consider a minimal realization of a
linear discrete-time system:{

x(t+ 1) = Ãx(t) + B̃u(t),

y(t) = C̃x(t) + D̃u(t).
(20)

Definition 2: The system (20) is dissipative with respec-
tive to the supply rate (17) if there exists a storage function
V (x) such that

V (x(t+ 1))− V (x(t)) ≤ S(u(t), y(t)). (21)

Straightforward manipulations show that the system (16)
is dissipative if and only if the following matrix inequality
has a solution P :[

ÃTPÃ− P − C̃TQC̃(
ÃTPB̃ − C̃T

(
S +QD̃

))T

ÃTPB̃ − C̃T
(
S +QD̃

)
−
(
D̃TQD̃ +

(
D̃TS + STD̃

)
+R

)
+ B̃TPB̃

 ≤ 0.

(22)

IV. DISSIPATIVITY OF TRANSFORMED SYSTEM

This section establishes the main result of this paper,
namely that a continuous-time dissipative system and its
transformed discrete-time system share a common storage
function. The result is first proved in a stronger form for a
first order inner function, and then it is proved for general
rational inner functions.

A. First Order Inner Functions

When an inner function is given by (8), the transformed
system (12) has the system matrices shown in equation (15)
of Remark 1. Note that the transformed system is also single-
input, single-output.

Theorem 1: Let the first order inner function ϕ be given
by (8). The following conditions are equivalent:

1) The continuous-time system (3) is dissipative with
respect to the supply rate (17), and P ∈ Rn×n induces
a storage function;

2) The discrete-time system defined by (15) is dissipative
with respect to the supply rate (17), and P ∈ Rn×n

induces a storage function.
Proof: Denote the left hand sides of (19) and (22) by

M and M̃ , respectively. Then, by a direct calculation, we
have

M̃ =

[√
2λ

(
λI −AT

)−1
0

BT
(
λI −AT

)−1
I

]
M
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[√
2λ (λI −A)

−1
(λI −A)

−1
B

0 I

]
,

i.e. M and M̃ are congruent with each other. The equivalence
of the two statements follows.

From Theorem 1 we conclude that for nϕ = 1, the dissi-
pativity of the original and of the transformed system are
equivalent. In the next section we prove a weaker statement,
namely that if the continuous-time system is dissipative, then
the transformed system is also dissipative (with respect to a
suitably defined supply rate).

B. Higher-Order Rational Inner Functions

When the inner function ϕ(s) is rational of degree nϕ ≥
2, the transformed system (12) has the system matrices
defined in Proposition 2. The dimensions of the input and
output spaces are nϕ times larger than those of the original
continuous-time system (3). Hence, we need to consider a
new supply rate for (12) induced by (17); this is defined by

S̃(ũ, ỹ) :=
[
ũT ỹT

] [R̃ S̃T

S̃ Q̃

] [
ũ
ỹ

]
, (23)

Q̃ := Inϕ
⊗Q, R̃ := Inϕ

⊗R, S̃ := Inϕ
⊗ S, (24)

where ⊗ denotes the Kronecker product and Inϕ
the identity

matrix of size nϕ.
In this section we prove the following generalization of

the necessary condition of Theorem 1 to the rational, higher-
order case.

Theorem 2: Let the rational inner function ϕ have or-
der nϕ, with a balanced realization (6). Assume that the
continuous-time system (3) is dissipative with respect to the
supply rate (17), and P ∈ Rn×n induces a storage function.
Then the discrete-time system (12) whose system matrices
are given by Proposition 2 is dissipative with respect to the
supply rate (23), and P ∈ Rn×n induces a storage function.

The proof of Theorem 2 is deferred until we prove a couple
of preliminary results.

First, we shall consider the dissipativity of periodic sys-
tems. Consider a set of discrete-time linear systems{

x(t+ 1) = Ãix(t) + B̃iu(t),

y(t) = C̃ix(t) + D̃iu(t)
(25)

for i = 1, 2, . . . , nϕ. Now define a periodic linear, time-
varying discrete-time system by the equations

x(t+ 1) = Ãix(t) + B̃iu(t),

y(t) = C̃ix(t) + D̃iu(t),

i = t− nϕ

⌊
t

nϕ

⌋
+ 1 .

(26)

For i1 ≥ i0, we denote the matrix product of the Ai’s by

i1∏
i=i0

Ai := Ai1 · · ·Ai0+1Ai0 .

Note that matrices with larger indices are multiplied from
the left. If i0 > i1, then

i1∏
i=i0

Ai := Inϕ
.

Lemma 1: Assume that each discrete-time system in the
set (25) is dissipative with respect to the supply rate (17),
and that they share a common storage function V (x) =
xTPx. Then the periodic linear, time-varying system (26)
is dissipative with respect to the supply rate (17), with Q̃,
R̃, and S̃ defined by (24). Define

Ã :=

nϕ∏
i=1

Ãi,

B̃ :=
[∏nϕ

i=2 ÃiB̃1 · · · Ãnϕ
B̃nϕ−1 B̃nϕ

]
,

C̃ :=


C̃1

C̃2Ã1

...
C̃nϕ

∏nϕ−1
i=1 Ai

 ,

D̃ :=


D̃1 0 · · · 0

C̃2B̃1 D̃2
. . .

...
...

...
. . .

...
C̃nϕ

∏nϕ−1
i=2 ÃiB̃1 C̃nϕ

∏nϕ−1
i=3 ÃiB̃2 · · · D̃nϕ

 .

Then P satisfies[
ÃTPÃ− P − C̃TQ̃C̃(

ÃTPB̃ − C̃T
(
S̃ + Q̃D̃

))T

ÃTPB̃ − C̃T
(
S̃ + Q̃D̃

)
−
(
D̃TQ̃D̃ +

(
D̃TS̃ + S̃TD̃

)
+ R̃

)
+ B̃TPB̃

 ≤ 0 .

(27)

Proof: It is a matter of straightforward verification to
check that the periodic system (26) satisfies

x((t+ 1)nϕ) = Ãx(tnϕ) + B̃


u(tnϕ)

u(tnϕ + 1)
...

u(tnϕ + nϕ − 1)

 ,


y(tnϕ)

y(tnϕ + 1)
...

y(tnϕ + nϕ − 1)

 = C̃x(tnϕ) + D̃


u(tnϕ)

u(tnϕ + 1)
...

u(tnϕ + nϕ − 1)

 .

(28)
From the assumption of dissipativity of each system (25),

V (x(t+ 1))− V (x(t))− S (u(t), y(t)) ≤ 0

holds for t = 0, 1, 2, . . .. It follows that

V (x(nϕ))− V (x(0))−
nϕ−1∑
t=0

S (u(t), y(t)) ≤ 0,

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

848



which implies that the system (28) is dissipative with respect
to the supply rate (23), and with the same storage function
xTPx. This means that P satisfies the inequality (27).

The following Lemma was proved in [3, Lemma 1] and
is included here without proof.

Lemma 2: Let A be a square matrix and let ξ be a vector
of compatible size. Suppose that ϕ is an inner function and
that ϕ and ϕ∼ are analytic at the eigenvalues of A. Define

g(s) := (sI −A)
−1

ξ − ϕ(s) (sI −A)
−1

ϕ∼(A)ξ .

Then g ∈ H2 ⊖ ϕH2.

For the sake of simplicity in the following we assume
that the zeros and the poles of ϕ are real (the following
results can be generalized in a straightforward way to the
case of complex poles by taking complex conjugates when
necessary). So λi > 0, i = 1, 2, . . . , nϕ. Define

ϕi(s) :=
(λi − s)

(λi + s)
, i = 1, . . . , nϕ , (29)

and note that

ϕ(s) =
(λ1 − s) (λ2 − s) · · ·

(
λnϕ

− s
)

(λ1 + s) (λ2 + s) · · ·
(
λnϕ

+ s
) =

nϕ∏
i=1

ϕi(s) . (30)

A balanced realization of ϕi(s) is
(
−λi,

√
2λi,

√
2λi,−1

)
,

i = 1, . . . , nϕ, and a balanced realization of ϕ(s) is con-
structed as follows (this result can be also found in [8,
Proposition 2.4]).

Lemma 3: Suppose ϕ(s) is an inner function given by
(30), and define

Aϕ =


−λ1 2

√
λ1λ2 · · · (−1)nϕ2

√
λ1λnϕ

0 λ2 · · · (−1)nϕ−12
√
λ2λnϕ

...
. . .

...
...

0 0 · · · −λnϕ

 ,

Bϕ =


(−1)nϕ−1

√
2λ1

(−1)nϕ
√
2λ2

...√
2λnϕ

 ,

Cϕ =
[√

2λ1 −
√
2λ2 · · · (−1)nϕ−1

√
2λnϕ

]
,

Dϕ = (−1)nϕ .

Then (Aϕ, Bϕ, Cϕ, Dϕ) is a balanced realization of ϕ(s).
Furthermore, the following equations hold:

(sI −Aϕ)
−1

Bϕ =



∏nϕ

i=2 ϕi(s)
√
2λ1

λ1+s
...

ϕnϕ
(s)

√
2λnϕ−1

λnϕ−1+s√
2λnϕ

λnϕ
+s

 , (31)

Cϕ (sI −Aϕ)
−1 (32)

=

[
√
2λ1

λ1+s ϕ1(s)
√
2λ2

λ2+s · · ·
∏nϕ−1

i=1 ϕi(s)

√
2λnϕ

λnϕ
+s

]
.

Proof: Consider the series connection shown in Fig.
1, where each block is a first order inner function having
a balanced realization

(
−λi,

√
2λi,

√
2λi,−1

)
. If the state

vector of a realization of ϕ(s) is constructed by stacking the
states of ϕi(s), i = 1, . . . , nϕ, then we have the realization
(Aϕ, Bϕ, Cϕ, Dϕ).

From Fig. 1 it follows that the transfer function from the
state to the output is given by (32), and that from the input to
the state is given by (31). Denote by ⟨·, ·⟩ the inner product
in H2. If i ≤ j, then⟨

i−1∏
k=1

ϕk

√
2λi

λi + s
,

j−1∏
k=1

ϕk

√
2λj

λj + s

⟩

=

⟨ √
2λi

λi + s
,

j−1∏
k=i

ϕk

√
2λj

λj + s

⟩
=

{
0, if i < j,

1, if i = j .

The claim follows from the fact that if i < j, then the left
side in the last bracket belongs to H2 ⊖ ϕiH

2, while the
right side is in ϕiH

2. The equality for i = j follows from
the fact that basis elements have unit norm.

Such equalities imply that the realization is output normal.
The realization is also input normal by the same argument.
Hence the realization is a balanced realization of ϕ(s).

◀ ϕ1(s) ◀ ϕ2(s) ◀ · · · ϕnϕ
(s)◀

Fig. 1 Series connection.

The inner function ϕi in (29) defines the system transfor-
mation (12) whose matrices are described by

Ãi = (λiI +A) (λiI −A)
−1

,

B̃i =
√

2λi (λiI −A)
−1

B,

C̃i =
√

2λiC (λiI −A)
−1

,

D̃i = h(λi) = D + C (λiI −A)
−1

B.

(33)

From Theorem 1, the system (12) is dissipative if and only if
the continuous-time system (3) is dissipative. Furthermore,
P = PT induces a storage function for the one system if
and only if it induces a storage function for the other.

We proceed to show that the system matrices given in
Proposition 2 is exactly the system (28) when an orthonormal
basis of the subspace S = H2 ⊖ ϕH2 is given by (32). In
order to do this, we first prove the following Lemma stating
that the unique solutions of the Sylvester equations (13) and
(14) respectively coincide with the input and output matrices
in (33).

Lemma 4: Let Ãi, B̃i, C̃i, and D̃i be defined by (33).
Then the solutions to the Sylvester equations (13), (14) are
given by

X =
[∏nϕ

i=2 ÃiB̃1

∏nϕ

i=3 ÃiB̃2 · · · B̃nϕ

]
,

Y =


C̃1

...
C̃nϕ−1

∏nϕ−2
i=1 Ãi

C̃nϕ

∏nϕ−1
i=1 Ãi

 .
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Proof: From Lemma 2 and the definition of inner
product in H2, we have⟨

i−1∏
k=1

ϕk(s)

√
2λi

λi + s
, C (sI −A)

−1
ξ

⟩

=

⟨ √
2λi

λi + s
, C (sI −A)

−1
i−1∏
k=1

ϕ∼
k (A)ξ

⟩

=
√
2λiC (λiI −A)

−1
i−1∏
k=1

ϕ∼
k (A)ξ

= C̃i

i−1∏
k=1

Ãkξ.

Observe that the solution Y of (14) satisfies

eTi Y ξ =

∫ ∞

0

eTi e
AT

ϕ tCT
ϕCeAtξdt,

where ei is the ith unit vector. The right hand side is the inner
product of Cϕe

Aϕtei and CeAtξ, and hence from Lemma 3
the ith row of Y is equal to C̃i

∏i−1
k=1 Ãk. The proof for X

is similar.

We now show that the direct feedthrough matrix D̃ in
Proposition 2 coincides with that defined in Lemma 1.

Lemma 5: When the orthonormal basis of S = H2⊖ϕH2

is given by Cϕ (sI −Aϕ)
−1 in (32), the direct through term

D̃ in Proposition 2 satisfies

D̃ = h∼(AT
ϕ )

=


D̃1 0 · · · 0

C̃2B̃1 D̃2
. . .

...
...

...
. . .

...
C̃nϕ

∏nϕ−1
i=2 ÃiB̃1 C̃nϕ

∏nϕ−1
i=3 ÃiB̃2 · · · D̃m

 .

Proof: The (i, j) th element of D̃ is given by

d̃ij =

⟨
i−1∏
k=1

ϕk(s)

√
2λi

λi + s
, h(s)

j−1∏
k=1

ϕk(s)

√
2λj

λj + s

⟩
.

If i < j, then

d̃ij =

⟨ √
2λi

λi + s
,

j−1∏
k=i

ϕk(s)h(s)

√
2λj

λj + s

⟩
= 0

because the left side in the bracket is in H2⊖ϕiH
2 and the

right side is in ϕiH
2. If i = j, then

d̃ii =

⟨ √
2λi

λi + s
, h(s)

√
2λi

λi + s

⟩
=

⟨ √
2λi

λi + s
, h(λi)

√
2λi

λi + s

⟩
+

⟨ √
2λi

λi + s
, (h(s)− h(λi))

√
2λi

λi + s

⟩
= h(λi) = D̃i,

where the second term of the second line is zero because the
left side of the bracket is in H2 ⊖ ϕiH

2 and the right side

(h(s)− h(λi))

√
2λi

λi + s
= ϕi(s)

√
2λi (h(s)− h(λi))

λi − s

is in ϕiH
2. Using the resolvent equation (sI −A)

−1 −
(rI −A)

−1
= (r − s) (sI −A)

−1
(rI −A)

−1, we have

d̃(j+1)j

=

⟨
ϕj(s)

√
2λj+1

λj+1 + s
, h(s)

√
2λj

λj + s

⟩

=

⟨
ϕj(s)

√
2λj+1

λj+1 + s
,D

√
2λj

λj + s

⟩

+

⟨√
2λj+1

λj+1 + s
, C (sI −A)

−1
Bϕ∼

j (s)

√
2λj

λj + s

⟩

=

⟨√
2λj+1

λj+1 + s
, C

{
(sI −A)

−1

− (λjI −A)
−1

+ (λjI −A)
−1

}
B

√
2λj

λj − s

⟩

=

⟨√
2λj+1

λj+1 + s
, C (sI −A)

−1
(λjI −A)

−1
B
√
2λj

⟩

+

⟨√
2λj+1

λj+1 + s
, C (λjI −A)

−1
B

√
2λj

λj − s

⟩
=

√
2λj+1

√
2λjC (λj+1I −A)

−1
(λjI −A)

−1
B

= C̃j+1B̃j .

Similarly, if i > j + 1, then

d̃ij

=

⟨
i−1∏
k=j

ϕk(s)

√
2λi

λi + s
, h(s)

√
2λj

λj + s

⟩

=

⟨
i−1∏

k=j+1

ϕk(s)

√
2λi

λi + s
,

C (sI −A)
−1

(λjI −A)
−1

B
√
2λj

⟩
=

⟨ √
2λi

λi + s
, C (sI −A)

−1

i−1∏
k=j+1

ϕ∼
k (A) (λjI −A)

−1
B
√
2λj

⟩

= C̃i

i−1∏
k=j+1

ÃkB̃j .

This completes the proof.

Now, we are ready to prove the main result of this section.
Proof of Theorem 2: If the continuous-time system is

dissipative with respect to the supply rate (17) and has a
storage function V (x) = xTPx, then Theorem 1 implies
that the discrete time system

(
Ãi, B̃i, C̃i, D̃i

)
defined by
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(33) for i = 1, 2, . . . , nϕ are dissipative for the supply rate
(17) with the common storage function induced by P . Then
the periodic system defined by (26) is also dissipative. From
Lemma 1, the lifted system (28) is also dissipative with
the common storage function. When we use the balanced
realization in Lemma 3 and the orthonormal basis (32) for
the subspace S = H2⊖ϕH2, Lemmas 4 and 5 imply that the
lifted system (28) has the system matrices as in Proposition
2. This concludes the proof. ■

V. CONCLUSIONS
In this paper we studied whether the system transfor-

mation induced by generalized orthonormal basis functions
preserves dissipativity. The system transformation in this
paper is based on the orthogonal complement of the shift
invariant subspace defined by a rational inner function. This
includes as special case the bilinear transformation, which
is induced by the Laguerre basis. The transformation is also
called Hambo transform.

It was shown that dissipative continuous-time systems are
transformed to dissipative discrete-time systems. Further-
more, a storage function of the original continuous-system
is also a storage function of the transformed system.
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