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Abstract— In this note, we are concerned with the stabilizati-
on of linear port-Hamiltonian systems on an interval (a, b) (for
instance, vibrating strings or beams) in the presence of external
disturbances. In order to achieve stabilization we couple the
system to a nonlinear dynamic boundary controller whose
output is allowed to be corrupted by an external disturbance
before it is fed back into the system. We first establish the well-
posedness of the resulting closed-loop system and then present
two input-to-state stability results for the closed-loop system
(with input being the external disturbance): for a special class of
nonlinear controllers, we obtain uniform input-to-state stability
and for a more general class of nonlinear controllers, we obtain
weak input-to-stability. Also, in both cases we get convergence
of all solutions to zero.

Index Terms— Input-to-state stability, infinite-dimensional
systems, port-Hamiltonian systems, nonlinear boundary con-
trol, actuator disturbances.

I. INTRODUCTION

In this note, we consider a general linear port-Hamiltonian
system S on a 1-dimensional spatial domain (a, b). Such
a system can be given, for example, by a vibrating string
or a beam. What we are interested in is the stabilization
of such systems in the presence of external disturbances
and, for that purpose, we use nonlinear dynamic boundary
controllers Sc, that is, dynamic controllers that act only via
the boundary points a, b of the spatial domain (a, b) on which
the system S is defined. Since realistic controllers often
exhibit nonlinear behavior (due to nonlinear potential energy
or damping terms, for instance), we allow our controller
to be nonlinear. Since, moreover, realistic controllers are
typically affected by disturbances, we also allow external
disturbances to corrupt the output of our controller before
it is fed back into the system (actuator disturbances). We
couple the controller to our system by standard feedback
interconnection, that is,

y = uc and − yc + d = u,

where u, y and uc, yc are the input and output of S and Sc

respectively and d is the external disturbance. So, in pictures
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the resulting closed-loop system S̃ with disturbance input d
and output y looks as follows.
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+

−
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Fig. 1. Closed-loop system S̃

What we aim at in this note is the input-to-state stability of
the closed-loop system S̃. And in order to achieve this goal,
we will proceed as follows.

A. Structure of this note

Section II describes in detail the class of systems S to
be stabilized and the class of controllers Sc used for that
purpose. In Section III we present our solvability results
for the closed-loop system S̃, namely solvability in the
classical sense for classical (sufficiently regular) initial states
and disturbance inputs (Section III-A) and solvability in
the generalized sense for general initial states and locally
square integrable disturbance inputs (Section III-B). In fact,
we have well-posedness of the closed-loop system, that is,
the generalized solutions and generalized outputs depend
continuously on the initial states and disturbance inputs. In
Section IV we present our input-to-state stability results for
the closed-loop system S̃ w.r.t. square-integrable disturbance
inputs. We establish uniform input-to-state stability for a
special class of nonlinear dynamic boundary controllers
(Section IV-A) and weak input-to-state stability for a more
general class of nonlinear dynamic boundary controllers
(Section IV-B). Additionally, we obtain convergence of all
generalized solutions to zero.

B. Some remarks on related works

Similar settings have been considered in [10], [7], [15]
[11], [1], but in these works no disturbances are allowed
and, accordingly, the question of input-to-state stability does
not arise there. In [13], disturbances are allowed, but in that
paper they corrupt the input of the controller instead of its
output (sensor disturbances). We do not strive for the utmost
generality in this note, but rather concentrate on the simplest
cases and on rough sketches of proof – for more general
results, proofs, and applications we refer to the upcoming
paper [12].
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C. Some notation used throughout this note

In the entire note, R+
0 := [0,∞) denotes the non-negative

reals and | · | denotes the standard norm on Rk for every
k ∈ N. As usual, K, K∞, L denote the following classes of
comparison functions:

K := {γ ∈ C(R+
0 ,R

+
0 ) : γ strictly increasing with
γ(0) = 0}

K∞ := {γ ∈ K : γ unbounded}
L := {γ ∈ C(R+

0 ,R
+
0 ) : γ strictly decreasing with

lim
r→∞

γ(r) = 0}.

Also, C2
c (R+

0 ,Rk) denotes the space of C2(R+
0 ,Rk)-

functions d with compact support in R+
0 and for d ∈

L2(R+
0 ,Rk) we will use the following short-hand notations:

‖d‖2 := ‖d‖L2(R+
0 ,Rk) , ‖d‖[0,t],2 :=

∥∥d|[0,t]∥∥L2([0,t],Rk)
.

And finally, for a semigroup generator A and bounded
operators B,C between appropriate spaces, the symbol
S(A,B,C) will stand for the state-linear system [2]

x′ = Ax+Bu with y = Cx.

II. SETTING: DESCRIPTION OF THE SYSTEM
AND THE CONTROLLER

A. Setting: the system to be stabilized

As has been pointed out above, the system S to be
stabilized is a linear first-order port-Hamiltonian system [5],
[3] on a bounded interval (a, b) with control and observation
at the boundary. Such a system evolves according to the
following differential equation and boundary conditions:

x′ = Ax = P1∂ζ(Hx) + P0Hx (1)
u(t) = Bx(t) and y(t) = Cx(t) (2)

and the energy of such a system in the state x is given by

E(x) =
1

2

∫ b

a

x(ζ)>(Hx)(ζ) dζ. (3)

In these equations, ζ 7→ H(ζ) ∈ Rm×m is a measurable
matrix-valued function (the energy density) such that for
almost all ζ ∈ (a, b)

0 < mI ≤ H(ζ) ≤ mI <∞, (4)

and P0, P1 ∈ Rm×m are matrices such that P1 = P>1 is
symmetric and invertible and P0 = −P>0 is skew-symmetric.
As the state space of S one chooses X := L2((a, b),Rm)
with norm ‖·‖X given by the system energy

1

2
‖x‖2X := E(x) =

1

2

∫ b

a

x(ζ)>(Hx)(ζ) dζ.

In view of (4) it is clear that the norm ‖·‖X is equivalent to
the standard norm of L2((a, b),Rm) and that it is induced

by a scalar product which we denote by 〈·, ··〉X . Also, the
domain of the linear differential operator A is

D(A) := {x ∈ X : Hx ∈W 1,2((a, b),Rm)

and WB,1

(
(Hx)(b)
(Hx)(a)

)
= 0}

where WB,1 ∈ R(m−k)×2m with k ∈ {1, . . . ,m}. Similarly,
the boundary control and boundary observation operators
B, C : D(A)→ Rk are linear and of the form

Bx := WB,2

(
(Hx)(b)
(Hx)(a)

)
and Cx := WC

(
(Hx)(b)
(Hx)(a)

)
where WB,2,WC ∈ Rk×2m are called the boundary control
and boundary observation matrix, respectively.

Assumption II.1. S is impedance-passive, that is,

〈x,Ax〉X ≤ (Bx)>Cx (x ∈ D(A)). (5)

It follows that A := A|D(A)∩kerB is a contraction semi-
group generator on X by [6] and that classical solutions of
S satisfy the following energy dissipation inequality:

E′x(t) = 〈x(t),Ax(t)〉X ≤ (Bx(t))>Cx(t) = u(t)>y(t).

B. Setting: the controller

As our controller Sc we choose a finite-dimensional
nonlinear system which evolves according to

v′ =

(
v′1
v′2

)
=

(
Kv2

−∇P(v1)−R(Kv2) +Bcuc

)
(6)

yc = B>c Kv2 + Scuc (7)

and whose energy in the state v = (v1, v2) from the
controller state space V := R2mc is given by

Ec(v) := P(v1) +
1

2
v>2 Kv2 (8)

(potential energy plus kinetic energy). In these equations,
K ∈ Rmc×mc , Bc ∈ Rmc×k, Sc ∈ Rk×k are such that

K > 0 and Sc > 0. (9)

Additionally, the potential energy P : Rmc → R+
0 is

differentiable such that ∇P is locally Lipschitz continuous
and P(0) = 0 and the damping function R : Rmc → Rmc

is locally Lipschitz continuous such that R(0) = 0. As the
norm on V = R2mc we choose | · |V defined by

|v|2V = |(v1, v2)|2V := |v1|2 + v>2 Kv2

which is obviously equivalent to the standard norm on R2mc

and is induced by a scalar product 〈·, ··〉V .

Assumption II.2. (i) P is positive definite and radially
unbounded, that is, P(v1) > 0 for all v1 ∈ Rmc \ {0}
and P(v1) −→∞ as |v1| → ∞

(ii) R is damping, that is, v>2 R(v2) ≥ 0 for all v2 ∈ Rmc .

It follows (i) that ψ
c
(|v|V ) ≤ Ec(v) ≤ ψc(|v|V ) for some

ψ
c
, ψc ∈ K∞ and (ii) that Sc is passive (even strictly input-

passive) w.r.t. Ec as storage function.
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C. Setting: the closed-loop system

Coupling S and Sc by standard feedback interconnection

y(t) = uc(t) and − yc(t) + d(t) = u(t),

we obtain the closed-loop system S̃ described by the follo-
wing evolution equation with boundary conditions:

x̃′ = Ãx̃+ f̃(x̃) (10)

d(t) = B̃x̃(t) and y(t) = C̃x̃(t). (11)

Its state space is the Hilbert space X̃ := X×V = X×R2mc

with norm ‖·‖ = ‖·‖X̃ defined by

‖x̃‖2 = ‖(x, v)‖2 := ‖x‖2X + |v|2V
and the energy of the closed-loop system in the state x̃ =
(x, v) ∈ X̃ is

Ẽ(x̃) := E(x) + Ec(v) =
1

2
‖x‖2X + P(v1) +

1

2
v>2 Kv2.

In the equations above, the linear and nonlinear operators Ã :
D(Ã) → X̃ and f̃ : X̃ → X̃ with D(Ã) := D(A)× R2mc

are given respectively by

Ãx̃ :=

 Ax
Kv2

−v1 +BcCx

 ,

f̃(x̃) :=

 0
0

v1 −∇P(v1)−R(Kv2)


and the linear boundary operators B̃, C̃ : D(Ã) → Rk are
given by

B̃x̃ := Bx+B>c Kv2 + ScCx, C̃x̃ := Cx.

We record here for later use that the energy Ẽ is equivalent
to the norm ‖·‖ of X̃ in the following sense: there exist
ψ,ψ ∈ K∞ such that for all x̃ ∈ X̃

ψ(‖x̃‖) ≤ Ẽ(x̃) ≤ ψ(‖x̃‖). (12)

III. SOLVABILITY OF THE CLOSED-LOOP
SYSTEM

We first have to settle the global solvability of the closed-
loop equations before we can turn to stability investigations.
In view of the structure of the right-hand side of (10) as
a sum of a linear and a nonlinear part, we want to apply
the standard theory [9] of semilinear evolution equations.
Yet, this theory is not applicable directly here because first
the linear part Ã of (10) is not a semigroup generator on
X̃ and because second in addition to the mere differential
equation (10) the boundary condition d(t) = B̃x̃(t) occurs.
We therefore make the following additional assumption.

Assumption III.1. W := (W>B ,W
>
C )> ∈ R(m+k)×2m has

full rank m+ k, where WB := (W>B,1,W
>
B,2)>.

It then easily follows that B̃ : D(Ã) → Rk is surjective
and hence has a linear right-inverse R̃ : Rk → D(Ã)

meaning that B̃R̃d = d for all d ∈ Rk. We can thus define
– following [4] – the new variable

ξ̃(t) = x̃(t)− R̃d(t)

and with this new variable the original closed-loop equations

x̃′ = Ãx̃+ f̃(x̃) with d(t) = B̃x̃(t) (13)

become equivalent – for continuously differentiable distur-
bance signals d – to the evolution equation

ξ̃′ = Ãξ̃ + f̃(ξ̃ + R̃d(t)) + ÃR̃d(t)− R̃d′(t) (14)

where Ã := Ã|D(Ã)∩ker B̃. What is important now is
that (14), by the following proposition, is a truly semilinear
evolution equation in the sense of [9] (with an explicitly
time-dependent nonlinearity).

Proposition III.2. With the above assumptions,
(i) Ã is a contraction semigroup generator on X̃ with

compact resolvent
(ii) f̃ is Lipschitz continuous on bounded subsets of X̃ and

f̃(0) = 0.

A. Solvability in the classical sense

With the above proposition at hand, we can now establish
solvability in the classical sense for classical initial states x̃0
and classical disturbances d. In the following, we abbreviate
the set of these classical data as

D :=
{

(x̃0, d) ∈ D(Ã)× C2
c (R+

0 ,R
k) : d(0) = B̃x̃0

}
.

Theorem III.3. With the above assumptions, we have that
(i) S̃ has a unique global classical solution and a conti-

nuous classical output function

x̃(·, x̃0, d) ∈ C1(R+
0 , X̃), y(·, x̃0, d) ∈ C(R+

0 , X̃)

for all (x̃0, d) ∈ D
(ii) there exist σ, γ ∈ K such that

‖x̃(t, x̃0, d)‖ ≤ σ(‖x̃0‖) + γ(‖d‖[0,t],2) (t ∈ R+
0 )

for all (x̃0, d) ∈ D.

B. Solvability in the generalized sense

We can now establish solvability in some generalized
sense also for general data (x̃0, d) ∈ X̃ ×L2

loc(R
+
0 ,Rk). We

do so by showing the following density and approximation
result.

Theorem III.4. With the above assumptions, we have for
every (x̃0, d) ∈ X̃ × L2

loc(R
+
0 ,Rk):

(i) there exists a sequence (x̃0n, dn) in D converging
to (x̃0, d) in the locally convex topology of X̃ ×
L2
loc(R

+
0 ,Rk)

(ii) for every such sequence (x̃0n, dn),(
x̃(·, x̃0n, dn)

)
and

(
y(·, x̃0n, dn)

)
are Cauchy sequences in the locally convex spaces
C(R+

0 , X̃) and L2
loc(R

+
0 ,Rk), and the respective limits
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are independent of the particular choice of the sequence
(x̃0n, dn).

Assertion (i) rests on a simple density argument. Asser-
tion (ii) ultimately rests on the following integral equation
for classical solutions of (13) which follows from (14) by
variation of constants:

x̃(t, x̃0, d) = eÃtx̃0 +

∫ t

0

eÃ(t−s)f̃(x̃(s, x̃0, d)) ds+ Φt(d)

for every (x̃0, d) ∈ D, where

Φt(d) := −eÃtR̃d(0) + R̃d(t)

+

∫ t

0

eÃ(t−s)(ÃR̃d(s)− R̃d′(s)
)

ds.

A central ingredient in the proof of assertion (ii) is the
following lemma which implies that the linearized boundary
control system

x̃′ = Ãx̃ with d(t) = B̃x̃(t) (15)

is input-admissible w.r.t. inputs d ∈ L2(R+
0 ,Rk).

Lemma III.5. Under the assumptions of the above theorem,
Φt : C2

c (R+
0 ,Rk) → X̃ for every t ∈ R+

0 has a unique
bounded extension Φt : L2(R+

0 ,Rk)→ X̃ and

sup
t∈[0,t0]

∥∥Φt
∥∥ ≤ ∥∥Φt0

∥∥ .
In view of the above theorem, we can define for (x̃0, d) ∈

X̃ × L2
loc(R

+
0 ,Rk) the functions

x̃(·, x̃0, d) := lim
n→∞

x̃(·, x̃0n, dn) ∈ C(R+
0 , X̃)

y(·, x̃0, d) := lim
n→∞

y(·, x̃0n, dn) ∈ L2
loc(R

+
0 ,R

k),

where (x̃0n, dn) is any sequence in D converging to (x̃0, d)
in the locally convex topology of X̃×L2

loc(R
+
0 ,Rk). We call

these functions the generalized solution and the generalized
output corresponding to (x̃0, d) because they coincide with
the corresponding classical objects for classical data and
because, by the next theorem, they share many important
properties of classical solutions and classical outputs.

Theorem III.6. With the above assumptions, we have:

(i) the generalized solution map (x̃0, d) 7→ x̃(·, x̃0, d)
satisfies the cocycle (or flow) property, that is,

x̃(t+ s, x̃0, d) = x̃(t, x̃(s, x̃0, d), d(s+ ·))

for all s, t ∈ R+
0 and all (x̃0, d) ∈ X̃ × L2

loc(R
+
0 ,Rk)

(ii) the generalized solution map (x̃0, d) 7→ x̃(·, x̃0, d) ∈
C(R+

0 , X̃) and output map (x̃0, d) 7→ y(·, x̃0, d) ∈
L2
loc(R

+
0 ,Rk) both are continuous and causal.

In particular, this theorem ensures that our closed-loop
system S̃ falls within the general framework of [8] and that
it is well-posed in the spirit of [14].

IV. INPUT-TO-STATE STABILITY OF THE
CLOSED-LOOP SYSTEM

After having established the global solvability of the
closed-loop system, we can now move on to stability. A
first very simple result is the following uniform global
stability [8] theorem. It is an immediate consequence of
Theorem III.3 (ii) and Theorem III.4 (i).

Theorem IV.1. With the above assumptions, there exist
σ, γ ∈ K such that

‖x̃(t, x̃0, d)‖ ≤ σ(‖x̃0‖) + γ(‖d‖2) (t ∈ R+
0 )

for every x̃0 ∈ X̃ and every d ∈ L2(R+
0 ,Rk).

We are now going to improve this uniform global stability
result to a (uniform) input-to-state stability result for a
special class of nonlinear controllers and to a weak input-
to-state stability result for a more general class of nonlinear
controllers.

A. Input-to-state stability

Input-to-state stability of the closed-loop system means [8]
that it is uniformly globally stable and of uniform asymptotic
gain, where uniform asymptotic gain in turn means the
following: there is a (so-called uniform gain) function γ ∈
K ∪ {0} such that for every ε, r > 0 there is a time
τ = τ(ε, r) such that for every x̃0 ∈ X̃ with ‖x̃0‖ ≤ r
and every d ∈ L2(R+

0 ,Rk)

‖x̃(t, x̃0, d)‖ ≤ ε+ γ(‖d‖2)

for every t ≥ τ . With the help of the cocycle property and the
fact that ‖d(t0 + ·)‖2 −→ 0 as t0 → ∞, one easily obtains
the following lemma.

Lemma IV.2. If the assumptions of the well-posedness
theorem (Assumption II.1, II.2, III.1) are satisfied and if S̃ is
uniformly input-to-state stable w.r.t. inputs from L2(R+

0 ,Rk),
then for every (x̃0, d) ∈ X̃ × L2(R+

0 ,Rk) one has

x̃(t, x̃0, d) −→ 0 (t→∞). (16)

In order to obtain input-to-state stability, we add the
following assumptions to the assumptions from the well-
posedness theorem (Theorem III.6).

Assumption IV.3. ζ 7→ H(ζ) is continuously differentiable
and there is a constant κ > 0 such that

|Bx|2 + |Cx|2 ≥ κ|(Hx)(b)|2 (x ∈ D(A)). (17)

Assumption IV.4. (i) P is quasi-quadratic, that is, for
some constants c1, c1 > 0

c1 v
>
1 ∇P(v1) ≥ P(v1) ≥ c1|v1|2 (v1 ∈ Rmc)

(ii) R is quasi-linear, that is, for some constants c2, c2 > 0

c2 v
>
2 R(v2) ≥ |v2|2 ≥ c2|R(v2)|2 (v2 ∈ Rmc).

Theorem IV.5. With the assumptions of the well-posedness
theorem (Assumption II.1, II.2, III.1) and the assumptions
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just made (Assumption IV.3, IV.4), we have that the closed-
loop system S̃ is input-to-state stable. In particular, the
convergence (16) holds true.

We now make some remarks on our strategy of proving the
above theorem: first we record the most central ingredients
in the form of two lemmas and then we roughly explain how
and where these central ingredients come into play.

Lemma IV.6. Under the assumptions of the above theorem,
there exists a function c0 ∈ L and a t0 > 0 such that for
every (x̃0, d) ∈ D

Ẽ(x̃(t, x̃0, d)) ≤ c0(t)

(∫ t

0

|(Hx(s))(b)|2 ds

+

∫ t

0

Ec(v(s)) ds

)
+

∫ t

0

|d(s)||y(s)|ds

for all t ≥ t0, where (x, v) := x̃(·, x̃0, d) and y :=
y(·, x̃0, d).

Lemma IV.7. Under the assumptions of the above theorem,
there exists a C0 > 0 such that for every (x̃0, d) ∈ D∫ t

0

Ec(v(s)) ds ≤ C0

(
Ẽ(x̃0) +

∫ t

0

|y(s)|2 ds

)
for all t ≥ 0, where (x, v) := x̃(·, x̃0, d) and y := y(·, x̃0, d).

A first step in the proof of the above theorem is to show
that there exist C1, τ0 > 0 such that for all x̃0 ∈ X̃ , d ∈
L2(R+

0 ,Rk)

Ẽ(x̃(τ0, x̃0, d)) ≤ 1

2
Ẽ(x̃0) + C1 ‖d‖2[0,τ0],2 .

In order to get this, we start out from the following energy
estimate:

Ẽ(x̃(t, x̃0, d)) ≤ Ẽ(x̃0) +

∫ t

0

d(s)>y(s) ds

− c−12

∫ t

0

|Kv2(s)|2 ds− ς
∫ t

0

|y(s)|2 ds (18)

for all (x̃0, d) ∈ D, where ς > 0 is the smallest eigenvalue
of Sc > 0. Assumption IV.3 yields a constant κ > 0 such
that

|y(s)|2 ≥ κ|(Hx(s))(b)|2 − |u(s)|2 (19)

for all s ≥ 0. Also, by virtue of Lemma IV.6 and IV.7, there
exist c0 ∈ L and t0 > 0 such that for all (x̃0, d) ∈ D

Ẽ(x̃(t, x̃0, d)) ≤ c0(t)

(∫ t

0

|(Hx(s))(b)|2 ds+ Ẽ(x̃0)

+

∫ t

0

|y(s)|2 ds

)
+

∫ t

0

|d(s)||y(s)|ds (20)

for all t ≥ t0. Inserting (19) and (20) into (18) and estimating
terms appropriately, the first step follows. A second step in
the proof of the above theorem is to show that there exists
C2 > 0 such that for all x̃0 ∈ X̃ , d ∈ L2(R+

0 ,Rk)

Ẽ(x̃(t, x̃0, d)) ≤ 2
(1

2

)t/τ0
Ẽ(x̃0) + C2 ‖d‖2[0,t],2

for all t ≥ 0. With the help of induction and the cocycle
property of generalized solutions, this follows from the first
step. In view of (12) the second step yields the desired
uniform asymptotic gain property.

B. Weak input-to-state stability

Weak input-to-state stability of the closed-loop system
means, by definition, that it is uniformly globally stable and
of weak asymptotic gain, where weak asymptotic gain in
turn means the following: there is a (so-called weak gain)
function γ ∈ K ∪ {0} such that for every ε > 0 and every
x̃0 ∈ X̃ , d ∈ L2(R+

0 ,Rk) there is a time τ = τ(ε, x̃0, d)
such that

‖x̃(t, x̃0, d)‖ ≤ ε+ γ(‖d‖2)

for all t ≥ τ . So the only difference to the uniform
asymptotic gain property is that the time τ is allowed to
depend on the initial state x̃0 (instead of only on the norm
thereof) and on the disturbance d. In [8] the weak asymptotic
gain property is called just asymptotic gain. With the help
of the cocycle property and the fact that ‖d(t0 + ·)‖2 −→ 0
as t0 →∞, one easily obtains the following lemma.

Lemma IV.8. If the assumptions of the well-posedness
theorem (Assumption II.1, II.2, III.1) are satisfied and if S̃
is weakly input-to-state stable w.r.t. inputs from L2(R+

0 ,Rk),
then for every (x̃0, d) ∈ X̃ × L2(R+

0 ,Rk) one has

x̃(t, x̃0, d) −→ 0 (t→∞). (21)

In order to obtain weak input-to-state stability, we add
the following assumptions to the assumptions from the well-
posedness theorem (Theorem III.6).

Assumption IV.9. S is even impedance-energy preserving
(meaning that (5) holds with equality), ζ 7→ H(ζ) is
continuously differentiable, and there is a constant κ > 0
such that

|Bx|2 + |Cx|2 ≥ κ|(Hx)(b)|2 (x ∈ D(A)). (22)

Assumption IV.10. (i) R is strictly damping, that is, for
some constants c, c, δ > 0,

v>2 R(v2) ≥ c|v2|2 (|v2| ≤ δ)
v>2 R(v2) ≥ c (|v2| > δ)

(ii) Bc, the input operator of the controller, is injective and
0 is the only critical point of P .

Theorem IV.11. With the assumptions of the well-posedness
theorem (Assumption II.1, II.2, III.1) and the assumptions
just made (Assumption IV.9, IV.10), we have that the closed-
loop system S̃ is weakly input-to-state stable (with weak gain
γ = 0). In particular, we have the convergence (21).

We again make some remarks on our strategy of proving
the above theorem. In doing so, it will be crucial to write
the nonlinear part of (13) as

f̃(x̃) = B̃g(B̃∗x̃) + B̃h(C̃x̃),
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where B̃ : Rmc → X̃ , C̃ : X̃ → Rmc and g, h : Rmc →
Rmc are such that

B̃v2 := (0, 0, v2), C̃x̃ := v1,

g(v2) := −R(v2) and h(v1) := v1 −∇P(v1).

In particular, B̃∗x̃ = Kv2 for every x̃ = (x, v1, v2) ∈ X̃ .
We can thus rewrite the closed-loop equations (13) as

x̃′ =
(
Ã − λB̃B̃∗

)
x̃+ B̃

(
λB̃∗x̃+ g(B̃∗x̃)

)
+ B̃h(C̃x̃)

d(t) = B̃x̃(t) (23)

that is, as a perturbation of the respective linearized system

x̃′ =
(
Ã − λB̃B̃∗

)
x̃ and d(t) = B̃x̃(t), (24)

where λ > 0. It follows from (23) by variation of constants
that classical solutions of (13) satisfy the following integral
equation:

x̃(t, x̃0, d) = e(Ã−λB̃B̃
∗)tx̃0 +

∫ t

0

e(Ã−λB̃B̃
∗)(t−s)

B̃
(
λB̃∗x̃(s, x̃0, d) + g(B̃∗x̃(s, x̃0, d))

)
ds (25)

+

∫ t

0

e(Ã−λB̃B̃
∗)(t−s)B̃h(C̃x̃(s, x̃0, d)) ds+ Φλt (d)

for every (x̃0, d) ∈ D, where

Φλt (d) := −e(Ã−λB̃B̃
∗)tR̃d(0) + R̃d(t)

+

∫ t

0

e(Ã−λB̃B̃
∗)(t−s)((Ã − λB̃B̃∗)R̃d(s)− R̃d′(s)

)
ds.

A first important ingredient to the proof of the theorem
is the following approximate observability result for the
collocated linear system S(Ã, B̃, B̃∗).

Lemma IV.12. Under the assumptions of the above theorem,
the linear system S(Ã, B̃, B̃∗) is approximately observable
in infinite time.

A second important ingredient is the following stabili-
zation result for the collocated linear system S(Ã, B̃, B̃∗),
which hinges on the approximate observability property just
established and on the compactness of the resolvent of Ã
(Proposition III.2).

Lemma IV.13. Under the assumptions of the above theorem,
(i) e(Ã−λB̃B̃

∗)· is strongly stable and (Ã − λB̃B̃∗)−1 is
compact

(ii) for every u ∈ L2(R+
0 ,Rmc),∫ t

0

e(Ã−λB̃B̃
∗)(t−s)B̃u(s) ds −→ 0 (t→∞)

(iii) for every bounded u ∈ ACloc(R+
0 ,Rmc) with u′ ∈

L2(R+
0 ,Rmc) and every sequence (tn) with tn −→∞,

there is a subsequence (tnl
) such that

lim
l→∞

∫ tnl

0

e(Ã−λB̃B̃
∗)(tnl

−s)B̃u(s) ds

= − lim
l→∞

(Ã− λB̃B̃∗)−1B̃u(tnl
).

Lemma IV.14. Under the assumptions of the above theorem,
we have for every x̃0 ∈ X̃ and d ∈ L2(R+

0 ,Rk) that
(i) B̃∗x̃(·, x̃0, d), g ◦ (B̃∗x̃(·, x̃0, d)) ∈ L2(R+

0 ,Rmc)
(ii) h ◦ (C̃x̃(·, x̃0, d)) ∈ ACloc(R+

0 ,Rmc) is bounded with
derivative (h ◦ (C̃x̃(·, x̃0, d)))′ ∈ L2(R+

0 ,Rmc).

A third important ingredient is the following lemma which
implies that the linearized boundary control system

x̃′ =
(
Ã − λB̃B̃∗

)
x̃ and d(t) = B̃x̃(t)

for λ > 0 is infinite-time input-admissible w.r.t. inputs d ∈
L2(R+

0 ,Rk).

Lemma IV.15. Under the assumptions of the above theorem,
Φλt : C2

c (R+
0 ,Rk) → X̃ for every t ∈ R+

0 and λ > 0 has a
unique bounded extension Φ

λ

t : L2(R+
0 ,Rk)→ X̃ and

sup
t∈[0,∞)

∥∥∥Φ
λ

t

∥∥∥ <∞.
With the help of Lemma IV.15 it follows that the above

integral equation (25) for classical solutions extends to
generalized solutions. Applying the last three lemmas (Lem-
ma IV.13, IV.14, IV.15) to this extended integral equation, we
can finally show that every generalized solution converges to
zero as desired.
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