Beurling-Lax representations for weighted Bergman shift-invariant subspaces: the free noncommutative setting

Joseph A. Ball¹

Abstract—The Beurling-Lax-Halmos theorem tells us that any invariant subspace \mathcal{M} for the shift operator $S\colon f(z)\mapsto zf(z)$ on the vectorial Hardy space over the unit disk $H^2_{\mathcal{Y}}=\{f(z)=\sum_{j=0}^\infty f_jz^j\colon \|f\|^2=\sum_{j\geq 0}\|f_j\|^2<\infty\}$ (the Reproducing Kernel Hilbert Space with reproducing kernel $K(z,w)=(1-z\overline{w})^{-1}I_{\mathcal{Y}})$ can be represented as $\mathcal{M}=M_\Theta H^2_\mathcal{U}$ where $M_\Theta\colon H^2_\mathcal{U}\to H^2_\mathcal{Y}$ is an isometric multiplication operator $M_\Theta\colon u(z)\mapsto \Theta(z)u(z)$. One proof constructs Θ as the transferfunction of a discrete-time input-state-output linear system explicitly constructed from the shift-invariant subspace \mathcal{M} . We discuss analogues of this result and related constructions for the setting of multivariable weighted Bergman spaces in the free noncommutative setting.

I. INTRODUCTION

For \mathcal{X} and \mathcal{Y} any pair of Hilbert spaces, we use the notation $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ to denote the space of bounded, linear operators from \mathcal{X} to \mathcal{Y} , shortening the notation $\mathcal{L}(\mathcal{X}, \mathcal{X})$ to $\mathcal{L}(\mathcal{X})$. We start with the classical discrete-time linear system

$$\Sigma(\mathbf{U}): \begin{cases} \mathbf{x}(k+1) &= A\mathbf{x}(k) + B\mathbf{u}(k) \\ \mathbf{y}(k) &= C\mathbf{x}(k) + D\mathbf{u}(k) \end{cases}$$
(I.1)

with $\mathbf{x}(k)$ taking values in the *state space* \mathcal{X} , $\mathbf{u}(k)$ taking values in the *input space* \mathcal{U} and $\mathbf{y}(k)$ taking values in the *output space* \mathcal{Y} , where \mathcal{U} , \mathcal{Y} and \mathcal{X} are given Hilbert spaces and where the *system matrix*

$$\mathbf{U} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U} \end{bmatrix} \to \begin{bmatrix} \mathcal{X} \\ \mathcal{Y} \end{bmatrix}$$
 (I.2)

is a given bounded linear operator. If we let the system evolve on the nonnegative integers $n \in \mathbb{Z}_+$, then the whole trajectory $\{\mathbf{u}(n),\mathbf{x}(n),\mathbf{y}(n)\}_{n\in\mathbb{Z}_+}$ is determined recursively from the input signal $\{\mathbf{u}(n)\}_{n\in\mathbb{Z}_+}$ and the initial state $\mathbf{x}(0)=x$. Application of the Z-transform

$$\{f(k)\}_{k\in\mathbb{Z}_+}\mapsto \widehat{f}(\lambda)=\sum_{k=0}^{\infty}f(k)\lambda^k$$

to the system equations (I.1) eventually leads to

$$\widehat{\mathbf{x}}(\lambda) = (I - \lambda A)^{-1} x + \lambda (I - \lambda A)^{-1} B \widehat{\mathbf{u}}(\lambda),$$

$$\widehat{\mathbf{y}}(\lambda) = C(I - \lambda A)^{-1} x + [D + \lambda C(I - \lambda A)^{-1} B] \widehat{\mathbf{u}}(\lambda)$$

$$= (\mathcal{O}_{C,A} x)(\lambda) + \Theta_{\mathbf{U}}(\lambda) \widehat{\mathbf{u}}(\lambda),$$
(I.3)

where

$$\mathcal{O}_{C,A} \colon x \mapsto \sum_{k=0}^{\infty} (CA^k x) \lambda^k = C(I - \lambda A)^{-1} x$$
 (I.4)

¹ Joseph A. Ball is with the Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061, USA

²Vladimir Bolotnikov is with the Department of Mathematics, College of William and Mary, Williamsburg, VA 23187, USA vladi@math.wm.edu

is the (frequency-domain) observability operator and where

$$\Theta_{\mathbf{U}}(\lambda) = D + \lambda C(I - \lambda A)^{-1}B \tag{I.5}$$

is the transfer function of the system Σ given by (I.1). In particular, if the input signal $\{\mathbf{u}(n)\}_{n\in\mathbb{Z}_+}$ is taken to be zero, the resulting output $\{\mathbf{y}(n)\}_{n\in\mathbb{Z}_+}$ is given by $\widehat{\mathbf{y}}=\mathcal{O}_{C,A}x(0)$. If $\mathcal{O}_{C,A}$ is injective, i.e., if (C,A) satisfies the so-called observability condition

$$\bigcap_{k=0}^{\infty} \operatorname{Ker} CA^k = \{0\},\tag{I.6}$$

we say that the output pair (C, A) is *observable*. In case $\mathcal{O}_{C,A}$ is bounded as an operator from \mathcal{X} into the standard vector-valued Hardy space of the unit disk

$$H_{\mathcal{Y}}^2 = \left\{ f(\lambda) = \sum_{k=0}^{\infty} f_k \lambda^k \colon \sum_{k=0}^{\infty} \|f_k\|_{\mathcal{Y}}^2 < \infty \right\},\,$$

we say that the pair (C, A) is *output-stable*.

The case where the system matrix $\mathbf U$ is unitary is of special interest. In system-theoretic terms this has the interpretation that the system $\Sigma(\mathbf U)$ is conservative in the sense that the energy stored by the state at time $k \ (\|x(k+1)\|^2 - \|x(k)\|^2)$ is exactly compensated by the net energy put into the system from the outside environment $(\|u(k)\|^2 - \|y(k)\|^2)$, with a similar property for the adjoint system. From the operatorand function-theoretic points of view this case is interesting since the observability operator turns out to be contractive from $\mathcal X$ into $H^2_{\mathcal Y}$, while the transfer function $\Theta_{\mathbf U}$ turns out to be in the $Schur\ class\ \mathcal S(\mathcal U,\mathcal Y)$ (i.e., analytic on the open unit disk $\mathbb D$ and such that $\Theta(z)$ is a contraction in $\mathcal L(\mathcal U,\mathcal Y)$ for every $z\in \mathbb D$). A remarkable fact is that any function Θ in $\mathcal S(\mathcal U,\mathcal Y)$ can be realized as the transfer function of a conservative linear system of the form (I.1).

If in addition the state space operator A is strongly stable in the sense that $A^nx \to 0$ as $n \to \infty$ for each $x \in \mathcal{X}$, then the observability operator is a partial isometry (in fact an isometry if (C,A) is observable) and the transfer function is inner (the boundary values exist almost everywhere on the unit circle \mathbb{T} and are isometric operators from \mathcal{U} to \mathcal{Y}). In fact any inner function arises in this way as the transfer function of a conservative system $\Sigma_{\mathbb{U}}$ with strongly stable state operator A, as can be seen as a consequence of the Sz.-Nagy-Foias model theory (see [11]).

If we start with a shift-invariant subspace $\mathcal{M}\subset H^2_{\mathcal{Y}}$ and we wish to construct an inner function Θ so that $\mathcal{M}=\Theta$ · $H^2_{\mathcal{U}}$, it suffices to find an appropriate unitary \mathbf{U} so that $\Theta=\Theta_{\mathbf{U}}$ works. As a first step, take $\mathcal{X}=\mathcal{M}^\perp$, $A=S^*|_{\mathcal{M}^\perp}$,

 $C = \mathbf{ev_0}|_{\mathcal{M}^\perp}$ where $\mathbf{ev_0}$ is the evaluation-at-zero map $f \mapsto f(0)$. Then A is strongly stable and one can see that $\begin{bmatrix} A \\ C \end{bmatrix}$ is isometric with the additional property that $\mathcal{O}_{C,A} \colon \mathcal{X} \to H^2_{\mathcal{Y}}$ is isometric with range exactly equal to \mathcal{M}^\perp . If one then finds an injective solution $\begin{bmatrix} B \\ D \end{bmatrix} \colon \mathcal{U} \to \begin{bmatrix} \mathcal{M}^\perp \\ \mathcal{Y} \end{bmatrix}$ of the Cholesky factorization problem

$$\begin{bmatrix} B \\ D \end{bmatrix} \begin{bmatrix} B^* & D^* \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix} - \begin{bmatrix} A \\ C \end{bmatrix} \begin{bmatrix} A^* & C^* \end{bmatrix}$$

and sets $\mathbf{U} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, then $\Theta_{\mathbf{U}}$ is inner and a reproducing kernel computation shows that we recover \mathcal{M} as $\mathcal{M} = \Theta \cdot H_{\mathcal{U}}^2$ and we have a constructive systems-theory proof of the Beurling-Lax theorem (see [5, Theorem 5.2] for this approach carried out in a multivariable context).

If instead we start with an inner function Θ , one can take the invariant subspace \mathcal{M} to be $\mathcal{M} = \Theta \cdot H^2_{\mathcal{U}}$ and repeat the construction given in the previous paragraph. However the Cholesky factorization step can be done much more explicitly, the result being

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} S^*|_{\mathcal{M}^{\perp}} & S^*M_{\Theta}|_{\mathcal{U}} \\ \mathbf{ev}_0|_{\mathcal{M}^{\perp}} & \Theta(0) \end{bmatrix} : \begin{bmatrix} \mathcal{M}^{\perp} \\ \mathcal{U} \end{bmatrix} \to \begin{bmatrix} \mathcal{M}^{\perp} \\ \mathcal{Y} \end{bmatrix}. \quad (I.7)$$

Then $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$ is unitary and we recover Θ as $\Theta = \Theta_{\mathbf{U}}$. This has been called the *functional-model colligation matrix* for the inner function Θ in the literature—see [1] for a general setting.

Versions of these constructions extend to more general settings. We mention (1) the setting of weighted Bergman spaces (see [8], [9] for background and [12], [13], [14], [2], [3] for the systems-theory approach in this setting), and more generally (2) multivariable weighted Bergman spaces in the free noncommutative setting (see [15], [4]). We focus here on extensions to setting (2).

II. Free noncommutative (NC) system theory

We let \mathbb{Z}_d^+ denote the unital free semigroup (i.e., monoid) generated by the set of d letters $\{1,\ldots,d\}$. Elements of \mathbb{Z}_d^+ are words of the form $i_N\cdots i_1$ where $i_\ell\in\{1,\ldots,d\}$ for each $\ell\in\{1,\ldots,N\}$ with multiplication given by concatenation. The unit element of \mathbb{Z}_d^+ is the empty word denoted by \emptyset . For $\alpha=i_Ni_{N-1}\cdots i_1\in\mathcal{F}_d$, we let $|\alpha|$ denote the number N of letters in α and we let $\alpha^\top:=i_1\cdots i_{N-1}i_N$ denote the transpose of α . We propose to consider the following multidimensional system with evolution along the free semigroup \mathbb{Z}_d^+ :

$$\begin{cases}
\mathbf{x}(1\alpha) &= \frac{n+|\alpha|}{|\alpha|+1} A_1 \mathbf{x}(\alpha) + \binom{n+|\alpha|}{|\alpha|+1} B_{1,\alpha} \mathbf{u}(\alpha) \\
\vdots &\vdots &\vdots \\
\mathbf{x}(d\alpha) &= \frac{n+|\alpha|}{|\alpha|+1} A_d \mathbf{x}(\alpha) + \binom{n+|\alpha|}{|\alpha|+1} B_{d,\alpha} \mathbf{u}(\alpha) \\
\mathbf{y}(\alpha) &= C \mathbf{x}(\alpha) + \binom{n+|\alpha|-1}{|\alpha|} D_{\alpha} \mathbf{u}(\alpha)
\end{cases}$$

with the *d*-tuple of state space operators $\mathbf{A} = (A_1, \dots, A_d)$ in $\mathcal{L}(\mathcal{X})^d$ and the state-output operator $C \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Here we have a family of system matrices and a family of input

spaces indexed by $\alpha \in \mathbb{Z}_d^+$:

$$\mathbf{U}_{\alpha} = \begin{bmatrix} A & \widehat{B}_{\alpha} \\ C & D_{\alpha} \end{bmatrix} : \begin{bmatrix} \mathcal{X} \\ \mathcal{U}_{\alpha} \end{bmatrix} \to \begin{bmatrix} \mathcal{X}^{d} \\ \mathcal{Y} \end{bmatrix} \text{ where}$$

$$A = \begin{bmatrix} A_{1} \\ \vdots \\ A_{d} \end{bmatrix}, \ \widehat{B}_{\alpha} = \begin{bmatrix} B_{1,\alpha} \\ \vdots \\ B_{d,\alpha} \end{bmatrix}. \tag{II.2}$$

We next wish to introduce the free nc Z-transform. Toward this end, we let $z=(z_1,\ldots,z_d)$ to be a collection of d freely nc indeterminates and let $\mathcal{Y}\langle\langle z\rangle\rangle$ denote the set of nc formal power series $\sum_{\alpha\in\mathbb{Z}^+_+}f_{\alpha}z^{\alpha}$ where $f_{\alpha}\in\mathcal{Y}$ and where

$$z^{\alpha} = z_{i_N} z_{i_{N-1}} \cdots z_{i_1}$$
 if $\alpha = i_N i_{N-1} \cdots i_1$. (II.3)

We extend the nc functional calculus (II.3) from nc indeterminates $z=(z_1,\ldots,z_d)$ to a d-tuple of operators $\mathbf{A}=(A_1,\ldots,A_d)$ by letting

$$\mathbf{A}^{\alpha} := A_{i_N} A_{i_{N-1}} \cdots A_{i_1} \quad \text{if} \quad \alpha = i_N i_{N-1} \cdots i_1 \in \mathbb{Z}_d^+,$$
(II.4)

where the multiplication is now operator composition. Letting

$$Z(z) = \begin{bmatrix} z_1 & \cdots & z_d \end{bmatrix} \otimes I_{\mathcal{X}}, \quad A = \begin{bmatrix} A_1 \\ \vdots \\ A_d \end{bmatrix}, \quad \text{(II.5)}$$

we next observe that

$$(Z(z)A)^{j} = \left(\sum_{i=1}^{d} z_{i} A_{i}\right)^{j} = \sum_{\alpha \in \mathbb{Z}_{d}^{+}: |\alpha| = j} \mathbf{A}^{\alpha} z^{\alpha} \quad \text{(II.6)}$$

for $j \ge 0$. We introduce the formal nc resolvent operator

$$R(Z(z)A) := (I - Z(z)A)^{-1} = \sum_{j=0}^{\infty} (Z(z)A)^j = \sum_{\alpha \in \mathbb{Z}^+} \mathbf{A}^{\alpha} z^{\alpha}$$

along with its n-th power

$$R_n(Z(z)A) := (I - Z(z)A)^{-n} = \sum_{\alpha \in \mathbb{Z}^+} \mu_{n,|\alpha|}^{-1} \mathbf{A}^{\alpha} z^{\alpha}$$

and shifted counterpart

$$R_{n,k}(Z(z)A) := \sum_{\alpha \in \mathbb{Z}_d^+} \mu_{n,|\alpha|+|\alpha|}^{-1} \mathbf{A}^{\alpha} z^{\alpha},$$

where we have set $\mu_{n,k} = \frac{k (n-1)!}{(n+k-1)!}$. We define the formal nc Z-transform to be the map from functions on \mathbb{Z}_+ to nc formal power series given by

$$\{f_{\alpha}\}_{\alpha \in \mathbb{Z}_d^+} \mapsto \widehat{f}(z) = \sum_{\alpha \in \mathbb{Z}_d^+} f_{\alpha} z^{\alpha}.$$
 (II.7)

Application of the nc Z-transform to the system equations (II.1) eventually leads to

$$\widehat{y}(z) = C(I - Z(z)A)^{-n}x$$

$$+ \sum_{\alpha \in \mathbb{Z}_d^+} \left(CR_{n,|\alpha|+1}(Z(z)A)Z(z)\widehat{B}_{\alpha} + \mu_{n,|\alpha|}^{-1}D_{\alpha} \right) z^{\alpha}u(\alpha)$$

$$= \mathcal{O}_{n,C,\mathbf{A}}x + \sum_{\alpha \in \mathbb{Z}_d^+} \Theta_{n,\alpha}(z)z^{\alpha}\mathbf{u}(\alpha), \qquad (II.8)$$

where $x = \mathbf{x}(\emptyset)$. The first term on the right presents the *n*-observability operator

$$\mathcal{O}_{n,C,\mathbf{A}}x = C(I - Z(z)A)^{-n}x = \sum_{\alpha \in \mathbb{Z}_d^+} \mu_{n,|\alpha|}^{-1}(C\mathbf{A}^{\alpha}x)z^{\alpha}$$
(II.9)

associated with the state space d-tuple A and the state-output operator C and where

$$\Theta_{n,\alpha}(z) = \mu_{n,|\alpha|}^{-1} D_{\alpha} + CR_{n,|\alpha|+1}(Z(z)A)Z(z)\widehat{B}_{\alpha} \quad (\text{II}.10)$$

is the family of transfer functions indexed by $\alpha \in \mathbb{Z}_d^+$, in complete analogy with (I.3) with one exception: $\Theta_{n,\alpha}$ depends on α and hence we cannot set $\sum_{\alpha \in \mathbb{Z}_d^+} \Theta_{n,\alpha} z^{\alpha} \mathbf{u}(\alpha)$ equal to $\Theta_n(z) \cdot \widehat{\mathbf{u}}(z)$. Note that the dependence of $\Theta_{n,\alpha}$ on α is only through $|\alpha|$ as long as B_{α} depends on α only through $|\alpha|$.

III. FREE NONCOMMUTATIVE (NC) WEIGHTED BERGMAN

Given a positive integer n, the free semigroup \mathbb{Z}_d^+ , and the coefficient Hilbert space \mathcal{Y} , we let $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+)$ be the nc weighted Bergman space

$$\left\{ \sum_{\alpha \in \mathbb{Z}_d^+} f_{\alpha} z^{\alpha} \in \mathcal{Y}\langle\langle z \rangle\rangle \colon \sum_{\alpha \in \mathbb{Z}_d^+} \mu_{n,|\alpha|} \cdot \|f_{\alpha}\|_{\mathcal{Y}}^2 < \infty \right\}.$$
(III.1)

One can view $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+)$ as a formal nc reproducing kernel Hilbert space in the sense of [7] with formal kernel

$$k_{\mathrm{nc},n}(z,w)\otimes I_{\mathcal{Y}} = \sum_{\alpha\in\mathbb{Z}^{+}} \mu_{n,|\alpha|}^{-1} I_{\mathcal{Y}} z^{\alpha} \overline{w}^{\alpha^{\top}}.$$

Alternatively, after substituting d-tuples of square matrices (Z_1,\ldots,Z_d) of arbitrary square size for the indeterminates (z_1,\ldots,z_d) and considering the space $\mathcal{A}_{n,\mathcal{Y}}$ as a space of nc functions in the sense of [10], one can consider $\mathcal{A}_{n,\mathcal{V}}(\mathbb{Z}_d^+)$ as a nc reproducing kernel Hilbert space in the sense of [6], but here it is convenient to restrict to the less general former point of view. The Hilbert space $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+)$ is equipped with a d-tuple of shift operators $\mathbf{S} = (S_1, \dots, S_d)$ given by multiplication on the right by the j-th coordinate:

$$S_i : f(z) \mapsto f(z) \cdot z_i$$
.

A subspace \mathcal{M} of $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+)$ is said to be shift-invariant if $S_j \cdot \mathcal{M} \subset \mathcal{M}$ for $j = 1, \ldots, d$. We seek to describe such shift-invariant subspaces via a Beurling-Lax theorem for this

We define a formal power series $\Theta(z) = \sum_{\alpha \in \mathbb{Z}_+^+} \Theta_{\alpha} z^{\alpha}$ with coefficients in $\mathcal{L}(\mathcal{U}, \mathcal{Y})$ to be a nc Bergman inner function (actually here formal power series rather than function) if

- (i) $M_{\Theta} : u \mapsto \Theta(z) \cdot u$ is isometric from the coefficient space \mathcal{U} into $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+)$, and
- (ii) $\Theta(z) \cdot u \perp \Theta(z)z^{\alpha} \cdot v$ in $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+)$ for all $u,v \in \mathcal{U}$ and nonempty α in \mathbb{Z}_d^+ .

We say that a collection $\{\Theta_{\beta} \colon \beta \in \mathbb{Z}_d^+\}$ where $\Theta_{\beta} \in$ $\mathcal{L}(\mathcal{U}_{\beta},\mathcal{Y})$ for a family of input spaces \mathcal{U}_{β} $(\beta \in \mathbb{Z}_{d}^{+})$ is a Bergman-inner family if

- (i) the operator $u_{\beta} \mapsto \Theta_{\beta} u_{\beta} z^{\beta}$ is isometric from \mathcal{U}_{β} into
- $\begin{array}{ccc} \mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+), \\ \text{(ii)} & \Theta_{\beta}z^{\beta}u_{\beta}\perp\Theta_{\gamma}(z)z^{\gamma}u_{\gamma} \text{ in } \mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+) \text{ for all } u_{\beta}\in\mathcal{U}_{\beta}, \end{array}$ $u_{\gamma} \in \mathcal{U}_{\gamma}$ for all β and γ in \mathbb{Z}_d^+ with $\beta \neq \gamma$, and
- (iii) for each $\alpha \in \mathbb{Z}_d^+$,

$$\mathbf{S}^{\alpha^{\top}} \left(\bigoplus_{\beta \in \mathbb{Z}_d^+} \Theta_{\beta} z^{\beta} \mathcal{U}_{\beta} \right) = \bigoplus_{\beta \in \mathbb{Z}_d^+} \Theta_{\beta \alpha} z^{\beta \alpha} \mathcal{U}_{\beta \alpha}.$$

It turns out that any nc Bergman inner function Θ can be embedded as Θ_{\emptyset} into a Bergman inner family $\{\Theta_{\beta}\}_{{\beta}\in\mathbb{Z}_{+}^{+}}$, and, in case d=1, whenever $\Theta(z)z^{\gamma}$ is a nc Bergman inner function, then Θ can be embedded as $\Theta = \Theta_{\gamma}$ inside a Bergman inner family $\{\Theta_{\beta} \colon \beta \in \mathbb{Z}_d^+\}$. It is this notion of nc Bergman-inner family which leads to a compelling extension of the Beurling-Lax theorem to the nc weighted Bergman space setting, as demonstrated by the following result.

Theorem 3.1: Let \mathcal{M} be a closed $S_{n,R}$ -invariant subspace of $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+)$. Define formal power series $\Theta_\beta \in \mathcal{L}(\mathcal{U}_\beta,\mathcal{Y})$ so that the map $u_{\beta} \mapsto \Theta_{\beta} u_{\beta} z^{\beta}$ is an isometry from \mathcal{U}_{β} onto the space $\mathcal{M}_{\beta} = \mathbf{S}^{\beta^{\top}} \mathcal{M} \ominus \left(\bigoplus_{j=1}^{d} \mathbf{S}^{\beta^{\top} j} \mathcal{M} \right)$. Then $\Theta = \{\Theta_{\beta}\}_{\beta \in \mathbb{Z}_{+}^{+}}$ is a nc inner family giving rise to a Beurling-Lax representation for the shift-invariant subspace $\mathcal M$ in the following sense:

$$\mathcal{M} = M_{\Theta} H^2_{\{\mathcal{U}_{\beta}\}}(\mathbb{Z}_d^+) := \bigoplus_{\beta \in \mathbb{Z}_d^+} \Theta_{\beta}(z) z^{\beta} \cdot \mathcal{U}_{\beta}.$$
 (III.2)

If $\Theta' = \{\Theta'_{\beta}\}_{{\beta} \in \mathbb{Z}_d^+}$ is another such nc inner family, then for each $\beta \in \mathbb{Z}_d^+$ there is a unitary operator $U_\beta \colon \mathcal{U}_\beta \to \mathcal{U}'_\beta$ so that $\Theta'_{\beta}(z)U_{\beta} = \Theta_{\beta}(z).$

Conversely, if $\{\Theta_{\alpha}\}_{{\alpha}\in\mathbb{Z}_+^+}$ is a nc Bergman-inner family and we set $\mathcal{M}_{\alpha} = \Theta(z)z^{\alpha} \cdot \mathcal{U}_{\alpha}$, then $\mathcal{M} := \bigoplus \mathcal{M}_{\alpha}$ is a shiftinvariant subspace for **S** in $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}^d_+)$.

IV. NONCOMMUTATIVE TRANSFER-FUNCTION REALIZATION OF NC BERGMAN-INNER FAMILIES

Theorem 3.1 shows how no Bergman-inner families $\{\Theta_{\alpha}\}_{\alpha\in\mathbb{Z}_{+}^{+}}$ can be computed from a shift-invariant subspace \mathcal{M} of the nc weighted Bergman space $\mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+)$ via a nc analogue of the Halmos wandering-subspace construction. We now show how such no Bergman-inner families can be constructed in transfer-function realization form for timevarying nc systems of the form (II.1) with system matrices $\mathbf{U}_{\alpha} = \left| \begin{smallmatrix} A & \widehat{B}_{\alpha} \\ C & D_{\alpha} \end{smallmatrix} \right|$ as in (II.2) satisfying some additional metric constraints as follows.

Given $A, \widehat{B}_{\alpha}, C, D_{\alpha}$ as in (II.2), introduce shifted weighted observability gramians $\mathfrak{G}_{n,k,C,\mathbf{A}}$ (for fixed n equal to the index for the weight sequence $\{\mu_{n,j}\}_{j\geq 0}, k\in\mathbb{N}, C$ and $\mathbf{A} = (A_1, \dots, A_d)$ as in (II.2)) by

$$\mathfrak{G}_{n,k,C,\mathbf{A}} = \sum_{\alpha \in \mathbb{Z}_d^+} \mu_{n,|\alpha|+k}^{-1} \mathbf{A}^{*\alpha^\top} C^* C \mathbf{A}^{\alpha}.$$

We assume that the series defining $\mathfrak{G}_{n,k,C,\mathbf{A}}$ is strongly convergent and that $\mathfrak{G}_{n,k,C,\mathbf{A}}$ has a bounded inverse for $k=1,2,\ldots$. The additional metric constraints which we shall impose on \mathbf{U}_{α} are

$$\begin{bmatrix} A^* & C^* \\ \widehat{B}_{\beta}^* & D_{\beta}^* \end{bmatrix} \begin{bmatrix} \mathfrak{G}_{n,|\beta|+1,C,\mathbf{A}} \otimes I_d & 0 \\ 0 & \mu_{n,|\beta|}^{-1} \cdot I_{\mathcal{Y}} \end{bmatrix} \begin{bmatrix} A & \widehat{B}_{\beta} \\ C & D_{\beta} \end{bmatrix}$$

$$= \begin{bmatrix} \mathfrak{G}_{n,|\beta|,C,\mathbf{A}} & 0 \\ 0 & I_{\mathcal{U}_{\beta}} \end{bmatrix}, \qquad (IV.1)$$

$$\begin{bmatrix} A & \widehat{B}_{\beta} \\ C & D_{\beta} \end{bmatrix} \begin{bmatrix} \mathfrak{G}_{n,|\beta|,C,\mathbf{A}}^{-1} & 0 \\ 0 & I_{\mathcal{U}_{\beta}} \end{bmatrix} \begin{bmatrix} A^* & C^* \\ \widehat{B}_{\beta}^* & D_{\beta}^* \end{bmatrix}$$

$$= \begin{bmatrix} \mathfrak{G}_{n,|\beta|+1,C,\mathbf{A}}^{-1} \otimes I_d & 0 \\ 0 & \mu_{n,|\beta|}I_{\mathcal{Y}} \end{bmatrix}. \qquad (IV.2)$$

We then have the following result, the nc multivariable weighted-Bergman analogue of the result in Section I that the transfer function $\Theta_{\mathbf{U}}(\lambda)$ is inner whenever \mathbf{U} is unitary.

Theorem 4.1: Suppose that the collection of system matrices $\{\mathbf{U}\}_{\alpha\in\mathbb{Z}_d^+}$ (II.2) gives rise to bounded and boundedly invertible shifted weighted observability gramian operators $\mathfrak{G}_{n,k,C,\mathbf{A}}$ for which the metric constraints (IV.1)-(IV.2) are satisfied. Define $\Theta_{n,\alpha}$ by (II.10). Then $\{\Theta\}_{\alpha\in\mathbb{Z}_d^+}$ is a nc Bergman-inner family.

A canonical way to achieve all these objectives is to start with $\mathbf{A}=(A_1,\ldots,A_d)$ equal to a n-hypercontractive d-tuple of operators on \mathcal{X} . To define this notion, we first define an operator $B_{\mathbf{A}}\in\mathcal{L}(\mathcal{L}(\mathcal{X}))$ by $B_{\mathbf{A}}(X)=\sum_{j=1}^d A_j^*XA_j$ and then set $\Gamma_{k,\mathbf{A}}=(I-B_{\mathbf{A}})^k$ for $k=1,2,\ldots$, We say that the operator d-tuple $\mathbf{A}=(A_1,\ldots,A_d)$ is n-hypercontractive if $\Gamma_{k,\mathbf{A}}(I)\succeq 0$ for $1\leq k\leq n$ (or equivalently as it turns out, for k=1 and k=n). We say that \mathbf{A} is strongly stable if $\lim_{N\to\infty}\sum_{\alpha\in\mathbb{Z}_d^+\colon |\alpha|=N}\|\mathbf{A}^\alpha x\|^2=0$ for each $x\in\mathcal{X}$. Then we have the following algorithm:

- Choose A to be any strongly stable n-hypercontractive operator d-tuple,.
- 2) Choose $C \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ so that $C^*C = \Gamma_{n,\mathbf{A}}(I)$. Then the shifted weighted observability gramians $\mathfrak{G}_{n,k,C,\mathbf{A}}$ $(k=1,2,\ldots)$ turn out all to be well defined and invertible.
- invertible. 3) Choose $\begin{bmatrix} \widehat{B}_{\beta} \\ D_{\beta} \end{bmatrix}$ to be an injective solution of the Cholesky factorization problem

$$\begin{split} & \begin{bmatrix} \widehat{B}_{\beta} \\ D_{\beta} \end{bmatrix} \mathfrak{G}_{n,|\beta|,C,\mathbf{A}}^{-1} \left[\ \widehat{B}_{\beta}^{*} \ D_{\beta}^{*} \ \right] = \\ & \begin{bmatrix} \mathfrak{G}_{n,|\beta|+1,C,\mathbf{A}}^{-1} \otimes I_{d} & 0 \\ 0 & \mu_{n,|\beta|} I \end{bmatrix} - \begin{bmatrix} A \\ C \end{bmatrix} \mathfrak{G}_{n,|\beta|,C,\mathbf{A}}^{-1} \left[A^{*} \ C^{*} \ \right]. \end{split}$$

Then the family of system matrices $\mathbf{U}_{\beta} = \begin{bmatrix} A & \widehat{B}_{\beta} \\ C & D_{\beta} \end{bmatrix}$ meets all the hypotheses of Theorem 4.1, and hence $\{\Theta_{\beta} = D_{\beta} + CR_{n,|\beta|+1}(Z(z)A)Z(z)\widehat{B}_{\beta}\}_{\beta \in \mathbb{Z}_{d}^{+}}$ is a nc Bergmaninner family.

If we start with a shift-invariant subspace $\mathcal{M} \subset \mathcal{A}_{n,\mathcal{Y}}(\mathbb{Z}_d^+)$ and seek a nc Bergman-inner family $\{\Theta_\beta\}_{\beta\in\mathbb{Z}_d^+}$ giving the nc Beurling-Lax representation (III.2), we need only modify Steps 1 and 2 in the above algorithm: (1') $A_j = S_j^*|_{\mathcal{M}^\perp = :\mathcal{X}}$ and (2') $C = \mathbf{ev}_\emptyset \colon f(z) = \sum_{\alpha\in\mathbb{Z}_d^+} f_\alpha z^\alpha \mapsto f_\alpha$ for $f \in \mathcal{M}^\perp$. Continue with Steps (3) and (4) of the algorithm to

arrive at the nc Bergman-inner family $\{\Theta_{\mathbf{U}_{\beta}}\}$ giving the nc Beurling-Lax representation (III.2) for the subspace \mathcal{M} .

If we start with a nc Bergman-inner family $\{\Theta_{\beta}\}$, we can perform Steps (1') and (2') with $\mathcal{M} = \bigoplus_{\alpha \in \mathbb{Z}_d^+} \Theta_{\alpha} \mathcal{U}_{\alpha}$. But then Step 3 can be done more explicitly: simply take \mathbf{U}_{β} equal to

$$\begin{bmatrix} S^*|_{\mathcal{M}^{\perp}} & S^* \mathbf{S}_{n,R}^{*\beta} \mathbf{S}^{\beta^{\top}} M_{\Theta_{\beta}} | u_{\beta} \\ E|_{\mathcal{M}^{\perp}} & \mu_{n,|\beta|} [\Theta_{\beta}]_{\emptyset} \end{bmatrix} : \begin{bmatrix} \mathcal{M}^{\perp} \\ \mathcal{U}_{\beta} \end{bmatrix} \to \begin{bmatrix} (\mathcal{M}^{\perp})^d \\ \mathcal{Y} \end{bmatrix} \quad \text{(IV.3)}$$

where here $S^* = \begin{bmatrix} S_1^* \\ \vdots \\ S_2^* \end{bmatrix}$. We have thus arrived at a

compelling nc weighted Bergman-space analogues of the realization formulas presented for the single-variable case at the end of Section I. Complete details will appear in [4].

REFERENCES

- [1] J.A. Ball and V. Bolotnikov, "Canonical transfer function realization for Schur-Agler class functions on domains with matrix polynomial defining function in Cⁿ, Oper. Th. Adv. Appl vol. 220, Birkhäuser, pp. 23-55, 2012.
- [2] J.A. Ball and V. Bolotnikov, "Weighted Bergman spaces: shift-invariant subspaces and input/state/output linear systems," Integral Equations Operator Theory, vol. 76, no. 1, pp. 301–356, 2013.
- [3] J.A. Ball and V. Bolotnikov, "Weighted Hardy spaces: shift invariant and coinvariant subspaces, linear systems and operator model theory", Acta Sci. Math. (Szeged), vol. 79, pp. 623–686, 2013
- [4] J.A. Ball and V. Bolotnikov, "Multivariable shift-invariant subspaces and observability operators: the weighted Bergman-Fock space setting," in preparation.
- [5] J.A. Ball, V. Bolotnikov, and Q. Fang, "Schur-class multipliers on the Arveson space: De Branges-Rovnyak reproducing kernel spaces and commutative transfer-function realizations", J. Math. Anal. Appl. vol. 341, pp. 519–539, 2008.
- [6] J.A. Ball, G. Marx, and V. Vinnikov, "Noncommutative reproducing kernel Hilbert spaces", J. Functional Analysis, vol. 271, no. 7, pp. 1844-1920, 2016.
- [7] J.A. Ball and V. Vinnikov, "Formal reproducing kernel Hilbert spaces: the commutative and noncommutative settings", in Reproducing Kernel Spaces and Applications, pp. 77-134, Oper. Th. Appl. vol. 143, Birkhäuser, Basel, 2003.
- [8] P. Duren and A. Schuster, Bergman Spaces, Mathematical Surveys and Monographs, vol. 100, American Mathematical Society, Providence, RI. 2004.
- [9] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Graduate Texts in Mathematics, vol. 199, Springer-Verlag, New York, 2000.
- [10] D. Kaliuzhnyi-Verbovetskyi and V. Vinnikov, Foundations of Free Noncommutative Function Theory, Mathematical Surveys and Monographs Vol. 199, Amer. Math. Soc., Providence, 2014.
- [11] B. Sz.-Nagy, C. foias, H. Bercovici, and L. Kerchy, Harmonic Analysis of Operators on Hilbert Space, Second Edition, Revised and enlarged edition, Springer, New York, 2010.
- [12] A. Olofsson, A characteristic operator function for the class of nhypercontractions, J. Funct. Anal. 236 (2006), 517–545.
- [13] A. Olofsson, "An operator-valued Berezin transform and the class of n-hypercontractions", Integral Equations Operator Theory vol. 58, no. 4, pp. 503–549, 2007.
- [14] A. Olofsson, "Operator-valued Bergman inner functions as transfer functions", St. Petersburg Math.J. vol. 19, no. 4, pp. 603-623, 2008.
- [15] G. Popescu, "Multi-analytic operators and some factorization theorems", Indiana U. Math. J. vol. 38, no. 3, pp. 693–710, 1989.